

Polyglot Parsing for One Thousand and One Languages (And Then Some)

UPPSALA UNIVERSITET Ali Basirat Murathan Kurfalı

Miryam de Lhoneux Joakim Nivre

Preliminary experiments

Introduction

• Goal

- A parser for 1000+ languages
- Train a multilingual parser for high-resource languages
- Use the parser to parser low-resource languages
- Pivot features
 - Multilingual word embeddings
 - Language embeddings

• Two disjoint subsets from 1293 languages

Artur Kulmizev

Robert Östling

- 18 training languages have both a UD treebank and pre-trained word embeddings
- 12 test languages have both a UD treebank and projected word embeddings
- All languages have LM-based language embeddings

Training			Test	
Afrikaans	Finnish	Russian	Arabic	OCSlavonic
Bulgarian	Hungarian	Slovenian	Belarusian	Serbian
Catalan	Indonesian	Spanish	Coptic	Telugu
Danish	Italian	Swedish	Gothic	Urdu
English	Polish	Turkish	Hindi	Uyghur
Estonian	Portuguese	Ukrainian	Marathi	Vietnamese

• Resources

- Treebanks for 27 languages from Universal Dependencies
- Pre-trained cross-lingual word embeddings for the 27 languages
- A parallel corpus of Bible translations for 1293 languages

• Evaluation

- Train the parser on the high-resource languages
- Test the parser on a sample of low-resource languages
- Generalize the results to all low-resource languages

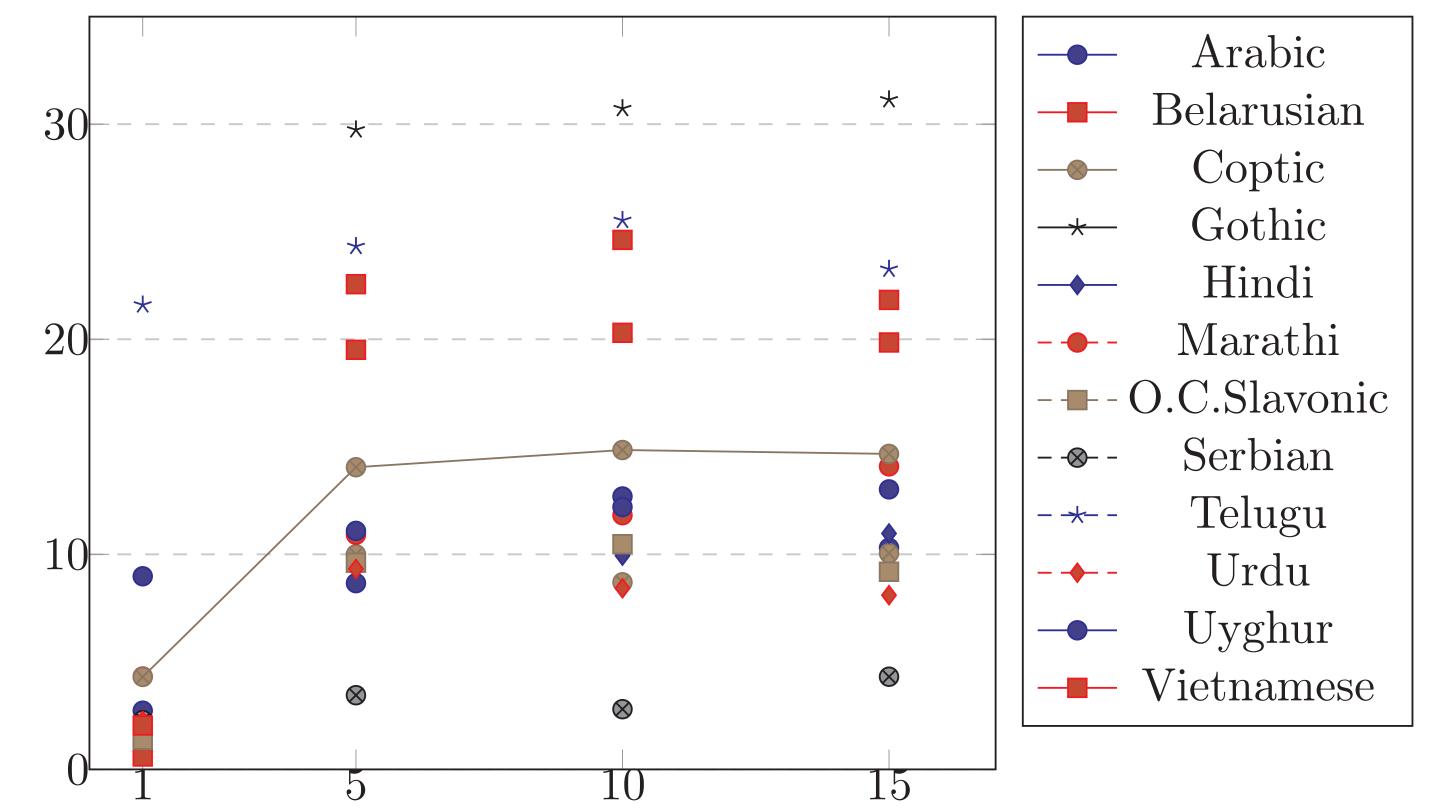
Methods

- Multilingual word embeddings
 - Multilingual embeddings for 27 high resource languages [4]
 - Pairwise word alignments of (168×1480) Bible translations [2]
 - Multi-source projection through word alignments (mean vector of all aligned tokens) for the remaining 1266 low-resource languages

