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Introduction

The TyP-NLP workshop will be the first dedicated venue for typology-related research and its integration
into multilingual Natural Language Processing (NLP). The workshop will be hosted by the 57th Annual
Meeting of the Association for Computational Linguistics (ACL 2019) in Florence, Italy.

The ultimate goal of TyP-NLP is the development of robust language technology applicable across the
world’s languages. Long overdue, the workshop is specifically aimed at raising awareness of linguistic
typology and its potential in supporting and widening the global reach of multilingual NLP. It will foster
research and discussion on open problems relevant to the multilingual NLP community, but it will also
invite input from leading researchers in linguistics and cognitive sciences.

The final program of TyP-NLP contains 5 keynote talks and 18 accepted posters, selected among a large
number of non-archival submissions. This workshop would not have been possible without the hard work
of its program committee. We would like to express our gratitude to them for writing meticulous reviews
in a very constrained span of time. We should also thank our invited speakers, Isabelle Augenstein,
Emily Bender, Balthasar Bickel, Jason Eisner, and Sabine Stoll, for their irreplaceable contribution to
our program. The workshop is generously sponsored by Google and by the European Research Council
(ERC) Consolidator Grant LEXICAL (no. 648909).

Find more details on the TyP-NLP 2019 website: https://typology-and-nlp.github.io/
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Emily M. Bender’s primary research interests are in multilingual grammar engineering, the study of
variation, both within and across languages, and the relationship between linguistics and computational
linguistics. She is the LSA’s delegate to the ACL. Her 2013 book Linguistic Fundamentals for Natural
Language Processing: 100 Essentials from Morphology and Syntax aims to present linguistic concepts
in an manner accessible to NLP practitioners.

Jason Eisner works on machine learning, combinatorial algorithms, probabilistic models of linguistic
structure, and declarative specification of knowledge and algorithms. His work addresses the question,
“How can we appropriately formalize linguistic structure and discover it automatically?”

Balthasar Bickel aims at understanding the diversity of human language with rigorously tested causal
models, i.e. at answering the question what’s where why in language. What structures are there, and how
exactly do they vary? Engaged in both linguistic fieldwork and statistical modeling, he focuses on ex-
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Sabine Stoll questions how children can cope with the incredible variation exhibited in the approximately
6000–7000 languages spoken around the world. Her main focus is the interplay of innate biological
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determined factors (such as for instance type and quantity of input). Her approach is radically empirical,
based first and foremost on the quantitative analysis of large corpora that record how children learn
diverse languages.
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Unsupervised Document Classification in Low-resource Languages for
Emergency Situations

Nidhi Vyas Eduard Hovy Dheeraj Rajagopal
Carnegie Mellon University

{nkvyas,dheeraj}@andrew.cmu.edu
hovy@cmu.edu

1 Introduction

During emergency, relief workers need to con-
stantly track updates so that they can learn of sit-
uations that require immediate attention (Stowe
et al., 2016). However, it is challenging to carry
out these efforts rapidly when the information
is expressed in people’s native languages, which
have little to no resources for NLP. We aim for
building an adaptable language-agnostic system
for such emergent situations that can classify in-
cident language documents into a set of rele-
vant fine-grained classes of humanitarian-needs
and unrest situations. Our approach requires no
language specific feature engineering and rather
leverages the semantic difference between generic
class features to build a classification framework
that supports relief efforts. We assume no knowl-
edge of the incident language, except the com-
monly available bilingual dictionaries (which tend
to be very small or are generated from out-of-
domain data such as Bible alignments). First,
we obtain keywords for each target class using
English news corpora (Naik et al., 2017; Marujo
et al., 2015; Wen and Rosé, 2012; Özgür et al.,
2005; Tran et al., 2013), that are then translated
using the available bilingual dictionary (Zhang
et al., 2016; Adams et al., 2017). Second,
an unsupervised bootstrapping module enhances
the generic keywords by adding incident-specific
language-specific keywords (Knopp, 2011; Huang
and Riloff, 2013; Ebrahimi et al., 2016). Next, we
use all the keywords to generate labeled data. Fi-
nally, this data is used to train a downstream docu-
ment classifier. This entire procedure is language-
agnostic because it bypasses the necessity to cre-
ate training data from scratch. We validate this
procedure in a low-resource setup, with 7 distinct
languages, showing significant improvements over
the baseline by atleast 13 F1 points. To the best of

our knowledge, our approach is the first to com-
bine the use of distant supervision from English
and in-language semantic bootstrapping for such
a low-resource task. We believe our method can
be used as a strong benchmark for future develop-
ments in low-resource unsupervised classification.

2 Approach

Figure 1 shows the overall architecture of our ap-
proach, composed of three primary modules.
Keywords: We use English in-domain corpora
viz. Google News and Relief-Web corpus1 to
generate task-specific keywords, such that each
keyword is strongly indicative of the underlying
class(es) of a document. We cluster the documents
based on their classes and use tf-idf to pick top
100 candidate words for each class. We then com-
pute a label affinity score between each candidate
and class labels using cosine-similarity between
their corresponding Word2Vec embeddings2. In
this way, each candidate keyword has a different
association strength across all classes, and we only
retain the ones above threshold 0.9. The pruned
keywords are translated into the incident language
using the available bilingual dictionary, dropping
the ones that are absent. Finally, we use keyword
spotting to label each document with class/es of
the keyword/s present in it.
Bootstrapping: Dropping keywords during trans-
lation leaves a significant fraction of documents
unlabeled. To improve the percentage of labeled
documents, we expand the keywords within the
incident language using a two-step process. First,
we cluster the labeled documents (obtained from
keyword spotting) based on their classes. For each
word in a cluster, we compute the sum of its tf-idf
score across other clusters and its average word

1Pre-classified English documents into disaster relief
needs and emergency situations (https://reliefweb.int)

2https://code.google.com/archive/p/word2vec/
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Figure 1: System architecture for low-resource document classification.

Mandarin Spanish Uzbek Farsi Tigrinya Uyghur Oromo

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Random 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

+ KWD 0.40 0.22 0.28 0.57 0.14 0.23 0.51 0.11 0.18 0.49 0.18 0.26 0.54 0.55 0.55 0.61 0.28 0.39 0.45 0.08 0.14

+ BS 0.34 0.38 0.36 0.22 0.74 0.34 0.33 0.47 0.39 0.31 0.30 0.30 0.53 0.59 0.56 0.52 0.31 0.39 0.33 0.09 0.14

+ KNN 0.31 0.40 0.35 0.31 0.46 0.37 0.29 0.47 0.36 0.24 0.48 0.32 0.54 0.58 0.56 0.38 0.36 0.37 0.10 0.12 0.11
SVM 0.30 0.39 0.34 0.30 0.45 0.36 0.34 0.48 0.40 0.29 0.29 0.29 0.55 0.58 0.57 0.47 0.38 0.41 0.20 0.09 0.12
R-Forest 0.37 0.38 0.38 0.31 0.46 0.37 0.33 0.47 0.39 0.23 0.40 0.30 0.56 0.61 0.58 0.42 0.38 0.40 0.12 0.10 0.11
Log-Reg 0.29 0.39 0.33 0.31 0.45 0.37 0.32 0.47 0.38 0.23 0.37 0.29 0.56 0.61 0.58 0.51 0.36 0.42 0.12 0.10 0.10
GNB 0.32 0.40 0.36 0.30 0.46 0.36 0.33 0.51 0.40 0.28 0.31 0.30 0.56 0.62 0.58 0.47 0.37 0.41 0.11 0.10 0.11
DAN 0.22 0.38 0.27 0.21 0.74 0.33 0.23 0.52 0.32 0.25 0.68 0.37 0.56 0.58 0.57 0.37 0.38 0.37 0.26 0.19 0.22
LSTM 0.29 0.39 0.33 0.43 0.23 0.30 0.29 0.48 0.37 0.25 0.24 0.24 0.51 0.63 0.56 0.37 0.31 0.33 0.09 0.20 0.13

Table 1: Results of classification across 7 languages, over each module (Modules - KWD:Keywords, BS:Bootstrap;
Classifiers - R-Forest:Random Forest, GNB:Gaussian Naive Bayes, Log-Reg:Logistic regression, LSTM (Hochre-
iter and Schmidhuber, 1997) and DAN (Iyyer et al., 2015; Chen et al., 2016)

similarity with all other keywords present in that
cluster. Each keyword belongs to the same class as
its cluster. Second, we prune words with less than
0.9 score, and use the rest to again label more doc-
uments using keyword spotting (e.g. fraction of
labeled documents in Uzbeck increased by 36%).
Classification: Finally, we use all labelled docu-
ments obtained from Keywords and Bootstrapping
module to train a classifier, which classifies all the
remaining incident language documents.

