Assembling Syntax: Modeling Constituent Questions in a Grammar Engineering Framework Olga Zamaraeva

Department of Linguistics, University of Washington SigTyp Lecture Series

May 14 2021

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Range of language variation

- There are over 7000 languages in the world¹ \bigcirc
- ▶ 90% of people speak about 10% of them
 - Many languages are being spoken less and less and may disappear

http://chartsbin.com/view/1339

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Understanding the range of language variation is important:

- For culture and society
- For science
 - One of the fundamental goals of linguistics
 - What about natural language processing?

http://chartsbin.com/view/1339

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Learn models from data

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- Learn models from data
- Use models to:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- Learn models from data
- Use models to:
 - Perform language tasks

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Learn models from data
- Use models to:
 - Perform language tasks
 - Learn something about faculties involved in those tasks

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Learn models from data
- Use models to:
 - Perform language tasks
 - Learn something about faculties involved in those tasks
 - "Learn something about the world"² through analyzing language data

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Learn models from data
- Use models to:
 - Perform language tasks
 - Learn something about faculties involved in those tasks
 - "Learn something about the world"² through analyzing language data

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Learn models from data
- Use models to:
 - Perform language tasks
 - Learn something about faculties involved in those tasks
 - "Learn something about the world"² through analyzing language data
 - Knowledge bases?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal

NLP:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

- Naturally care: Finding/describing/analyzing range of variation is a fundamental goal
- ► NLP:
 - For learning about language faculties:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal

NLP:

- For learning about language faculties:
 - Probably care, similar to like linguists do

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal

NLP:

- For learning about language faculties:
 - Probably care, similar to like linguists do
- For performing tasks:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal

NLP:

- For learning about language faculties:
 - Probably care, similar to like linguists do
- For performing tasks:
 - Maybe we care, but not if we can successfully transfer models from a few high-resource languages?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguists:

 Naturally care: Finding/describing/analyzing range of variation is a fundamental goal

NLP:

- For learning about language faculties:
 - Probably care, similar to like linguists do
- For performing tasks:
 - Maybe we care, but not if we can successfully transfer models from a few high-resource languages?
 - Sure, but how do we evaluate the performance?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Understanding the range of language variation is important:

- ► For culture and society
- For science
 - One of the fundamental goals of linguistics
 - Core to evaluating NLP models
 - Can transfer a model from English to another language but still need systematic knowledge about that other language to evaluate

ヘロト 不得 トイヨト イヨト

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

We need to study more languages...

► To learn more about human language, via linguistics or via NLP

 \blacktriangleright ...just like other sciences do in their domains 3

Pongo tapanuensis. Pic credit: Tim Laman

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

We need to study more languages...

- Studying a small set of languages is also valuable! (In both linguistics and NLP!)
- ...but it biases the questions we ask ⁴

Pic credit: https://englishlive.ef.com/blog/language-lab/question-words/

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Δ

Linguistic typology

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Linguistic typology

Study range of variation wrt broad characteristics

Assembling Synta:

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Linguistic typology

- Study range of variation wrt broad characteristics
- Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power
 - ▶ Have a model of e.g. syntax s.t. the grammar generates only correct sentences

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power
 - ▶ Have a model of e.g. syntax s.t. the grammar generates only correct sentences
- Traditionally separate

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power
 - Have a model of e.g. syntax s.t. the grammar generates only correct sentences
- Traditionally separate
 - How do we combine them?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Combining breadth and depth

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power
 - ▶ Have a model of e.g. syntax s.t. the grammar generates only correct sentences

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Combining breadth and depth

- Linguistic typology
 - Study range of variation wrt broad characteristics
 - Pay special attention to diversity
- Syntactic (semantic, morphological, phonological, discourse...) theory
 - In-depth inquiry into modeling phenomena with generative power
 - Have a model of e.g. syntax s.t. the grammar generates only correct sentences
- Computational modeling
 - of the theory
 - ...for reproducibility and rigor
 - ...when assembling fragments of in-depth analyses
 - …into a typologically diverse system

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Implement grammars on the computer 44

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

オロトオ圏トオミトオミト ミーのへび

- Run grammars automatically on sentences =

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Computational syntax

- Implement grammars on the computer 4.
- Run grammars automatically on sentences
 - ...as many sentences as you have

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Computational syntax

- Run grammars automatically on sentences
 - ...as many sentences as you have
 - ...from as many languages as you have data from

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Computational syntax

- Run grammars automatically on sentences
 - ...as many sentences as you have
 - ...from as many languages as you have data from
 - …including typologically diverse languages

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Run grammars automatically on sentences
 - ...as many sentences as you have
 - ...from as many languages as you have data from
 - …including typologically diverse languages
 - ...as many times as you need

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Run grammars automatically on sentences in the sentences in the sentences in the sentences in the sentences is a sentence of the sentence o
 - ...as many sentences as you have
 - ...from as many languages as you have data from
 - …including typologically diverse languages
 - …as many times as you need
- Grow grammars and accumulate knowledge artifacts

