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1 Introduction

During emergency, relief workers need to con-
stantly track updates so that they can learn of sit-
uations that require immediate attention (Stowe
et al., 2016). However, it is challenging to carry
out these efforts rapidly when the information
is expressed in people’s native languages, which
have little to no resources for NLP. We aim for
building an adaptable language-agnostic system
for such emergent situations that can classify in-
cident language documents into a set of rele-
vant fine-grained classes of humanitarian-needs
and unrest situations. Our approach requires no
language specific feature engineering and rather
leverages the semantic difference between generic
class features to build a classification framework
that supports relief efforts. We assume no knowl-
edge of the incident language, except the com-
monly available bilingual dictionaries (which tend
to be very small or are generated from out-of-
domain data such as Bible alignments). First,
we obtain keywords for each target class using
English news corpora (Naik et al., 2017; Marujo
et al., 2015; Wen and Rosé, 2012; Özgür et al.,
2005; Tran et al., 2013), that are then translated
using the available bilingual dictionary (Zhang
et al., 2016; Adams et al., 2017). Second,
an unsupervised bootstrapping module enhances
the generic keywords by adding incident-specific
language-specific keywords (Knopp, 2011; Huang
and Riloff, 2013; Ebrahimi et al., 2016). Next, we
use all the keywords to generate labeled data. Fi-
nally, this data is used to train a downstream docu-
ment classifier. This entire procedure is language-
agnostic because it bypasses the necessity to cre-
ate training data from scratch. We validate this
procedure in a low-resource setup, with 7 distinct
languages, showing significant improvements over
the baseline by atleast 13 F1 points. To the best of

our knowledge, our approach is the first to com-
bine the use of distant supervision from English
and in-language semantic bootstrapping for such
a low-resource task. We believe our method can
form a strong benchmark for future developments
in rapid low-resource unsupervised classification.

2 Approach

Figure 1 shows the overall architecture of our ap-
proach, composed of three primary modules.
Keywords: We use English in-domain corpora
viz. Google News and Relief-Web corpus1 to
generate task-specific keywords, such that each
keyword is strongly indicative of the underlying
class(es) of a document. We cluster the documents
based on their classes and use tf-idf to pick top
100 candidate words for each class. We then com-
pute a label affinity score between each candidate
and class labels using cosine-similarity between
their corresponding Word2Vec embeddings2. In
this way, each candidate keyword has a different
association strength across all classes, and we only
retain the ones above threshold 0.9. The pruned
keywords are translated into the incident language
using the available bilingual dictionary, dropping
the ones that are absent. Finally, we use keyword
spotting to label each document with class/es of
the keyword/s present in it.
Bootstrapping: Dropping keywords during trans-
lation leaves a significant fraction of documents
unlabeled. To improve the percentage of labeled
documents, we expand the keywords within the
incident language using a two-step process. First,
we cluster the labeled documents (obtained from
keyword spotting) based on their classes. For each
word in a cluster, we compute the sum of its tf-idf
score across other clusters and its average word

1Pre-classified English documents into disaster relief
needs and emergency situations (https://reliefweb.int)

2https://code.google.com/archive/p/word2vec/
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Figure 1: System architecture for low-resource document classification.

Mandarin Spanish Uzbek Farsi Tigrinya Uyghur Oromo

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Random 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