3 Experiments and Results

We used the LDC corpora3 for 7 low-resource lan-
guages having 11 class labels: Crime-violence,
Terrorism, Regime-change, Medical, Food, Wa-
ter, Evacuation, Shelter, Search-rescue, Infras-
tructure, and Utilities. Mandarin, Uzbek, Farsi
and Spanish have 190 documents with average
2.7 labels per document. Tigrinya, Uyghur and
Oromo have 1.1K, 3.6K and 2.7K documents with
1.4, 0.1 and 1.0 labels per document respectively.
Apart from the difference in language families and
writing scripts, morphological complexity adds
further challenge to classification. As shown in

3https://www.ldc.upenn.edu

Table 14, the Keywords module results in high-
est average F1 gain over the baseline, showing the
effectiveness of using language-agnostic informa-
tion for tasks. As expected, this module primarily
improves precision. Further, on average 84.53%
keywords were dropped in translation, suggesting
improvements in bilingual dictionary can benefit
this module. Similarly, the Bootstrap module fo-
cuses on incident-specific information and primar-
ily improves recall, resulting in an overall F1 gain
of 6%. Finally, the Classifier module achieves
an overall improvement of 4% F1. We observe
low performance on Oromo, which is a morpho-
logically rich language. On finer inspection, we
found the corpus had several misspelled words.
For instance, we identified different versions of
Ethiopia, such as itiyoophiyaa. We also observe
that the languages of same family like Uyghur and
Uzbek have similar performances. In most cases,
the gain in F1 provided by keyword extraction and
bootstrapping is significantly higher than that from
any classifier. This suggests that the classifier per-
formance will improve only when we improve the
mappings between source and target languages.

4We use the LOREHLT evaluation guidelines
(https://goo.gl/ZT7sMq) for scoring
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Dissecting Treebanks to Uncover Typological Trends.
A Multilingual Comparative Approach

Chiara Alzetta•�, Felice Dell’Orletta�, Simonetta Montemagni�, Giulia Venturi�
•DIBRIS, Università degli Studi di Genova, Italy

chiara.alzetta@edu.unige.it
�Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC-CNR) - ItaliaNLP Lab

{name.surname}@ilc.cnr.it

Introduction and Motivation. Over the last
years, linguistic typology started attracting the in-
terest of the community working on cross- and
multi-lingual NLP as a way to tackle the bot-
tleneck deriving from the lack of annotated data
for many languages. Typological information is
mostly acquired from publicly accessible typo-
logical databases, manually constructed by lin-
guists. As reported in Ponti et al. (2018), de-
spite the abundant information contained in them
for many languages, these resources suffer from
two main shortcomings, i.e. their limited cover-
age and the discrete nature of features (only “the
majority value rather than the full range of pos-
sible values and their corresponding frequencies”
is reported). Corpus-based studies can help to
automatically acquire quantitative typological evi-
dence which might be exploited for polyglot NLP.
Recently, the availability of corpora annotated fol-
lowing a cross-linguistically consistent annotation
scheme such as the one developed in the Universal
Dependencies project is prompting new compara-
tive linguistic studies aimed to identify similari-
ties as well as idiosyncrasies among typologically
different languages (Nivre, 2015). The line of re-
search described here is aimed at acquiring quan-
titative typological evidence from UD treebanks
through a multilingual contrastive approach.
Method. The proposed methodology is inspired
by Alzetta et al. (2018) where an algorithm orig-
inally developed for assessing the plausibility of
automatically produced syntactic annotations was
used to infer quantitative typological evidence
from treebanks. The authors demonstrate that the
linguistic properties used by this algorithm to rank
dependency annotations from reliable to unreli-
able ones can also be effectively used against man-
ually revised corpora, i.e. gold treebanks. In this
case, the resulting ranking of gold dependencies
turned out to closely reflect the degree of pro-

Figure 1: LISCA work-flow.

totypicality of dependency relations in the target
corpus. In this study, we rely on the same algo-
rithm, LISCA (Dell’Orletta et al., 2013), which
operates in two steps (see Figure 1): i) it creates
a language model collecting statistics about a set
of linguistically-motivated features extracted from
the automatically parsed sentences of a large ref-
erence corpus, and ii) it uses the model to assign a
score to each dependency arc contained in a target
corpus. Rather than the plausibility of the annota-
tion, the score should be seen here as reflecting the
prototypicality degree of a given relation, based
on wide variety of features including its context
of occurrence. The higher the score of a ranked
arc, the more prototypical is the arc with respect
to the statistics acquired from the large reference
corpus. In Alzetta et al. (2018), the algorithm was
used to acquire typological evidence from tree-
banks relying on LISCA models (LM) of the same
language. The main novelty of this study con-
sists in the adopted multilingual comparative ap-
proach through which typological evidence is ac-
quired. As illustrated in Figure 2, we ranked the
same monolingual treebank using LMs built for
different languages, thus obtaining four different
dependencies rankings of the same monolingual

4



Figure 2: Method work–flow exemplified on IUDT.

LM Target UDT models
IT EN SP BUL

IT 1.00 0.94 0.97 0.79
EN 0.84 1.00 0.87 0.90
SP 0.98 0.95 1.00 0.93
BUL 0.79 0.91 0.83 1.00

Table 1: Spearman’s correlation between pairs of
ranked amod using different LMs on each treebank.

treebank. Different positions of the same depen-
dency relation (DR) across the four rankings re-
flect different degrees of prototypicality of that DR
instance: a bigger ranking difference associated
with the same DR is connected with stronger ty-
pological differences of the languages represented
in the selected treebanks, whereas closer rankings
reflect typological closeness of languages.
Data. In this study, we considered four UD tree-
banks (v2.2) (Nivre et al., 2017): English (Silveira
et al., 2014), Italian (Bosco et al., 2013), Span-
ish (McDonald et al., 2013) and Bulgarian (Simov
et al., 2005). Statistics to build the LMs for the ex-
amined languages were extracted from four mono-
lingual corpora of around 40 million tokens each
parsed by the UDPipe pipeline (Straka et al., 2016)
trained on the UD treebanks.
Results. Due to space constraints, the method-
ology is illustrated here wrt Italian UD Treebank
(IUDT) and in particular wrt an individual DR: ad-
jectival modifier (amod). Table 1 reports Spear-
man’s rank correlation coefficients (p <0.00) ob-
tained through pairwise comparisons of amod DRs
across the LISCA rankings. Each pair is repre-
sented by the ranking obtained using the LM of
the target UD treebank (Target UDT models) and
the ranking obtained using one of the other LMs.
Interestingly, typologically similar languages such

LM Prenominal Postnominal
Up Down Up Down

ENG 21,691.18 2,566.57 290.13 40,934.52
SP 1,541.31 9,163.83 5,462.83 5,322.66
BUL 30,597.76 967.66 885.15 43,003.64

Table 2: Avg difference of ranking positions of IUDT
pre- and post-nominal amod in different rankings with
respect to the ranking obtained with the Italian LM.