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Implement grammars on the computer A
- Run grammars automatically on sentences is a sentences in the sentences is a sentence of the sentences is a sentence of the sentence of the
 - ...as many sentences as you have
 - ...from as many languages as you have data from
 - …including typologically diverse languages
 - ...as many times as you need
- Grow grammars and accumulate knowledge artifacts
- Growing the area of applicability of a set of hypotheses which grammars represent

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Philosophy: Method of fragments

- Fully explicit grammar fragments⁵ that can be extended
 - constitute research artifacts that can be literally built upon
 - together and over time, contribute to our understanding of syntax

https://www.the information lab.co.uk/2017/08/09/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data/data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-data-scaffolding-easy-steps-fill-missing-

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Big Question: What is the range of variation in human languages?

Big Question: What is the range of variation in human languages?

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology
 - Syntactic, semantic, phonological, acquisition, and other theories

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology
 - Syntactic, semantic, phonological, acquisition, and other theories
 - Computational linguistics

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology
 - Syntactic, semantic, phonological, acquisition, and other theories
 - Computational linguistics
 - Natural language processing

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology
 - Syntactic, semantic, phonological, acquisition, and other theories
 - Computational linguistics
 - Natural language processing
- All of these fields are probably invested in understanding the range of variation in human language

- Big Question: What is the range of variation in human languages?
- Many ways to approach and many relevant fields:
 - Typology
 - Syntactic, semantic, phonological, acquisition, and other theories
 - Computational linguistics
 - Natural language processing
- All of these fields are probably invested in understanding the range of variation in human language
 - Next: Combining syntactic theory and typology

Computational syntax with Head-Driven Phrase Structure Grammar formalism

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Futur

- Implement grammars on the computer .
- Run grammars automatically on sentences in a sentences in the sentences in the sentences in the sentences is a sentence of the sentence of
 - ...as many sentences as you have
 - ...from as many languages as you have data from
 - …including typologically diverse languages
 - ...as many times as you need
- Grow grammars and accumulate knowledge artifacts \$
- Growing the area of applicability of a set of hypotheses which grammars demonstrably represent is

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Definition 1:

▶ A set of rules which can be loaded into a parser to parse/generate sentences

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

- Definition 1:
 - ▶ A set of rules which can be loaded into a parser to parse/generate sentences
- Definition 2:
 - ► A set of rules which can be loaded into a parser to parse/generate sentences...
 - \blacktriangleright ...such that it gives insight $\ensuremath{\,^{\circ}}$ into human linguistic faculties

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Definition 1:
 - ▶ A set of rules which can be loaded into a parser to parse/generate sentences
- Definition 2:
 - A set of rules which can be loaded into a parser to parse/generate sentences...
 - ...such that it gives insight Vinto human linguistic faculties
- I am working somewhere in between...

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Why talk about grammars [€]to an NLP audience?

► Grammars Saren't used very much in contemporary ◎NLP

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- * ロ * * 個 * * 注 * * 注 * ・ 注 ・ の < @

► Grammars Saren't used very much in contemporary <a>NLP

...or are they?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

► Grammars Saren't used very much in contemporary ⊗NLP

...or are they?

Evaluation relies on annotation ...

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- イロト (個) (注) (注) (注) つくで

- Grammars Saren't used very much in contemporary INLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ▶ Grammars Saren't used very much in contemporary SNLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ▶ Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ▶ Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD
 - ...someone Anad to systematize, formalize, and record the knowledge first

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ▶ Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD
 - ▶ ...someone Ahad to systematize, formalize, and record the knowledge first
 - Hard to update/improve and does not scale

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ► Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD
 - ...someone Anad to systematize, formalize, and record the knowledge first
 - Hard to update/improve and does not scale
 - ...unless you use an implemented grammar

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ► Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD
 - ...someone Anad to systematize, formalize, and record the knowledge first
 - Hard to update/improve and does not scale
 - ...unless you use an implemented grammar
 - Goal: Do this for more languages and in a more systematic and easily update-able way

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- ► Grammars Saren't used very much in contemporary
 NLP
 - ...or are they?
- Evaluation relies on annotation ...
- Many types of annotation rely on systematized knowledge \$
 - Grammars are a type of systematized knowledge
 - e.g. PennTree bank or UD
 - ...someone Anad to systematize, formalize, and record the knowledge first
 - Hard to update/improve and does not scale
 - ...unless you use an implemented grammar
 - Goal: Do this for more languages and in a more systematic and easily update-able way
 - Rely on indispensable human knowledge but support it with computational framework

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Computational syntax:

ssembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Computational syntax:

Consider sentences (usually a few), hypothesize an analysis

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Computational syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Implement the analysis in a grammar engineering framework ...