+ KWD 0.40 0.22 0.28 0.57 0.14 0.23 0.51 0.11 0.18 0.49 0.18 0.26 0.54 0.55 0.55 0.61 0.28 0.39 0.45 0.08 0.14

+ BS 0.34 0.38 0.36 0.22 0.74 0.34 0.33 0.47 0.39 0.31 0.30 0.30 0.53 0.59 0.56 0.52 0.31 0.39 0.33 0.09 0.14

+ KNN 0.31 0.40 0.35 0.31 0.46 0.37 0.29 0.47 0.36 0.24 0.48 0.32 0.54 0.58 0.56 0.38 0.36 0.37 0.10 0.12 0.11
SVM 0.30 0.39 0.34 0.30 0.45 0.36 0.34 0.48 0.40 0.29 0.29 0.29 0.55 0.58 0.57 0.47 0.38 0.41 0.20 0.09 0.12
R-Forest 0.37 0.38 0.38 0.31 0.46 0.37 0.33 0.47 0.39 0.23 0.40 0.30 0.56 0.61 0.58 0.42 0.38 0.40 0.12 0.10 0.11
Log-Reg 0.29 0.39 0.33 0.31 0.45 0.37 0.32 0.47 0.38 0.23 0.37 0.29 0.56 0.61 0.58 0.51 0.36 0.42 0.12 0.10 0.10
GNB 0.32 0.40 0.36 0.30 0.46 0.36 0.33 0.51 0.40 0.28 0.31 0.30 0.56 0.62 0.58 0.47 0.37 0.41 0.11 0.10 0.11
DAN 0.22 0.38 0.27 0.21 0.74 0.33 0.23 0.52 0.32 0.25 0.68 0.37 0.56 0.58 0.57 0.37 0.38 0.37 0.26 0.19 0.22
LSTM 0.29 0.39 0.33 0.43 0.23 0.30 0.29 0.48 0.37 0.25 0.24 0.24 0.51 0.63 0.56 0.37 0.31 0.33 0.09 0.20 0.13

Table 1: Results of classification across 7 languages, over each module (Modules - KWD:Keywords, BS:Bootstrap;
Classifiers - R-Forest:Random Forest, GNB:Gaussian Naive Bayes, Log-Reg:Logistic regression, LSTM (Hochre-
iter and Schmidhuber, 1997) and DAN (Iyyer et al., 2015; Chen et al., 2016)

similarity with all other keywords present in that
cluster. Each keyword belongs to the same class as
its cluster. Second, we prune words with less than
0.9 score, and use the rest to again label more doc-
uments using keyword spotting (e.g. fraction of
labeled documents in Uzbeck increased by 36%).
Classification: Finally, we use all labelled docu-
ments obtained from Keywords and Bootstrapping
module to train a classifier, which classifies all the
remaining incident language documents.

3 Experiments and Results

We used the LDC corpora3 for 7 low-resource lan-
guages having 11 class labels: Crime-violence,
Terrorism, Regime-change, Medical, Food, Wa-
ter, Evacuation, Shelter, Search-rescue, Infras-
tructure, and Utilities. Mandarin, Uzbek, Farsi
and Spanish have 190 documents with average
2.7 labels per document. Tigrinya, Uyghur and
Oromo have 1.1K, 3.6K and 2.7K documents with
1.4, 0.1 and 1.0 labels per document respectively.
Apart from the difference in language families and
writing scripts, morphological complexity adds
further challenge to classification. As shown in

3https://www.ldc.upenn.edu

Table 14, the Keywords module results in high-
est average F1 gain over the baseline, showing the
effectiveness of using language-agnostic informa-
tion for tasks. As expected, this module primarily
improves precision. Further, on average 84.53%
keywords were dropped in translation, suggesting
improvements in bilingual dictionary can benefit
this module. Similarly, the Bootstrap module fo-
cuses on incident-specific information and primar-
ily improves recall, resulting in an overall F1 gain
of 6%. Finally, the Classifier module achieves
an overall improvement of 4% F1. We observe
low performance on Oromo, which is a morpho-
logically rich language. On finer inspection, we
found the corpus had several misspelled words.
For instance, we identified different versions of
Ethiopia, such as itiyoophiyaa. We also observe
that the languages of same family like Uyghur and
Uzbek have similar performances. In most cases,
the gain in F1 provided by keyword extraction and
bootstrapping is significantly higher than that from
any classifier. This suggests that the classifier per-
formance will improve only when we improve the
mappings between source and target languages.

4We use the LOREHLT evaluation guidelines
(https://goo.gl/ZT7sMq) for scoring
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