Figure 3: Distributions of the IUDT pre- and post-
nominal amod fluctuating in different rankings with re-
spect to the ranking obtained with the Italian LM.

as IT and SP show higher correlation values (0.98
and 0.97 respectively) than typologically distant
ones (e.g. BUL and IT). A similar trend is ob-
served considering the dependency direction of
amod and its syntactic head. Table 2 and Fig-
ure 3 report i) the average difference of positions
of pre- and post-nominal adjectival modifiers in
the IUDT ranking obtained using the Italian LM
and the other LMs, and ii) the percentage distri-
bution of fluctuations across rankings. It results
that higher the number of ranking fluctuations,
the more typologically distant the languages are.
Namely, in the rankings obtained using LMs of
EN and BUL, a higher percentage of prenominal
amod goes up with respect to the ranking obtained
using IT LM. This reflects the linguistic proper-
ties used to build LM: right-headed adjectives are
more prototypical in EN and BUL than in IT, ac-
cordingly they are highly scored by LISCA. As a
consequence, a higher percentage of pre-nominal
amod goes up in the rankings obtained using the
EN (86.50) and BUL (91.35) LMs wrt the ranking
obtained using IT LM. In addition, the average dif-
ference of positions of prenominal adjectives go-
ing up in the rankings obtained with EN and BUL
LMs is higher (21,691.18 and 30,597.76), as well
as the difference of the going-down ranking fluc-
tuations (40,934.52 and 43,003.64). This latter re-
sult reflects the lower degree of prototipicality of
left-headed adjectives in EN and BUL wrt IT.
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1 Introduction

Unlike traditional statistical machine translation,
neural machine translation (NMT) has enabled
translation between multiple languages using
a single model (Ha et al., 2016; Johnson et al.,
2017). It enjoys easier maintainability and pro-
duction deployment, without changing the model
architecture and hurting performance so much.

However, its simplicity raises a natural ques-
tion: how the multi-lingual model handle the
multilingualism? Recent work has shown that
the representations learned in NMT models
encode a great deal of linguistic information,
such as morphology (Belinkov et al., 2017a;
Bisazza and Tump, 2018), syntax (Shi et al.,
2016), and semantics (Belinkov et al., 2017b;
Poliak et al., 2018). However, most analyses
are for models which translate in one direction,
and only little is known about the linguistic
competence of multilingual NMT models.

The goal of this work is to understand the fol-
lowing question: how much do multilingual NMT
models capture the universality and variation of
languages? Specifically, we will answer the fol-
lowing questions in this paper:

• How much typological information does each
module in a model contain?

• How do the architectural choice of a model,
specifically the subword or character model,
affect the ability to capture linguistic typol-
ogy?

The experimental design in this work is similar to
Malaviya et al. (2017), where they trained a many-
to-one multilingual NMT system to predict the ty-
pological features of the languages. However, we
differ in that, while they focus on learning repre-
sentation that can be used to predict missing fea-
tures in typological databases, we aim to analyze

the linguistic property of multilingual NMT mod-
els and conducted more fine-grained analyses.

2 Methodology
2.1 NMT Training

For a fair comparison among languages, we
need sentences aligned in multiple languages.
In this experiment, we use the Bible Cor-
pus (Christodouloupoulos and Steedman, 2015),
which contains translations of the Bible in 100 lan-
guages. We extracted verses aligned among 58
languages, and then split them into train/dev/test
sets, which resulted in 23,555/455/455 verses re-
spectively. The test data is used afterward for the
following typological prediction task.

The NMT model is the attentional encoder-
decoder model similar to Luong et al. (2015). The
model has two stacked LSTM layers for the en-
coder and decoder, and the sizes of embeddings
and hidden states are set to 500. The model is
trained in the many-to-one scheme, i.e., translat-
ing from multiple languages into one single target
language. Following Johnson et al. (2017), we do
not explicitly specify the source language which
the model is translating.

Sentences are segmented by sentencepiece
(Kudo, 2018), a language-agnostic tokenizer. For
the source languages (57 languages in total), we
created a shared vocabulary with the size of
32,000. For the target language (English), the vo-
cabulary size is set to 8,000. We also experimented
with character tokenization.

2.2 Probing Task

We investigate the extent to which the NMT
model captures the typology of the source lan-
guages. We use the URIEL Typological Database
(Littell et al., 2017), which compiles typologi-
cal features of languages extracted from mul-
tiple linguistics sources. We used the data
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where missing values are predicted with kNN
regressions based on phylogenetic or geograph-
ical neighbors. We only use the syntactical
features, which amount to 103 features, from
the database (e.g., S SUBJECT BEFORE VERB,
S PLURAL PREFIX), as we focus on features
that would be directly learned in translation.

Our approach utilizes a probing task (Adi et al.,
2017; Conneau et al., 2018). We trained binary lo-
gistic regression classifiers dedicated for each ty-
pological feature. The classifiers are asked to pre-
dict the typological feature of the source languages
based on a sentence representation extracted from
the trained model (max-pooling of hidden states).
We performed 10-fold cross-validation, with no
overlapping of languages in each train/test set. As
the data in the test set is of the languages unknown
to the classifier, the accuracy indicates how much
the extracted representation generalizes about the
typological features across languages.

3 Results and Discussion
This section presents the results for the two ques-
tions we asked: How much typological informa-
tion does each module in a model contain?; How
do the different architectures of a model, specif-
ically subwords or characters model, affect the
ability to capture linguistic typology? Table 1
summarizes the result with the majority baseline,
where classifiers always predict the majority class
for the typological feature.

Encoder Decoder Attention
majority 80.90%
subword 84.90% 80.10% 81.30%
character 87.00% 80.10% 84.90%

Table 1: The accuracy of typology prediction using
features extracted from different layers of the model.
The values are averaged across all the predicted typo-
logical features and languages. Encoder and Decoder
represents the output from the top layer of the encoder
and decoder respectively. The lower layers gave lower
accuracy in most cases. Attention is the representation
after computing attention, before the output projection
layer.

Effect of module
The representations from the encoder predict the
typological feature of the source language signif-
icantly better than the majority baseline, whereas
the decoder sees almost no improvements from the
baseline. This indicates the encoder is aware of

what language it encodes, whereas the decoder is
ignorant of the source and focuses on generating
the target language.

However, although the decoder is unaware of
the source language, the representation from the
attention, again, contains the typological infor-
mation on the source language. This indicates
the inefficiency of the current shared-attention ar-
chitecture. Ideally, to achieve the most efficient
parameter sharing in multilingual translation sys-
tems, target sequence generation should be ig-
norant of the source language properties, as the
sentences with the same meaning are eventually
mapped to the same target sequence regardless of
the source language. In other words, the decoder
has to generate a word sequence based on interlin-
gua, i.e., shared meaning representation across all
languages (Richens, 1958; Schwenk and Douze,
2017; Johnson et al., 2017). Our result confirms
that attention is one of the obstacles to language-
agnostic generation of the decoder, and is in line
with recent efforts to improve multilingual NMT
by seeking neural interlingua (Lu et al., 2018;
Cı́fka and Bojar, 2018).

Subword vs. characters
The character model is more predictive of typo-
logical properties than the subword model in ev-
ery layer. This can be attributed to the abil-
ity of the character model to capture morphology
(Qian et al., 2016; Belinkov et al., 2017a), which
is verified by the top 5 typological features that see
improvement from the subword model to the char-
acter model. Three of them are features concern-
ing part-of-speech (ADJECTIVE and NOUN),
and one is about dependency marking:

• S ADJECTIVE AFTER NOUN
• S ADJECTIVE BEFORE NOUN
• S INDEFINITE WORD
• S ADJECTIVE WITHOUT NOUN
• S TEND DEPMARK.