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Computational syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Implement the analysis in a grammar engineering framework ...
- Test on many sentences in literal interaction with analyses for other phenomena

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Pen-and-paper syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Test in your head
- Revise if you notice a problem

Computational syntax:

- Consider sentences (usually a few), hypothesize an analysis
- Implement the analysis in a grammar engineering framework ...
- Test on many sentences in literal interaction with analyses for other phenomena
- Revise hypotheses

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

 Goal: Make implemented linguistic grammars bigger and more accessible to broader research community Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Assembling grammars systematically

- Goal: Make implemented linguistic grammars bigger and more accessible to broader research community
- Method: Meta-grammar engineering with Head-Driven Phrase Structure Grammar

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

▲□▶▲圖▶▲≣▶▲≣▶ ▲国 ● ● ●

Assembling grammars systematically

- Goal: Make implemented linguistic grammars bigger and more accessible to broader research community
- Method: Meta-grammar engineering with Head-Driven Phrase Structure Grammar
- Project: Analysis of constituent questions for a grammar engineering system

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 更 - のへで

Assembling grammars systematically

- Goal: Make implemented linguistic grammars bigger and more accessible to broader research community
- Method: Meta-grammar engineering with Head-Driven Phrase Structure Grammar
- Project: Analysis of constituent questions for a grammar engineering system

Result:

- New library in the system; more complex hypotheses can be tested
- Archived test suites and analyses for several languages
- Some takeaways regarding the interaction of different analyses

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Head-Driven Phrase Structure Grammar

- Fully explicit formalism⁶
- Lexicalist and surface-oriented
- A grammar is a hierarchy of types encoded as feature structures where features are constrained to have some values
- A structure licensing a sentence must be well-formed

subj-head-phraseSUBJ〈〉HEAD-DTR②[SUBJ 〈 1 〉]NON-HEAD-DTR1ARGS〈 1, 2 〉

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

HPSG Phrase Structure Rule

- Describes a feature structure that is a phrase and can be visualized as a tree
- "Mother" and "daughter" nodes
- Identities (tags)

S 1 NP VP 1 Ivan [SUBJ(1)]sleeps

subj-head-phraseSUBJ⟨⟩HEAD-DTR②[SUBJ 〈□⟩]NON-HEAD-DTR□ARGS⟨□, □⟩

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Both types of research exist
- HPSG formalism can be used to posit multiple theories
- DELPH-IN HPSG 🐬

7

- International research consortium⁷
- Restricted version of HPSG formalism

https://github.com/delph-in, http://moin.delph-in.net/wiki/

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

化口压 化塑成 化医压 化医压 一座

DELPH-IN ^(*)main projects

- The English Resource Grammar (ERG)⁸
 - Broad coverage; used in NLP⁹
 - Semantic representations (ERS, MRS, DMRS) used widely for evaluating semantic parsers¹⁰

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

⁸ Flickinger 2000, 2011

⁹ Hajdik et al. 2019; Zamaraeva, Howell, and Rhine 2018; Buys and Blunsom 2017; Packard 2014

¹⁰ Oepen and Flickinger 2019

DELPH-IN ^(*)main projects

- The English Resource Grammar (ERG)⁸
 - Broad coverage; used in NLP⁹
 - Semantic representations (ERS, MRS, DMRS) used widely for evaluating semantic parsers¹⁰

▶ Medium-size grammars of Japanese, Chinese, German, Spanish...¹¹

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

⁸ Flickinger 2000, 2011

⁹ Hajdik et al. 2019; Zamaraeva, Howell, and Rhine 2018; Buys and Blunsom 2017; Packard 2014

¹⁰ Oepen and Flickinger 2019

¹¹ Siegel et al. 2016; Fan 2018; Crysmann 2003; Marimon 2010

DELPH-IN 7 main projects

- The English Resource Grammar (ERG)⁸
 - Broad coverage; used in NLP⁹
 - Semantic representations (ERS, MRS, DMRS) used widely for evaluating semantic parsers¹⁰

- Medium-size grammars of Japanese, Chinese, German, Spanish...¹¹
- The Grammar Matrix:¹² Automated starter grammars; typologically-driven (Part III)

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

⁸ Flickinger 2000, 2011

^{&#}x27; Hajdik et al. 2019; Zamaraeva, Howell, and Rhine 2018; Buys and Blunsom 2017; Packard 2014

¹⁰ Oepen and Flickinger 2019

¹¹ Siegel et al. 2016; Fan 2018; Crysmann 2003; Marimon 2010

¹² Bender, Flickinger, and Oepen 2002; Bender, Drellishak, et al. 2010

DELPH-IN [†]main projects

- ▶ The English Resource Grammar (ERG) ⁸
 - Broad coverage; used in NLP⁹
 - Semantic representations (ERS, MRS, DMRS) used widely for evaluating semantic parsers¹⁰

- ▶ Medium-size grammars of Japanese, Chinese, German, Spanish...¹¹
- The Grammar Matrix:¹² Automated starter grammars; typologically-driven (Part III)
 - Bootstrap grammar development for more languages¹³

