SIGMORPHON Shared Task 2016--2019

PLAY + PRESENT PARTICIPLE ---> playing played + PRESENT PARTICIPLE ---> playing

Inflectional Paradigm Table:

na Tag	Form
PAST	ran
PRES;1SG	run
PRES;2SG	run
PRES;3SG	runs
PRES;PL	run
PART	running
	na Tag PAST PRES;1SG PRES;2SG PRES;3SG PRES;PL PART

2018:~96\% accuracy on avg. in high-resource setting

Contextualization

The tags must be inferred from the context!/ Two cats ??? are TWO/NUM CAT/N+PL BE/AUX+PRES+3PL PLAY

Two cats are

PLAY

Q1: Do Linguistic **Features Help?**

YES! They Do! Most systems that make use of morphological tags outperform the ``Direct'' baseline on most languages

Joint prediction of tags and forms further improves the results

Contextualization of Morphological Inflection Ekaterina Vylomova Ryan Cotterell Tim Baldwin Trevor Cohn Jason Eisner

Hybrid Model (Structured-Unstructed)

 $p(\mathbf{w}, \mathbf{m} \mid \boldsymbol{\ell}) = (\prod_{i=1}^{n} p(w_i \mid \ell_i, m_i)) p(\mathbf{m} \mid \boldsymbol{\ell})$

Yes, it does! Performance drops in languages with rich case systems such as Slavic and Uralic

The model needs to learn which grammatical categories should be in agreement

Hybrid (Structured-Unstructed) Model

lemmatized sequence

predicted tag sequence Lample et al., 2016 $p(\mathbf{m} \mid \ell)$ Neural CRF predicted form sequence Rastogi et al., 2016 Aharoni et al., 2017 $p(w_i \mid \ell_i, m_i)$ Word Emission

Q2: How Well is Agreement Captured?

Adjective-Noun (AMod) is captured quite well

Verb-Noun(Subject--Verb) is more challenging since agreement categories can vary depending on tense, e.g. Ru: Person+Number in present vs. Gender in past, singular

PL (Flex): Jen**ia** daje NOM.SG Pres.3Sg Maszy ciekawa książkę DAT ACC.Sg.Fem ACC.Sg PL (Flex): Jen**ia** dał Masz**y** ciekaw**ą** książk**ę** NOM.SG Past..Sg.Masc DAT ACC.Sg.Fem ACC.Sg AMod (ADJ-NOUN): Case, Number, Gender

NSubj (VERB-NOUN): Present Tense > Person, Number Past Tense > Gender, Number

General-purpose inference of agreement categories is still a challenging task!

Q5: Does morphological complexity impact empirical performance?

Language	tag			form		
Lunguuge	JOINT	GOLD	JOINT	DIRECT	SM	СРН
Bulgaria	n 81.6	91.9	78.8	71.5	77.1	76.9
English	89.6	95.6	90.4	86.8	86.5	86.7
Basque	66.6	82.2	61.1	59.7	61.2	60.2
Finnish	66.0	86.5	59.3	51.2	56.6	56.4
Gaelic	68.3	84.5	69.5	64.5	68.9	66.9
Hindi	85.3	88.3	81.4	85.4	86.8	87.5
Italian	92.3	85.1	80.4	85.2	88.7	90.5
Latin	82.6	89.7	75.7	71.4	74.2	74.9
Polish	71.9	96.1	74.8	61.8	72.4	70.2
Swedish	81.9	96.0	82.5	75.4	78.4	80.9

Word Order vs. Morphology Most information on roles and dependencies is expressed non-morphologically, e.g. in word order or by prepositions:

EN (SVO): Kim gives Sandy an interesting book Subject IObject DObject DObject

PL (Flex): Jen**ia** daje Masz**y** ciekaw**a** NOM DAT ACC.Sg.Fem ACC.Sg == Maszy daje Jen*ia* ciekawą książkę != Jen*ie* daje Masza ciekawą książkę

1) we proposed a method for contextual inflection EN: Kim gives Sandy an interesting book ----> KIM GIVE SANDY AN INTERESTING BOOK using a hybrid architecture; 2) consistent improvements over state of the art; SVO/Roles are still there 3) contextual inflection can be a highly challenging task; PL: Jenia daje Maszy ciekawą książkę -----> JENIA DAWAĆ' MASZA CIEKAWY KSIĄŻKA 4) inclusion of morphological features prediction is an important element; Flexible/Roles are partially lost 5) two types of morphological categories, contextual and inherent, in which the former relies on agreement and the latter comes from a speaker's intention.

Number of values of an i

Bulgarian (bg), Slavic English (en), Germanic Basque (eu), Isolate Finnish (fi), Uralic Gaelic (ga), Celtic Hindi (hi), Indic Italian (it), Romance Latin (la), Romance Polish (pl), Slavic Swedish (sv), Germanic

Q3: Where Does Most Uncertainty Come From?

Inherent and Contextual **Morphological Categories**

Contextual categories participate in agreement: adjective number, case, gender, verbal gender, etc.

Inherent express the speaker's intentions: noun number, verbal tense

Most uncertainty comes from inherent categories!

E.g., Tense can be both Present and Past:

JOHN GIVE MARY AN INTERESTING BOOK --->

Jonh gives Mary an interesting book + John gave Mary an interesting book +

whereas Contextual comes from dependencies (adjective gender, number, case):

Often such categories must be inferred!

Q4: Which language is least affected by lemmatization?

Future Directions

1)Evaluation of grammaticality 2) Data de-biasing (En->Ru): smart student --> umnyj.Nom.Masc.Sg student.Nom.Sg augment with umnaja.Nom.Fem.Sg studentka.Nom.Fem.Sg

Conclusion

nflectional feature								
980 980	2	4	2	3	3	4	3	3
en -	0	2	2	3	3	2	3	2
zV	4	15	2	3	2	2	3	0
\$	0	16	0	2	0	2	3	2
50	0	4	2	1	2	2	3	3
'n	2	2	0	0	2	2	3	3
*	0	0	2	2	2	2	3	4
SO .	2	7	0	3	3	2	3	5
¢	2	7	0	2	3	2	3	3
\$	0	3	2	3	3	2	0	2
	Aspect	Case	Definite	Degree	Gender	Number	Person	Tense

Languages differ in what is explicitly morphosyntactically marked, and how