4 Conclusion

We will continue to experiment with another
dataset, larger models, and different target lan-
guages to verify the observation in this paper and
conduct further analyses. We also intend to use
other probing tasks, such as universal part-of-
speech tagging and natural language inference, to
investigate the generalization ability of multilin-
gual NMT models across languages.
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Ondřej Cı́fka and Ondřej Bojar. 2018. Are BLEU and
Meaning Representation in Opposition? In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loic Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics.

Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016.
Toward Multilingual Neural Machine Translation
with Universal Encoder and Decoder. arXiv.org.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viegas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
Multilingual Neural Machine Translation System:
Enabling Zero-Shot Translation. Transactions of the
Association for Computational Linguistics, 5:339–
351.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates . In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Patrick Littell, David Mortensen, Ke Lin, Kather-
ine Kairis, Carlisle Turner, and Lori Levin. 2017.

URIEL and lang2vec: Representing languages as ty-
pological, geographical, and phylogenetic vectors.
In Proceedings of the Conference of the European
Chapter of the Association for Computational Lin-
guistics.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhard-
waj, Shaonan Zhang, and Jason Sun. 2018. A neural
interlingua for multilingual machine translation. In
Proceedings of the Conference on Machine Transla-
tion.

Minh-Yhang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Chaitanya Malaviya, Graham Neubig, and Patrick Lit-
tell. 2017. Learning Language Representations for
Typology Prediction. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Adam Poliak, Yonatan Belinkov, James Glass, and
Benjamin Van Durme. 2018. On the Evaluation of
Semantic Phenomena in Neural Machine Transla-
tion Using Natural Language Inference. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016.
Investigating Language Universal and Specific Prop-
erties in Word Embeddings. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics.

R H Richens. 1958. Interlingual Machine Translation.
The Computer Journal, 1(3):144–147.

Holger Schwenk and Matthijs Douze. 2017. Learning
Joint Multilingual Sentence Representations with
Neural Machine Translation. In Proceedings of the
Workshop on Representation Learning for NLP.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-Based Neural MT Learn Source Syntax? In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

9



Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP, pages 10–12
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Syntactic Typology from Plain Text Using Language Embeddings

Taiqi He
University of California, Davis

tqhe@ucdavis.edu

Kenji Sagae
University of California, Davis
sagae@ucdavis.edu

1 Introduction

We examine the question of whether information
about linguistic typology can be derived automat-
ically solely from text corpora, without access to
any kind of annotation or parallel data. We de-
scribe an ongoing effort to use text from various
languages to develop an unsupervised approach to
characterize languages through language embed-
dings, which encode information about the struc-
ture of languages as vectors. We then explore
whether these language vector representations en-
code typological information, which would tradi-
tionally require human expertise.

In recent work, Malaviya et al. (2017) showed
that it is possible to extract language represen-
tations from neural machine translation models,
while Wang and Eisner (2017) used POS tag se-
quences to predict dependency orders for vari-
ous languages. In contrast, we do not leverage
any kind of linguistic annotation or parallel data.
Bjerva and Augenstein (2018) used an architec-
ture similar to ours to generate language repre-
sentations and showed improvement in task re-
lated WALS predictions after task specific trans-
fer learning. We show that it is possible to obtain
results better than baseline without optimizing for
specific tasks.

2 Method

Our approach is based on the idea behind a de-
noising autoencoder (Vincent et al., 2008) applied
to many languages simultaneously. Given a text
corpus with unrelated sentences in each language,
we use an encoder-decoder model that learns to
reorder, or denoise, sentences in each language.

We first map the words from the various lan-
guages into a common representation, leverag-
ing the multilingual 300-dimensional word em-
beddings from Facebook project MUSE (Conneau

et al., 2017). We then build multilingual dictio-
naries using CSLS (Conneau et al., 2017) and re-
place each word in each sentence to its English
translation. We therefore have a corpus with sen-
tences consisting of English words in the original
orders from the different languages. The words
in each sentence of this corpus are reordered ran-
domly, creating the input, or source, sequences.
The target sequences are the corresponding orig-
inal sentences. The model then must learn to re-
order words in each language, from a random or-
der, to the original order. Additionally, we pro-
vide the model with information about what lan-
guage the sentence is from by appending to each
word on both the source and target sides a feature
that corresponds to the language identity. Table
1 shows how our target sentences are represented,
with English words, original word orders, and lan-
guage features, along with the original sentences
for comparison. A 50-dimensional embedding of
this language identity feature is learned along with
the reordering task. The intuition is that the model
will learn that reordering the same words is done
differently depending on whether the language is
English, French, Turkish, Vietnamese, etc., but
that certain languages are more similar to, or more
different from, each other. Once the model is
trained, the language feature embedding that helps
the model learn how to reorder words for a specific
language is the language embedding. After train-
ing, we retrieve the language embeddings from the
decoder of the model and examine them in the fol-
lowing section.

Our BiLSTM encoder and LSTM decoder both
have two layers of 500 units. We used 29 lan-
guages, with 200,000 sentences each. Although
the MUSE embeddings used in our experiments
were created using bilingual dictionaries, violating
our goal of deriving the language representations
from text only, we also plan to examine the use of
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Figure 1: PCA projection of the language embeddings. Shapes represent automatically derived clusters. The Rand
score between actual (color) and predicted (shape) language categorizations is .62.

Original Transformed
Er hat den roten Hund
nicht gesehen

he|de has|de the|de
red|de dog|de not|de
seen|de

No vio al perro rojo not|es saw|es the|es
dog|es red|es

Il n’a pas vu le chien
rouge

he|fr not|fr has|fr
seen|fr the|fr dog|fr
red|fr

Table 1: The sentence He didn’t see the red dog trans-
formed from German, Spanish, and French to English.
Word orders were preserved and a label denoting the
origin language was attached to each word.

multilingual embeddings obtained from text alone
(Lample et al., 2017).

3 Examining Language Embeddings

Figure 1 shows the two-dimensional PCA projec-
tion of the normalized language embeddings. We
can clearly see clustering of Slavic languages on
the lower left, Romance on the right, and Ger-
manic on the upper left. Our dataset also had two
Finnic languages, which appear in the upper re-
gion in the Slavic languages, and two Semitic lan-
guages, which appear on the lower right. The other
languages are from families underrepresented in
our dataset, and appear either around the center (in

the case of Hungarian, Turkish and Greek), or in
the lower right corner (Vietnamese, Indonesian).
Romanian, a Romance language, appears miscat-
egorized by our language embeddings, also in the
lower right cluster.

In addition to actual language relationships,
represented by color, we also present the result
of spectral clustering with four categories through
different shapes. This indicates that, broadly,
the language embeddings do capture similarities
within language families and dissimilarity across
language families. Finally, we train linear models
to predict WALS (Dryer and Haspelmath, 2013)
features for each language based on the language’s
50-dimensional embedding. Even with only 28
training samples (the models were evaluated by
leaving one language out), the models predict fea-
tures under the areas of verbal categories, word
order, nominal categories, simple clauses, phonol-
ogy and lexicon above the level of a majority base-
line, with average accuracy of 0.77 (baseline .71),
while morphology, nominal syntax and other were
worse than or equal to a majority baseline, with
average accuracy 0.73 (baseline .76). Despite the
surprising failure to capture nominal syntax, it
does appear that the language embeddings capture
some aspects of syntactic typology.
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1 Introduction

Currently, there are approximately 7,000 non-
extinct languages in the world (Lewis, 2009). Lin-
guistic typology aims at studying and classifying
these languages in a systematic way, based on
their structural and functional features. The World
Atlas of Language Structures (WALS, Dryer and
Haspelmath, 2013) is an online database that de-
scribes typological features—phonological, syn-
tactic, lexical, word order features, etc.—and
records the value of 144 such features for 2,679
languages. However, even for this small set of
languages and features, the value of 80% of the
language-feature combinations is undefined. Pre-
vious research has shown that WALS feature val-
ues can be predicted based on the existing data in
WALS (e.g., Takamura et al., 2016). Predicted val-
ues for missing language-feature combinations in
WALS can be useful both for downstream NLP
tasks (e.g., Naseem et al., 2012; Daiber et al.,
2016) and for typological research.