• Language embeddings

Two sets of languages embeddings aimed at capturing the syntactic information about languages:

• Idea: as long as test languages are not used for training, the results can be generalized to all unseen languages



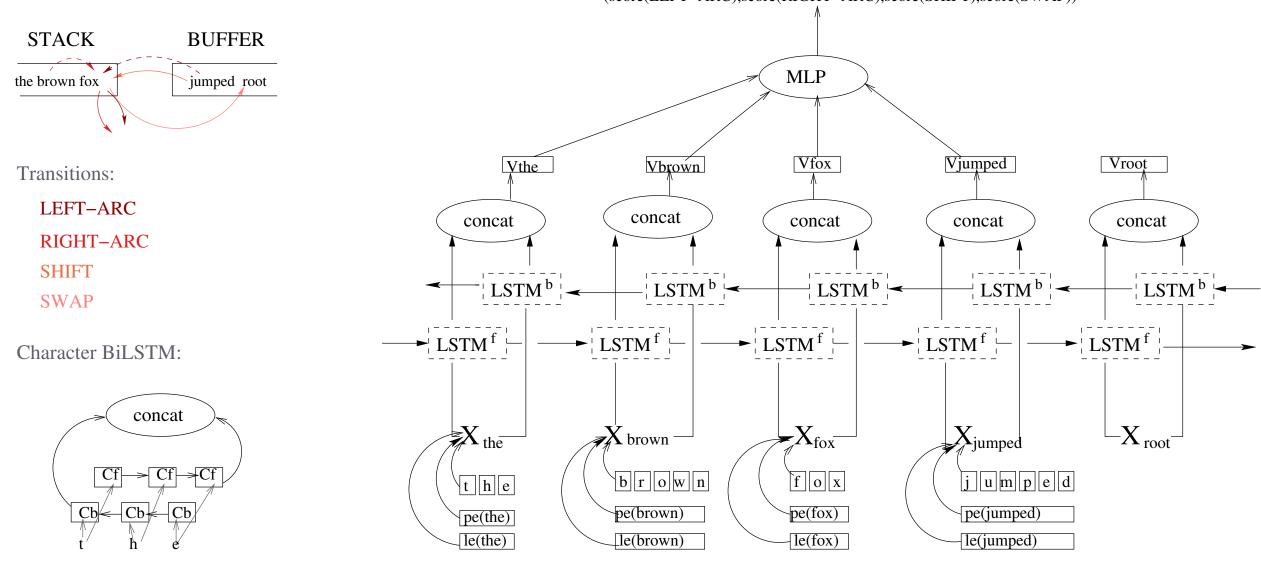
- (i) Language embeddings based on language models
 - A language model (LM) with a single LSTM is trained with fixed word embeddings
 - Prediction is conditioned on 100-dim language embedding and the embedding of the previous word
 - Cosine distance is used as the loss function
- (ii) Language embeddings based on projected dependencies (SVD)
 - Bibles of high resource languages are parsed using [3]
 - Dependency link statistics are projected to low resource languages using word alignments
 - Maximum spanning tree decoding for low-resource languages
 - A matrix of head-initial/final ratio for each (dep. label, head/depd. POS) tuple covering all languages is created
 - The dimensionality is reduced to 100 using Singular Value Decomposition (SVD)
- Multilingual parsing
 - UUParser [1]: a transition-based dependency parser

Scoring:

Y-axis: LAS for test languages with training subsets containing, for each test language, the 1, 5, 10 or 15 most similar languages (X-axis). Average = solid line.

• Summary of the results

- The training languages are selected based on the cosine similarities with the test languages
- Epochs: 100, number of sentences per training language: 100
- The parsing scores increase as more training languages are added
- LAS for the training languages range from 27.6 for Turkish to
 79.9 for Portuguese with an average of 65.0
- The best test language score (Gothic) exceeds the worst training language score (Turkish)
- Future challenges
 - Explain the large variance across languages
 - Examine the quality of word and language embeddings
 - Measure the similarity of training and test languages
 - Experiment with different parsing architectures



References

- M. de Lhoneux, Y. Shao, A. Basirat, E. Kiperwasser, S. Stymne, Y. Goldberg, and J. Nivre. From raw text to Universal Dependencies – Look, no tags! In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 207–217, 2017.
- [2] R. Östling and J. Tiedemann. Efficient word alignment with Markov Chain Monte Carlo. *Prague Bulletin of Mathematical Linguistics*, 106:125–146, October 2016.
- [3] P. Qi, T. Dozat, Y. Zhang, and C. D. Manning. Universal dependency parsing from scratch. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*, pages 160–170, Brussels, Belgium, Oct. 2018. Association for Computational Linguistics.
- [4] S. L. Smith, D. H. P. Turban, S. Hamblin, and N. Y. Hammerla. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. *CoRR*, abs/1702.03859, 2017.