- ⁹ Hajdik et al. 2019; Zamaraeva, Howell, and Rhine 2018; Buys and Blunsom 2017; Packard 2014
- 10 Oepen and Flickinger 2019
- ¹¹ Siegel et al. 2016; Fan 2018; Crysmann 2003; Marimon 2010
- 12 Bender, Flickinger, and Oepen 2002; Bender, Drellishak, et al. 2010
- ¹³ Bender 2010; Crowgey 2019; Inman 2019

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

⁸ Flickinger 2000, 2011

An analysis of constituent (wh) questions in DELPH-IN HPSG

- ► Classic **m** set of questions for syntactic theory:
 - How are question words ("wh-") distributed?
 - How to represent interrogative semantics?
 - Quantification, scope, wh-words as question parameters of different clauses...
 - ▶ How to model question word fronting (4)?
 - ▶ How to model optional fronting (5)?

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

An analysis of constituent (wh) questions in DELPH-IN HPSG

- ► Classic **m** set of questions for syntactic theory:
 - How are question words ("wh-") distributed?
 - How to represent interrogative semantics?
 - Quantification, scope, wh-words as question parameters of different clauses...
 - How to model question word fronting (4)?
 - ▶ How to model optional fronting (5)?

Previously:

- Nobody had put forth an analysis of multiple fronting as in Slavic languages
- Nobody had offered a unified HPSG account of wh-questions in typologically different languages

...and tested it rigorously ...and tested 14

(4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus] (5) Ty gde rabotaesh? you where work.3sg 'Where do you work?'[rus] Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Questionnaire – Analysis – Semantics

(4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus]

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Fronting analysis in HPSG

- "Nonlocal" features are propagated up the tree¹⁵
- ▶ Feature SLASH creates a long-distance dependency at the level of the verb
- ► The *filler-gap* rule discharges the dependencies

¹⁵ Pollard and I. A. Sag 1994; Ginzburg and I. Sag 2000

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Extending the fragment: Multiple question fronting

- Allow multiple extraction and recursive application of *filler-gap*¹⁶
- Takeaways:
 - "Optional" fronting is hard!¹⁷
 - ► Simpler analysis of multiple fronting → less simple morphological marking¹⁸

- (6) kto gde chto vidit? who.NOM where what.ACC see.3SG 'Who sees what where?'[rus]
- 16 Zamaraeva and Emerson 2020; Crysmann 2015
- 17 Zamaraeva 2021
- Zamaraeva to appear

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

・ロト ・ 日 ・ モート ・ ヨー・ つへの

Open questions:

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

オロトオ圏トオミトオミト ミーのへび

- Open questions:
 - Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Open questions:
 - Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - **Gist:** There is **no** optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Open questions:

- Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
- But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Open questions:

- Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
- But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?
- Essential vs. incidental complexity in formalisms

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Open questions:

- Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
- But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?
- Essential vs. incidental complexity in formalisms
- Tensions in elegance in a typologically diverse system

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Open questions:

- Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
- But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?
- Essential vs. incidental complexity in formalisms
- Tensions in elegance in a typologically diverse system
- Can we have one framework for everything?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Open questions:

- Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
- But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?
- Essential vs. incidental complexity in formalisms
- Tensions in elegance in a typologically diverse system
- Can we have one framework for everything?
- Must a system be elegant?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Open questions:
 - Modeling optional fronting leads to spurious ambiguity
 - How to get rid of it while still accounting for data?
 - Direction: information-structure
 - Gist: There is no optional fronting!
 - Nobody has done this in DELPH-IN HPSG yet
 - But isn't this a problem with DELPH-IN HPSG rather than with HPSG or syntactic theory in general?
 - Essential vs. incidental complexity in formalisms
 - Tensions in elegance in a typologically diverse system
 - Can we have one framework for everything?
 - Must a system be elegant?
 - ▶ Part III: Assembling typologically diverse analyses and evaluating the result

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Assembling and evaluating typologically diverse analyses

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

Questionnaire – Analysis – Semantics

(4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus]

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Questionnaire – Analysis – Semantics

(4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus] Choices regarding the position of question phrases

Question phrases can appear at the left edge of the sentence regardless of the position the questioned constituent would appear in (*Who did you see? I know who you saw* etc.):

- Only one question phrase can be fronted
- All question phrases can be fronted
- Ouestion phrases cannot be fronted (stay in situ)

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

3

The Grammar Matrix

- Meta-grammar engineering framework¹⁹
- Input: Typological specification, lexicon, morphological rules
- Output: Implemented HPSG grammar fragment
 - Parse and generate sentences
 - Output syntactic and semantic representations
- Many syntactic phenomena are supported²⁰