We discuss predicting WALS data using matrix
completion. In our first experiment, we use a sim-
ple set-up and a leave-one-out-cross-validation to
predict feature values in the database. We compare
the results to a majority class baseline and a logis-
tic regression classifier. In further experiments, we
test the robustness of our method by leaving out
(1) features in the same domain and (2) languages
within the same language family. To our knowl-
edge, matrix completion approaches have not been
used for typological prediction tasks previously;
we show that they outperform our two baselines
on the WALS data set.

2 Related Work

For space reasons, we point the reader to Ponti
et al. (2018) for a comprehensive overview
of research on typological information in
NLP/computational linguistics. We have included

a comparison to accuracies obtained in other
WALS prediction experiments in Table 1. Note
that it is difficult to objectively compare per-
formance between different projects because of
the wide disparity in methods and subsets of the
WALS data used. Because of this, the focus of our
comparison will be the two baselines evaluated on
the same data set used for matrix completion.

3 WALS and Preprocessing

Features in WALS are split up in 11 domains.1,2

The data set also includes 10 meta-features
(isocodes, language family, genus, etc.), which are
not included in the data for prediction. Including
meta-features improves accuracy and would there-
fore be desirable in combination with a down-
stream NLP task. However, the current set-up
is more interesting from a linguistic perspective,
since it constrains feature predictions to depend
on typological implications (such as VSO order→
Noun-Adjective order, Greenberg, 1963) and other
statistical patterns in the WALS data.

The original WALS matrix contains categorical
feature values, which were binarized before run-
ning matrix completion. We excluded 214 lan-
guages for which only 1 feature value has been
recorded in WALS. Our method requires no ad-
ditional preprocessing.3

4 Matrix completion

Matrix completion algorithms are not yet part
of the standard computational linguistics toolkit.
However, there are several reasons why matrix
completion is potentially a good method for our

1Phonology, sign languages, morphology, nominal cate-
gories, nominal syntax, verbal categories, word order, simple
clauses, complex sentences, lexicon and other.

2Both sign languages and features related to sign lan-
guages have been excluded from the data in this project.

3All data and code used to obtain the results in this pa-
per is available at https://github.com/annebeth/
wals-matrix-completion.
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Accuracy Method

Georgi et al. (2010) 65.5% Language clustering
Takamura et al. (2016) 75.5% Logistic regression
without language family 73.0% Logistic regression
Murawaki (2017) 74.5% Bayesian model

Baseline 1 53.1% Majority class
Baseline 2 65.7% Logistic regression
Matrix completion 74.3% IterativeSVD
without domain 61.6% IterativeSVD
without language family 71.2% IterativeSVD

Table 1: Matrix completion experiment results com-
pared with results obtained in previous work.

task. First, these algorithms have been used exten-
sively with sparse matrices. Second, since they
learn from the entire matrix at once, we expect
them to be able to learn more holistic patterns in
the data than individual local predictors (such as
our logistic regression baseline).

The matrix completion algorithm used in this
paper is IterativeSVD,4 based on Troyanskaya
et al. (2001). This method attempts to learn a low-
rank approximation of the original matrix by using
Singular Value Decomposition (SVD).

5 Experimental set-up

In our experiment, we are predicting each lan-
guage × feature-combination that currently has a
value in WALS (i.e., it is not undefined) separately
by using leave-one-out cross validation (LOOCV).

First, we calculate results for two baselines.
The first baseline predicts a feature value by sim-
ply assigning the majority class for each feature.
The second baseline consists of logistic regression
classifiers that are trained to predict a specific fea-
ture based on all other features. Besides our basic
matrix completion setting, we have run the exper-
iment in two additional settings: (1) without do-
main-setting: all features from the same domain
as the feature that is being predicted are excluded
from the matrix, and (2) without family-setting:
when predicting a feature value for a certain lan-
guage, all other languages that are in the same lan-
guage family are excluded from the matrix.

6 Results

Table 1 shows the prediction results obtained with
matrix completion on the WALS data and com-

4IterativeSVD as implemented in the FancyImpute
Python package: https://github.com/iskandr/.
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Figure 1: Comparison of (top) number of examples of
each feature to the prediction accuracy for that feature
and (bottom) the number of examples of each language
to the prediction accuracy for that language.

pares them to results obtained in related work.5

Matrix completion significantly outperforms our
two baselines and also improves on the baselines
in the without language family setting.

Figure 1 shows different distributional patterns
in the comparison of the number of examples with
the obtained accuracy. The number of examples
shows no correlation with the prediction accuracy
per language. For feature accuracy, however, hav-
ing more examples of a feature can result in better
predictions.

7 Conclusion

Matrix completion outperforms the baselines on
the WALS data and performs on par with previous
work. This shows that matrix completion captures
holistic patterns in the data that cannot be learned
in a traditional classifier approach. Furthermore,
our method requires minimal preprocessing and
can easily be used with any typological database.

Our work has shown that treating WALS as a
matrix is an effective approach. Daumé III and
Campbell (2007) showed that typological impli-
cations can be learned from WALS. Non-negative
matrix factorization (Lee and Seung, 1999) could
be used for the analysis of these implications or to
improve the clustering of languages.

5We included papers that use only WALS as training data
and evaluate on all domains in WALS.
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1 Introduction

We explore in this abstract the relationship be-
tween a typological database (WALS) and a gram-
mar specification system (the LinGO Grammar
Matrix).

The LinGO Grammar Matrix (GM) customiza-
tion system automatically generates a custom
HPSG grammar based on user inputs to a web-
based questionnaire (Bender et al., 2002, 2010).
One of its goals is to make the process of creat-
ing new grammars easier for linguists of all back-
grounds working on testing linguistic hypotheses.

The World Atlas of Linguistics Structures
(WALS), often considered a typological atlas due
to its detailed geographical data, distinguishes it-
self from other typological databases such as Ter-
raling (Terraling) by the quantity and the quality
of data it contains. WALS was built upon the work
of 55 authors who classified over 2,500 languages
according to 192 features,1 and integrated this in-
formation with geographical coordinates for each
language. It has been used to discover universal
typological implications (Daume III and Camp-
bell, 2007), compare phylogenetic relationships
within feature-based language clusters (Georgi
et al., 2010) and provide a benchmark for auto-
matic typological feature identification from cor-
pora (Lewis and Xia, 2008).

We explore this database in an effort to assist
the creation of custom grammars for the GM user.
We develope a method to determine what is the
overlap between the GM questionnaire and WALS
features and how they correspond to each other. In
the following sections, we detail how WALS fea-
tures can be mapped to the Grammar Matrix and
what conclusions can be drawn from these map-
pings. To illustrate this process we provide exam-

1This dataset is sparse however: different features are
specified for different languages.

ples and conclude with a discussion of the poten-
tial impacts of these matches and how they may be
applied in future work.

2 Methodology

There is a fundamental difference between the fea-
tures defined in the WALS database and the ones
elicited by the GM user interface: While both are
built with features extracted from detailed gram-
mars and current typological literature, WALS is
fundamentally a reference database of language
typology. Accordingly, WALS features classify
typological information about a language but are
generally not concerned with all the detail that
would be required to implement language-specific
grammars (e.g. the particular form affixes take).2

Due to this, we developed a simple method to
determine which WALS features match which GM
features to determine to what extent WALS fea-
tures can be imported and utilized in the grammar
customization process. After studying the doc-
umentation for a GM feature, for example Ad-
nominal Possession, we examine WALS’ inven-
tory of features looking for key terms in titles that
correspond to the GM phenomenon, such as Fea-
ture 24A Locus of Marking in Possessive Noun
Phrases (Nichols and Bickel, 2013). We assess the
values of the feature and organize them with the
corresponding questionnaire item. An example of
this 1-to-1 pairing can be seen in Table 1.