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

¹⁹ https://matrix.ling.washington.edu/customize/matrix.cgi 20 T = 2001 T

Zamaraeva 2021; Zamaraeva, Howell, and Bender 2019; Howell and Zamaraeva 2018; Saleem 2010; Song 2014; Nielsen 2018; Drellishak and Bender 2005; Crowgey 2013; Bender and Flickinger 2005

Matrix libraries

- Specify several phenomena at the same time
- Click to get a grammar fragment covering all of them²¹
- Test hypotheses in interaction
- Parse and generate data within fragment's area of coverage
 - Large lexicons can be imported

Main page
?General Information
Word Order
Number
Person
Gender
Case
Adnominal Possession
Direct-inverse
Tense, Aspect and Mood
Evidentials
Other Features
Sentential Negation
Coordination
Matrix Yes/No Questions
Constituent (Wh-) Questions
Information Structure
Argument Optionality
Nominalized Clauses
Clausal Complements
Clausal Modifiers
Lexicon
Morphology
Toolbox Import
Test Sentences
TbG Options
Choices file
(right-click to download)
Save & stay
Clear current subpage
Create grammar:
tgz, <u>zip</u>

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

 Mapping typological specifications to customized grammar fragments is supported by Matrix libraries

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Mapping typological specifications to customized grammar fragments is supported by Matrix libraries
 - Questionnaires are designed based on surveys of typological literature

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Mapping typological specifications to customized grammar fragments is supported by Matrix libraries
 - Questionnaires are designed based on surveys of typological literature
 - Libraries are evaluated with held-out languages

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Mapping typological specifications to customized grammar fragments is supported by Matrix libraries
 - Questionnaires are designed based on surveys of typological literature
 - Libraries are evaluated with held-out languages
 - Growing regression testing base
 - Language specs + test suites paired with "gold" semantic representations
 - Check automatically how any small change affects the all of the pairings

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Mapping typological specifications to customized grammar fragments is supported by Matrix libraries
 - Questionnaires are designed based on surveys of typological literature
 - Libraries are evaluated with held-out languages
 - Growing regression testing base
 - ▶ Language specs + test suites paired with "gold" semantic representations
 - Check automatically how any small change affects the all of the pairings
- Latest addition: Constituent questions²²
- (4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus]

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

RQ: What constitutes a model of a range of typologically attested ways of forming constituent questions within the given framework?

Evaluation: How well does the analysis generalize to a set of randomly picked "held-out" languages?

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Constituent questions in the Matrix

(4) Gde kto chto vidit? where who.NOM what.ACC see.3SG 'Who sees what where?'[rus]

- New library²³
- ► Typological scope:²⁴
 - Position of question phrase
 - Fronting, in situ
 - Fronting optionality
 - Morphological marking
 - Question particles
 - position
 - obligatoriness
 - Question words

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

23 Zamaraeva 2021 24 xm i oj

König and Siemund 2007; Hagège 2008; Miyagawa 1987, inter alia

Assembling 📓 fronting

Specification	Types	Core?	New?	Custom features	
single oblig. front.	wh-ques-phrase	no	yes	SLASH	
	subj-, obj-, adj-ex.	no	no	none	
multi oblig. front.	wh-ques-phrase	no	yes	HDR QUE	
				MODIFIED hasmod	
	subj-, obj-, adj-ex.	no	no	none	
single opt. front.	wh-ques-phrase	no	yes	SLASH	
	in-sutu-phrase	no	yes	none	
	subj-, obj-, adj-ex.	no	no	none	
multi opt. front.	wh-ques-phrase	no	yes	MODIFIED hasmod	
	in-sutu-phrase	no	yes	HDR L-QUE –	
	subj-, obj-, adj-ex.	no	no	HDR L-QUE –	
<i>in situ</i> (no front.)	in-sutu-phrase	no	yes	none	

The position of question phrases customization summary²⁵

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Assembling **I** particles

Specification	Types	Core?	New?	Custom features
clause-final or init.	qpart-comp-lex	no	no	none
	head-comp-phrase	yes	no	INIT
2nd pos. <i>ques-clitic-lex</i>		no	yes	none
	non-local	yes	no	YNQ
	basic-binary-phrase	yes	no	L-PERIPH
	int-cl-phrase	no	yes	none
	in-situ-phrase	no	yes	none
obligatory	in-situ-phrase	no	yes	MC –
only in embed. <i>qpart-comp-lex</i>		no	no	MC 1
				COMPS MC 1
only in polar	qpart-comp-lex	no	no	WH BOOL –
	ques-clitic-lex	no	yes	

Question particles customization summary²⁶

Assembling Synta

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Assembling 🗉 morphological marking

Specification	Types	Core?	New?	Custom features
Same mkg	interrog-lex-rule	no	yes	none
for polar and wh-	indicative-lex-rule	no	yes	none
Separate paradigms	indicative-lex-rule	no	yes	none
	polar-lex-rule	no	yes	none
	wh-subj-lex-rule	no	yes	none
	wh-obj-lex-rule	no	yes	none