This is where a careful interpretation of the doc-
umentation for each system is necessary. WALS
utilizes the term locus to refer to a head-dependent
marking relationship (Comrie, 2013), designating
the possessed noun as the head noun and the pos-
sessor as the dependent. The GM refers to the

2WALS also contains significant information about lin-
guistic properties outside the morphological, syntactic and
semantic information required by the GM, including phono-
logical and lexical features.
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Grammar Matrix WALS
Morpheme Placement Feature 24A Number of Languages
On the possessum Possessor is head-marked 78
On the possessor Possessor is dependent-marked 98
On both the possessor and the possessum Possessor is double-marked 22
No possessive morphemes appear Possessor has no marking 32
— Other types 6

Table 1: Correlation of GM Adnominal Possession morpheme placement options and WALS Feature 24A Locus
of Marking in Possessive Noun Phrases. Data available for 236 languages.

possessor and the possessum (Nielsen and Bender,
2018). Therefore we pair the values “on the pos-
sessum” (GM) with “possessor is head-marked”
(WALS). This analysis is repeated with all values
for each feature.

Another point of consideration this particular
feature brings up is that after asking about the po-
sition of the possessive morpheme, the GM posits
further clarifying questions that depend on which
option was chosen. If the morpheme appears “on
the possessor”, the user is asked if it is an affix,
separate word or clitic. When the option “on the
possessor” is chosen, the GM offers the user the
option to add a feature constraint, such as Case.
This kind of information, along with the orthogra-
phy and distribution of the morphemes, is regret-
tably not provided by WALS and must remain un-
der the user’s purview to add.

Below we offer two more examples of
WALS/GM features to illustrate the challenges
of feature mapping when a one-to-one correspon-
dence cannot be found or is not particularly useful.

2.1 Case Marking Strategy

The core case marking section of the GM (Drel-
lishak, 2008) corresponds to WALS Feature 98A
(Comrie, 2013), entitled Alignment of Case Mark-
ing of Full Noun Phrase. The latter designates the
argument abbreviations according to Dixon (1994)
– A (agent of a transitive verb), O (object of a
transitive verb) and S (subject of an intransitive
verb) – whereas WALS uses P (patient) instead of
O (Comrie, 1978).

The GM questionnaire gives the user the option
to check which case marking strategy is being used
and also what each case is called, e.g. ergative. By
extracting the values of feature 98A from WALS,
the user is given a head-start at this. For the 190
languages specified for this feature in WALS, the
GM user has a readily usable source of informa-

tion for the first of these steps.

2.2 Number of Cases

WALS feature 49A (Iggesen, 2013), defined for
261 languages, maps how many cases a language
contains. One would think that knowing the num-
ber of cases would be helpful in building a gram-
mar, but it is actually not. Without also know-
ing what each case is called, this feature could
only notify the user that they must manually add
N cases, which is not useful for our purposes.

3 Conclusion and Future Work

Having reviewed 33 WALS features, we estimate
that about 20 of them (10.4% of the total) can be
usefully imported into the GM system to facilitate
the grammar generation process for the user. This
corresponds to about 8.5% of the GM’s grammar
specification options.

Our work identifying which features can be
mapped and in what way could support an API
that extracts the pertinent information from WALS
when the user starts a custom grammar. The first
page of the user interface asks the user to input
the language ISO code, which is also used in the
WALS database. The user would be given a choice
of importing this information or not, and should
they choose to do so would be shown a notifica-
tion detailing how many features were found.

Additionally, our mapping of WALS to GM fea-
tures could support work on automatically answer-
ing the GM questionnaire. The AGGREGATION
project (e.g. Zamaraeva et al., 2019) presently
approaches this problem by inferring GM gram-
mar specifications from collections of interlinear
glossed text. Where WALS features map to GM
features, and WALS values are available for the
language at hand, the WALS values can potentially
be used to guide grammar specification inference,
as explored in Zhang et al. 2019.
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ENS, EHESS, CNRS, PSL University
georgialoukatou@gmail.com

Abstract

Previous work has documented variation in
word segmentation performance across lan-
guages, with a trend to yield lower scores for
languages with elaborate morphological struc-
ture. However, segmenting smaller chunks
than words, “oversegmenting”, is reasonable
from a computational point of view. We pre-
dict that oversegmentation would be encoun-
tered more often in complex languages. In
this work in progress, we use a dataset of
9 languages varying in complexity and fo-
cus on cognitively-inspired word segmenta-
tion algorithms. Complexity is defined by
Compression-based, Type-Token Ratio and
Word Length metrics. Preliminary results
show that a possible relation between morpho-
logical complexity and oversegmentation can-
not be predicted exactly by none of these met-
rics, but may be best approximated by word
length.

1 Introduction

The issue of word segmentation is open in the NLP
community (e.g., Harris (1955)). Its implemen-
tations include processing languages with no or-
thographic word boundaries, such as Chinese and
Japanese. It is also a key problem humans face
when acquiring language.

Previous work documented variation in the suc-
cess rate of segmentation across languages, and
a trend to yield lower scores for languages with
elaborate morphological structure. This is true for
both cognitively inspired (Johnson, 2008; Four-
tassi et al., 2013; Loukatou et al., 2018)) and other
models (Mochihashi et al., 2009; Zhikov et al.,
2013; Chen et al., 2011). Evaluation is conven-
tionally based on orthographic word boundaries.

Do these models manage to learn more lin-
guistic structure, that what is actually described
in these accuracy scores? Segmenting smaller

meaningful chunks than words is reasonable from
a computational point of view: morphologically
complex languages often feature multimorphemic,
long words, and algorithms might break words
up into component morphemes, treating frequent
morphemes as words. Finding out morphemes
might be useful for later linguistic analysis, espe-
cially for languages with rich morphological sys-
tems , and such morphemes could be used as cues
to further bootstrap segmentation. Thus, a “use-
ful” error in segmentation could be oversegmenta-
tion (Gervain and Erra, 2012; Johnson, 2008), the
percentage of word tokens returned as two or more
subparts in the output.

We thus predict that oversegmentation might be
encountered more often in complex languages. To
test this, we need data from languages varying in
complexity. Since there is no standard way to de-
fine complexity, for this study, three metrics are
used: first, the Moving Average Type-token Ra-
tio (500-word window) (Kettunen, 2014), and sec-
ond, two versions of compression-based complex-
ity (Szmrecsanyi, 2016)1. The two metrics are
normalized (0=least complex, 1=most complex)
and their average score is attributed to each lan-
guage. Third, we look at word length, since, in
general, longer words could attract more division.

2 Methods

We use the ACQDIV database (Moran et al., 2016)
of typologically diverse languages, with transcrip-
tions of infant-directed and -surrounding speech
recordings, from Inuktitut (Allen, 1996), Chintang
(Stoll et al., 2015), Turkish (Küntay et al., Unpub-

11st metric: the size of compressed corpus (gzip) divided
by the size of raw corpus. 2nd metric: systematic distortion
of morphological regularities, so as to estimate the role of
morphological information in the corpus. Each word type is
replaced with a randomly chosen number. The size of the
distorted compressed corpus is then divided by the size of the
originally compressed corpus.
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lang compr. MATTR w length % over % corr % total
Inu 1 0.90 8.56 51 22 73
Chi 0.56 0.87 4.39 44 24 68
Tur 0.44 0.86 4.92 39 26 65
Yuc 0.42 0.92 3.80 31 27 58
Rus 0.41 0.91 4.47 46 19 65
Ses 0.31 0.86 4.28 44 25 69
Ind 0.28 0.85 4.11 42 25 67
Jap 0.14 0.87 3.94 37 25 62
Eng 0.02 0.39 3.04 6 51 57

Table 1: Complexity scores for the three metrics are
given in the first columns. Percentage of average over-
segmented, correct word tokens and their sum are then
given per language.