Morphological question marking customization summary²⁷

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

"Freeze" the analyses and the development

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- "Freeze" the analyses and the development
- Grab reference grammars from "unseen" language families

Assembling Synta:

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- "Freeze" the analyses and the development
- ▶ Grab reference grammars from "unseen" language families
- Grab all examples of constituent questions from those books

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- "Freeze" the analyses and the development
- ▶ Grab reference grammars from "unseen" language families
- Grab all examples of constituent questions from those books
- Fill out the questionnaire so as to cover the examples

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- "Freeze" the analyses and the development
- ▶ Grab reference grammars from "unseen" language families
- Grab all examples of constituent questions from those books
- Fill out the questionnaire so as to cover the examples
- Click "create grammar", run the grammar on the examples

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- "Freeze" the analyses and the development
- ► Grab reference grammars from "unseen" language families
- Grab all examples of constituent questions from those books
- Fill out the questionnaire so as to cover the examples
- Click "create grammar", run the grammar on the examples
- ► Coverage: % of examples the grammar actually covered
- Overgeneration % of ungrammatical examples parsed
 - covered = gave correct semantic representation

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- "Freeze" the analyses and the development
- ► Grab reference grammars from "unseen" language families
- Grab all examples of constituent questions from those books
- Fill out the questionnaire so as to cover the examples
- Click "create grammar", run the grammar on the examples
- ► Coverage: % of examples the grammar actually covered
- Overgeneration % of ungrammatical examples parsed
 - covered = gave correct semantic representation
- How well can the system handle examples from an "unseen" language, as it is described in the reference grammar?

Assembling Synta

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Evaluating the constituent questions library²⁸

Language	ISO-639-3	Family	Gram. items	Coverage%	Question typology	Computational
Apinajé	[apn]	Macro-Jê	17	82.3	single front.	syntax with HP
						Assembling typologically
Makah	[myh]	Wakashan	14	78.5	morphological,int. verbs	diverse analyses
						Future
Pacoh	[pac]	Austroasiatic	26	84.6	single opt. front.	References
Paresi-Haliti	[pab]	Arawakan	64	56.0	single front., int. verbs	
Jalkunan	[bxl]	Mande	33	78.8	<i>in situ</i> , particle, int. verbs	

 \checkmark Single fronting, particles, morphological marking, interrogative verbs

imes Question words as predicates

Did not come up: Multiple fronting and LDDs

³⁵ Zamaraeva 2021

Evaluating the constituent questions library²⁹

Language	ISO-639-3	Family	Gram. items	Coverage%	Handled phenomena
Apinajé	[apn]	Macro-Jê	17	82.3	evidentials, arg. drop, clausal modifiers
Makah	[myh]	Wakashan	14	78.5	clausal complements,
					arg. drop
Pacoh	[pac]	Austroasiatic	26	84.6	arg. drop
Paresi-Haliti	[pab]	Arawakan	64	56.0	focus, adnom. poss,
					coordination
Jalkunan	[bxl]	Mande	33	78.8	adnom. poss.

 \checkmark Single fronting, particles, morphological marking, interrogative verbs

imes Question words as predicates

- Did not come up: Multiple fronting and LDDs

A Bugs: in interaction with **information structure** and clausal complements

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses The Grammar Matrix facilitates grammar creation for a wide variety of languages Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- The Grammar Matrix facilitates grammar creation for a wide variety of languages
- Bigger grammar fragments now possible to obtain from the Matrix³⁰
 - ▶ Further projects focused on polysynthetic languages are needed
 - What's next?

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

Assembling syntax: Part IV

Future directions

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages long-term investment

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages ●as a long-term investment
 - Meanwhile...

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages ●as a long-term investment
 - Meanwhile...
- NLP for grammar coaching

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages ●as a long-term investment
 - Meanwhile...
- NLP for grammar coaching

- Statistical systems are imprecise
- Adding more training data still won't help with explanations

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages ●as a long-term investment
 - Meanwhile...
- NLP for grammar coaching

- Statistical systems are imprecise
- Adding more training data still won't help with explanations
- Grammars: Incorporate L2 productions³¹

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

³¹ Schneider and McCoy 1998

- Ultimately, NLP relies on formal annotation
 - ▶ ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages ●as a long-term investment
 - Meanwhile...
- NLP for grammar coaching

- Statistical systems are imprecise
- Adding more training data still won't help with explanations
- Grammars: Incorporate L2 productions³¹

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

³¹ Schneider and McCoy 1998

- Ultimately, NLP relies on formal annotation
 - ERG is more robust than PTB/PSD and can be automatically rerun
 - ▶ We need this for more languages as a long-term investment
 - Meanwhile
- NLP for grammar coaching

- Adding more training data still won't help with explanations
- ▶ Grammars: Incorporate L2 productions³¹
- ▶ Map L2 productions to **useful** feedback³²