.

lished), Yucatec (Pfeiler, 2003), Russian (Stoll and
Meyer, 2008), Sesotho (Demuth, 1992), Indone-
sian (Gil and Tadmor, 2007) and Japanese (Miyata
and Nisisawa, 2010; Nisisawa and Miyata, 2010).
In order to compare with a previously studied lan-
guage, we included the English Bernstein corpus
(MacWhinney, 2000).

Several models have been proposed as plausible
strategies used by learners retrieving words from
input. We used a set of these strategies (Bernard
et al., 2018). Two baselines were Base0, treating
each sentence as a word, and Base1, treating each
phoneme as a word. DiBS2 (Daland, 2009) imple-
ments the idea that unit sequences often spanning
phrase boundaries probably span word breaks.
FTP3 (Saksida et al., 2017) measures transitional
probabilities between phonemes and cuts depend-
ing on a local threshold (relative, FTPr) or a global
threshold (absolute, FTPa). Adaptor Grammar
(AG) (Johnson, 2008) assumes that learners cre-
ate a lexicon of minimal, recombinable units and
use it to segment the input. AG implements the
Pitman-Yor process. Finally, PUDDLE4 (Mon-
aghan and Christiansen, 2010) is incremental, and
learners insert in a lexicon an utterance that cannot
be broken down further, and use its entries to find
subparts in subsequent utterances. Before segmen-
tation, spaces between words were removed, leav-
ing the input parsed into phonemes, with utterance
boundaries preserved.

3 Results

Statistics regarding corpora and results are pre-
sented in Table 1. In general, languages had simi-

2Diphone Based Segmentation algorithm
3Forward Transitional Probabilities algorithm
4Phonotactics from Utterances Determine Distributional

Lexical Elements

lar oversegmentation scores, (ranging from 31% to
51% if we exclude English), which did not exactly
follow their complexity ranking. Performance
difference across languages decreased when con-
sidering oversegmented tokens as correctly seg-
mented.

4 Discussion

Word length had the best prediction of overseg-
mentation compared to other metrics, compres-
sion and MATTR. This shows that longer words
have more alternative parses, and this could ex-
plain oversegmentation results better than other
properties inherent to morphologically complex
languages. That said, a possible relation between
morphological complexity and oversegmentation,
could not be exactly explained by none of these
complexity metrics.

It was also observed that there was no absolute
ranking of complexity across languages; on the
contrary, it would change according to the feature
studied. In general, cross-linguistic differences
were small for such a typologically distinct dataset
of languages. Further research might shed light on
whether this behavior is due to linguistic proper-
ties common across languages, or a confound (e.g.
corpus size).

Moreover, discovering meaningful units is of
particular importance to language acquisition
models, such as the ones implemented here. In-
fant word segmentation algorithms are cognitively
plausible only if they are cross-linguistically valid
and offer useful insights to learn all linguistic
structures. It would also be interesting to com-
pare performance of these models to state-of-the-
art NLP algorithms, such as HPYLM (Mochihashi
et al., 2009) or ESA (Chen et al., 2011).

A limitation of this study is that the current im-
plementation of WordSeg does not only look at
oversegmentation cases resulting in meaningful,
morpheme-like sub-parts. A next step would be to
focus on reasonable oversegmentation errors, even
though not all of these corpora have morpheme an-
notations.

Measuring reasonable errors such as overseg-
mentation could shed light on the segmentabil-
ity of morphologically complex languages and the
cross-linguistic applicability of models. Further
research might include over-, but also underseg-
mentation errors, when two or more words in the
input returned as a single unit in the output.
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Abstract

We aim to model the acoustic vowel spaces
of 24 diverse languages—a subset taken from
the CMU Wilderness corpus of Bible record-
ings. With this model, we test hypotheses
from phonological typology. We also expand
upon previous work that used formant mea-
surements taken by field linguists, and we use
automatic tools to align and extract vowel seg-
ments in large-scale recorded speech. This
work in progress is at the stage where data has
been carefully processed, just prior to imple-
mentation of the model.

1 Introduction

Every language has a system of vowels, whether
few or many, and understanding how these sys-
tems work crosslingually has been a goal in lin-
guistic phonological typology. We are inter-
ested in empirically studying vowel spaces from
the CMU Wilderness Multilingual Speech Dataset
(Black, 2019), a large database of audio recordings
from around 700 languages. Cotterell and Eisner
(2018) developed a deep generative model to use
acoustic formants to predict vowel spaces across a
dataset of 223 languages. We aim to expand upon
their findings and build a model from a set of lan-
guages that contain rich acoustic data per language
and many vowel tokens per vowel type.

From this model, we can analyze our results
to answer other questions regarding phonologi-
cal typology. Dispersion Theory predicts that
vowel types will be maximally dispersed within
the vowel space, and Focalization Theory predicts
that vowel types will preferentially be centered
around canonical focii (Schwartz et al., 1997).
Both theories make predictions about the distribu-
tion of centroids of types within formant space, but
neither theory makes an explicit prediction about
the dispersion of vowel tokens of a given type.

In fact, both of these theories suggest that within-
type dispersion should be relatively insensitive to
other factors, since they treat vowel space as a sys-
tem of categories. Other theories of vowel spaces,
like those based on Evolutionary Phonology and
exemplar theory, predict that the dispersion of to-
kens of each type should be inversely related to
the number of contrasting types within a vowel
system, since phonological categories can be seen
as competing with one another for phonetic space
(Vaux and Samuels, 2015). Reduced vowel inven-
tories, in such a theory, are the result of merg-
ers and merged categories take up more phonetic
space than either of the categories prior to merger.

The Wilderness corpus provides a unique op-
portunity to test whether the number of vowel
contrasts in a language’s phonological inventory
predicts the average dispersion of tokens in each
vowel type. Rather than just providing idealized
tokens of vowels from many languages or many
tokens of vowels from few languages, it provides
a massive number of tokens from a very large
number of languages. If a relationship between
number of types and token dispersion does exist
on a large scale, it would be important evidence
for evolutionary approaches to vowel space typol-
ogy. If token dispersion is insensitive to the num-
ber of vowel types, support would be lent to the
dispersion-focalization model.

These findings would be of interest to compu-
tational typologists and have implications for low-
resource NLP and speech technologies. In addi-
tion to this narrow scientific question, this paper
would contribute a replicable methodology for ex-
tracting vowels in a subset consisting of 24 lan-
guages from the public Wilderness corpus of 700
languages. This methdology could be used to ex-
tract vowel tokens from the corpus on a much
larger scale.
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2 Data

The Wilderness corpus comprises of roughly 700
languages of read speech from the New Testament
of the Bible, originally scraped from Bible.is.1

2.1 Selection of 24 Languages
For this work, we intersected these languages with
the PHOIBLE database of crosslingual phonolog-
ical inventories (Moran and McCloy, 2019). We
chose 24 languages where for each integer be-
tween 3 and 10, there are three languages (from
distinct regions) whose vowel inventory size is
that integer. We also used a criterion of choosing
languages with the highest automatic alignment
scores, as determined by algorithms provided in
the Wilderness data, and this list is given in Table
1.

Language Country Vowels Hours

Cebuano Philippines 3 22
Kabyle Algeria 3 8
Tena Quechua Ecuador 3 19
Yupik United States 4 22
Maranao Philippines 4 24
Podoko Cameroon 4 21
Russian Russia 5 15
Twampa Ethiopia 5 31
Urarina Peru 5 31
Hanga Ghana 6 14
Paumari Brazil 6 48
Manado Malay Indonesia 6 25
Komi Russia 7 17
Sundanese Indonesia 7 20
Tigrinya Ethiopia 7 14
Denya Cameroon 8 15
Huambisa Peru 8 28
Maithili India 8 14
Moru Sudan 9 23
Nomatsigenga Peru 9 36
Ossetian Georgia 9 12
Eastern Oromo Ethiopia 10 24
Maka Paraguay 10 29
Tamang Nepal 10 18

Table 1: The 24 languages chosen for this analysis,
from the Wilderness data. They are sorted by number
of vowel types as determined by PHOIBLE, and we at-
tempted to balance the languages by region.

2.2 Preprocessing
We first obtained phone-level alignments via the
tool provided from Festvox.2 We then manually
mapped the phoneme lists from the data with the
IPA from PHOIBLE, since there is noise in the
pronunciation model. Given vowel alignments, we

1http://www.bible.is/
2http://festvox.org/

extracted means of the first few formants using
DeepFormants,3 a tool for formant estimation. All
preprocessing scripts will be made publicly avail-
able for future analyses on any language from the
Wilderness.

A limitation of the data is that each language
recording is spoken by few and undocumented
speakers. We also anticipate challenges with re-
gards to formant normalization across speaker
gender, given that females tend to have higher and
a greater range of formants than male speakers
even when controlling for vocal tract.

3 Hypotheses

We hypothesize that vowel cloud size is inversely
correlated with the number of vowels in a lan-
guage’s inventory. Cloud size will be measured
as the level of dispersion in the probabilistic dis-
tribution of the two-dimensional vowel space.

4 Methodology

We plan to implement the deep generative models
using determinantal point processes (DPP) from
(Cotterell and Eisner, 2018) to analyze the for-
mants in vowel spaces of our subset of the Wilder-
ness data. We may choose a different method as
well, in order to capture the variety of vowel to-
kens since the prior work used one representative
vowel token per phoneme. We may use cross-
entropy to evaluate our generative models, and
will present our findings with regards to our hy-
potheses.
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Introduction

In our on-going work, we are addressing the prob-
lem of identifying cognates across unannotated
vocabularies of any pair of languages. In partic-
ular, we assume that the languages of interest are
low-resource to the extent that no training data
whatsoever, even in closely related languages, are
available for the task. Instead, we are investigating
the performance of language-independent transfer
learning approaches utilising training data from
a completely unrelated, higher-resource language
family. Our results so far suggest that a Siamese
convolutional neural network generalises more ef-
fectively across language families than baselines.

Cognate identification is a core task in the com-
parative method, a collection of techniques used
in historical linguistics, a field closely tied with
linguistic typology (Shields, 2011). Cognate in-
formation is also useful for applications such as
machine translation (Grönroos et al., 2018). In ad-
dition, knowledge of cognates is useful for second-
language learning (Beinborn et al., 2014).

Cognate identification

In cognate identification, we are essentially given
two string sets X = {x1, . . . , xn} and Y =
{y1, . . . , ym}. The task is to extract those pairs
(x, y) in relation R:

R = {(x, y) ∈ X × Y | x is cognate with y }

Each element x ∈ X and y ∈ Y is a string over
alphabets Σx and Σy respectively. The alphabet
sets do not necessarily overlap.

Table 1 illustrates the difficulty of cognate iden-
tification. As can be seen, some cognates are
straightforward with a similar form and meaning
(e.g. notte–noche). On the other hand, there is
large variation in the degree of similarity in terms
of both form and meaning. However, common

Word A Word B Meanings
it: notte es: noche ’night’
fi: huvittava et: huvitav ’amusing’; ’interesting’
en: attend fr: attendre ’attend’; ’wait’
en: oath sv: ed ’oath’
fi: pöytä sv: bord ’table’
en: bite fr: fendre ’bite’; ’split’

Table 1: Examples of cognates with varying degree of simi-
larity in form and meaning.

to all of these examples is that they exhibit reg-
ular sound correspondences, i.e. word segments
regularly occurring in similar positions and con-
texts (List, 2013; Kondrak, 2012), such as oa–e
and th–d in English–Swedish cognates. Therefore,
cognate identification should rely on the identifi-
cation of such cross-lingual correspondences (i.e.
pairs of single characters or substrings).

Most previous work attempts to design such a
string similarity metric that would tend to assign
a higher score to cognate than unrelated words.
Common approaches include extensions of the tra-
ditional Levenshtein distance (Levenshtein, 1966)
that either assign weights to pairs of symbols
according to their phonetic properties (e.g. List,
2013; Kondrak, 2000), or that learn such weights
from example cognates (Ciobanu and Dinu, 2014;
Gomes and Pereira Lopes, 2011). McCoy and
Frank (2018) use weights based on character em-
beddings.

In contrast to much of previous work, we make
no strict assumptions about the degree of sim-
ilarity in form or meaning that any two cog-
nates should exhibit. Instead, following Rama
(2016) and Jäger (2014), we treat regular corre-
spondences as the main driving factor in the cog-
nate relation and attempt to capture these in a com-
pletely data-driven manner. We aim to contribute
to this line of research by considering the ability of
our models to generalise across language families.
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Models and experiments

In our experiments, we have trained our models
with an etymological database of Indo-European
languages (De Melo, 2014), and tested their per-
formance on combinations of three unannotated
vocabularies from Sami languages of the Uralic
family. We have experimented with two simi-
larity learning models, a Siamese convolutional
neural network (S-CNN) based on Rama (2016)
and a support vector machine (SVM) based on
Hauer and Kondrak (2011), compared with a
Levenshtein-distance (LD) baseline (Levenshtein,
1966). In addition, we have experimented with
fine-tuning the S-CNN model in order to quan-
tify the benefit of having small amounts of target-
language training data.

The Levenshtein distance between two strings
is the minimum number of insertions, deletions,
and substitutions needed to transform one string
to another. It is straightforward to turn this into a
similarity metric. For the SVM, word pairs are en-
coded into vectors of the following features: Lev-
enshtein distance, number of common bigrams,
prefix length, lengths of both words, and the abso-
lute difference between the lengths. The S-CNN is
a two-input version of a convolutional neural net-
work, where input words are encoded into matri-
ces of concatenated one-hot vectors representing
characters. As shown in Figure 1, the network cre-
ates a merged representation of a word pair, to be
classified as cognate or unrelated.

Figure 2 shows a precision-recall curve for
each model, including both a fine-tuned (with 500
target-language training pairs) and unadapted S-
CNN. As expected, the fine-tuned S-CNN outper-
forms the other models. Interestingly, even the un-
adapted S-CNN simply relying on Indo-European
training data outperforms the SVM and LD. This
suggests that the S-CNN is able to more effectively
capture such aspects of the cognateness relation
that carry over across language families.

Work in progress

We are currently investigating approaches to im-
prove target-family performance with unsuper-
vised methods of domain adaptation. One of
our lines of work is to use an adversarial ap-
proach to making target-family word pair repre-
sentations more similar to source-family represen-
tations, similarly to the method of Tzeng et al.
(2017) intended for domain adaptation of images.

Xa Xb

Xa ?W Xb ?W

Max-pooling Max-pooling

Fully-connected layer with dropout

ŷ

rbra

m = |ra − rb|

ReLU ReLU

Figure 1: The S-CNN architecture. Column vectors
in input matrices represent one-hot-encoded characters.
The filter W is convolved over character sequences.
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Figure 2: Precision-recall for Sami test set.

Another way to extend the S-CNN model is to use
unsupervised multilingual character embeddings
(Granroth-Wilding and Toivonen, 2019), trained
with small corpora from the target languages. This
could be a way to make characters across lan-
guages more comparable to each other, thus tack-
ling the issue that orthographies are often not di-
rectly comparable.

In addition to unsupervised methods, we also
intend to compare our data-driven approaches with
more linguistically-informed ones, in order to as-
sess the benefit of such information. For exam-
ple, our work could benefit from the use of univer-
sal phonetic encodings of words instead of ortho-
graphic forms.

Although we have thus far specifically focused
on the problem of cognate identification, we be-
lieve that these methods could be extended to the
study of other typological features of language and
the automatic inference of such features. Lan-
guage typology could also provide a means to in-
terpret the representations of the S-CNN model.
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