Future

³¹ Schneider and McCov 1998

³² Bender, Flickinger, Oepen, et al. 2004: Morgado da Costa, Bond, et al. 2016: Morgado da Costa, Winder et al. 2020

HPSG grammars for grammar coaching

- ► First step: Spanish and Galician
 - ▶ with Gómez Rodríguez and Alonso Ramos, U. of A Coruña
- Next step: More languages

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

▶ Formal approaches to syntax are an important part of linguistics and NLP

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References

- イロト イロト イヨト イヨト ヨー のへぐ

- ▶ Formal approaches to syntax are an important part of linguistics and NLP
- Fully explicit formalisms like HPSG allow us to implement grammars on the computer and rigorously test them

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Formal approaches to syntax are an important part of linguistics and NLP
- Fully explicit formalisms like HPSG allow us to implement grammars on the computer and rigorously test them
- Example: An analysis of constituent questions integrated into the Grammar Matrix system
 - Clear area of applicability as archived in the specifications, test suites, and the version of the Matrix system

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Formal approaches to syntax are an important part of linguistics and NLP
- Fully explicit formalisms like HPSG allow us to implement grammars on the computer and rigorously test them
- Example: An analysis of constituent questions integrated into the Grammar Matrix system
 - Clear area of applicability as archived in the specifications, test suites, and the version of the Matrix system
- Future: Robust NLP evaluation and precision in NLP applications for more languages

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Formal approaches to syntax are an important part of linguistics and NLP
- Fully explicit formalisms like HPSG allow us to implement grammars on the computer and rigorously test them
- Example: An analysis of constituent questions integrated into the Grammar Matrix system
 - Clear area of applicability as archived in the specifications, test suites, and the version of the Matrix system
- Future: Robust NLP evaluation and precision in NLP applications for more languages
- **Future:** Encoded and tested sets of hypotheses for more languages

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- Formal approaches to syntax are an important part of linguistics and NLP
- Fully explicit formalisms like HPSG allow us to implement grammars on the computer and rigorously test them
- Example: An analysis of constituent questions integrated into the Grammar Matrix system
 - Clear area of applicability as archived in the specifications, test suites, and the version of the Matrix system
- Future: Robust NLP evaluation and precision in NLP applications for more languages
- **Future:** Encoded and tested sets of hypotheses for more languages
- Assembling fragments of our understanding of language

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 更 - のへで

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

- The work presented today was partially funded by the United States National Science Foundation under Grant No. BCS-1561833 (PI Bender).
- This work would not be possible without the DELPH-IN community ³

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References I

Nater, Alexander et al. (2017). "Morphometric, behavioral, and genomic evidence for a new orangutan species". In: Current Biology 27.22, pp. 3487-3498. Idiatov, Dmitry (2007), "A typology of non-selective interrogative pronominals", PhD thesis, University of Antwerp, Bybee, Joan L (1985). Morphology: A study of the relation between meaning and form. Vol. 9. John Benjamins Publishing. Montague, Richard (1974), Formal Philosophy: Selected Papers, RH Thomason, Ed. Yale University Press, New Haven, Conn. Pollard, Carl and Ivan A. Sag (1994). Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics. Chicago, IL and Stanford, CA: The University of Chicago Press and CSLI Publications. Flickinger, Dan (2000). "On building a more efficient grammar by exploiting types". In: Natural Language Engineering 6.01, pp. 15-28. - (2011). "Accuracy v. Robustness in Grammar Engineering". In: Language from a Cognitive Perspective: Grammar, Usage and Processing. Ed. by Emily M Bender and Jennifer E. Arnold. Stanford, CA: CSLI Publications, pp. 31-50. Haidik, Valerie et al. (2019), "Neural text generation from rich semantic representations", In: arXiv preprint arXiv:1904.11564. Zamaraeva, Olga, Kristen Howell, and Adam Rhine (2018), "Improving Feature Extraction for Pathology Reports with Precise Negation Scope Detection". In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3564–3575. Buys, Jan and Phil Blunsom (2017). "Robust Incremental Neural Semantic Graph Parsing". In: ACL (1). Packard, Woodley (2014), "UW-MRS: Leveraging a Deep Grammar for Robotic Spatial Commands", In: SemEval 2014, p. 812. Oepen, Stephan and Dan Flickinger (2019). "The ERG at MRP 2019: Radically Compositional Semantic Dependencies". In: CoNLL 2019, p. 40 Siegel, Melanie, Emily M Bender, and Francis Bond (Nov. 2016), Jacy: An Implemented Grammar of Japanese, CSLI Studies in Computational Linguistics. Stanford CA: CSLI Publications. ISBN: 9781684000180. Fan, Zhenzhen (2018), "Building an HPSG Chinese grammar (Zhong)", PhD thesis, Nanyang Technological University, Crysmann, Berthold (2003), "On the Efficient Implementation of German Verb Placement in HPSG". In: Proceedings of RANLP 2003. Borovets, Bulgaria, pp. 112-116. Marimon, Montserrat (2010). "The Spanish Resource Grammar.". In: LREC. Bender, Emily M. Dan Flickinger, and Stephan Oepen (2002), "The Grammar Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-Linguistically Consistent Broad-Coverage Precision Grammars". In: Proceedings of the Workshop on Grammar Engineering and Evaluation at the 19th International Conference on Computational Linguistics, Ed. by John Carroll, Nelleke Oostdiik, and Richard Sutcliffe, Taipei, Taiwan, pp. 8-14.

Bender, Emily M, Scott Drellishak, et al. (2010). "Grammar Customization". In: Research on Language & Computation 8.1, pp. 23–72. ISSN: 1570-7075.

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future

References II

- Bender, Emily M (2010). "Reweaving a grammar for Wambaya". In: Linguistic Issues in Language Technology 3.1.
 Crowgey, Joshua (2019). "Braiding Language (by Computer): Lushootseed Grammar Engineering". PhD thesis. University of Washington.
 Inman, David Anthony (2019). "Multi-predicate Constructions in Nuuchahnulth". PhD thesis. University of Washington.
 Zamaraeva, Olga (2021). "A cross-linguistic analysis of constituent questions for the Grammar Matrix". PhD thesis. University of Washington.
 Ginzburg, Jonathan and Ivan Sag (2000). Interrogative investigations. Stanford: CSLI publications.
- Zamaraeva, Olga and Guy Emerson (2020). "Multiple Question Fronting without Relational Constraints: An analysis of Russian as a basis for cross-linguistic modeling". In: Proceedings of the 27th International Conference on Head-Driven Phrase Structure Grammar. Virtual conference, to appear.
- Crysmann, Berthold (2015). "Resumption and Extraction in an Implemented HPSG grammar of Hausa". In: Proceedings of the Grammar Engineering Across Frameworks (GEAF) 2015 Workshop, pp. 65–72.
- Zamaraeva, Olga (to appear). "Morphological marking of questions: A case for nonlocal amalgamation". In: Proceedings of the 28th International Conference on Head-Driven Phrase Structure Grammar, to appear.
- Zamaraeva, Olga, Kristen Howell, and Emily M Bender (2019). "Modeling clausal complementation for a grammar engineering resource". In: Proceedings of the 2nd meeting of the Society for Computation in Linguistics, pp. 39–49.
- Howell, Kristen and Olga Zamaraeva (2018). "Clausal modifiers in the Grammar Matrix". In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2939–2952.
- Saleem, Safiyyah (2010). "Argument optionality: A new library for the Grammar Matrix customization system". MA thesis. University of Washington.
- Song, Sanghoun (2014). "A grammar library for information structure". PhD thesis. University of Washington.
- Nielsen, Elizabeth K (2018). "Modeling adnominal possession in the lingo grammar matrix". MA thesis. University of Washington.
- Drellishak, Scott and Emily M Bender (2005). "Coordination Modules for a Crosslinguistic Grammar Resource". In: Departamento de Informática Faculdadede Ciências da Universidadede Lisboa Campo Grande, 1749–016 Lisboa Portugal, p. 29.
- Crowgey, Joshua (2013). "The syntactic exponence of sentential negation: A model for the LinGO Grammar Matrix". PhD thesis. University of Washington.
- Bender, Emily M and Dan Flickinger (2005). "Rapid Prototyping of Scalable Grammars: Towards Modularity in Extensions to a Language-Independent Core". In: Proceedings of the 2nd International Joint Conference on Natural Language Processing IJCNLP-05 (Posters/Demos). Jeju Island, Korea.

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Futur

References

References III

König, Ekkehard and Peter Siemund (2007). "Speech act distinctions in grammar". In: Language typology and syntactic description 1, pp. 276–324.

Hagège, Claude (2008). "Towards a typology of interrogative verbs". In: Linguistic typology 12, pp. 1-44.

Miyagawa, Shigeru (1987). "LF affix raising in Japanese". In: Linguistic Inquiry 18.2, pp. 362–367.

Schneider, D. and K. McCoy (1998). "Recognizing Syntactic Errors in the Writing of Second Language Learners". In: ACL, pp. 1198–1204. Bender, Emily M, Dan Flickinger, Stephan Oepen, et al. (2004). "Arboretum: Using a precision grammar for grammar checking in CALL". In: InSTIL/ICALL.

Morgado da Costa, Luis, Francis Bond, and Xiaoling He (2016). "Syntactic well-formedness diagnosis and error-based coaching in computer assisted language learning using machine translation". In: NLPTEA, pp. 107–116.

Morgado da Costa, Luis, R. Winder, et al. (2020). "Automated Writing Support Using Deep Linguistic Parsers". In: LREC, pp. 369-377.

Assembling Syntax

Olga Zamaraeva

Introduction

Computational syntax with HPSG

Assembling typologically diverse analyses

Future