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Abstract

Acoustic word embeddings (AWEs) are vec-
tor representations of spoken word segments.
AWEs can be learned jointly with embed-
dings of character sequences, to generate pho-
netically meaningful embeddings of written
words, or acoustically grounded word embed-
dings (AGWEs). Such embeddings have been
used to improve speech retrieval, recognition,
and spoken term discovery. In this work,
we extend this idea to multiple low-resource
languages. We jointly train an AWE model
and an AGWE model, using phonetically tran-
scribed data from multiple languages. The pre-
trained models can then be used for unseen
zero-resource languages, or fine-tuned on data
from low-resource languages. We also inves-
tigate distinctive features, as an alternative to
phone labels, to better share cross-lingual in-
formation. We test our models on word dis-
crimination tasks for twelve languages while
varying the amount of target language training
data, and find significant benefits to the pro-
posed multilingual approach.

1 Introduction

Acoustic word embeddings (AWEs) are vector rep-
resentations of spoken word segments of arbitrary
duration (Levin et al., 2013). AWEs are an attrac-
tive tool in tasks involving reasoning about whole
word segments, as they provide a compact repre-
sentation that can be used to efficiently measure
similarity between segments. For example, AWEs
have been used to speed up and improve query-by-
example search (Levin et al., 2015; Settle et al.,
2017; Yuan et al., 2018), unsupervised segmen-
tation and spoken term discovery (Kamper et al.,
2016), spoken term detection (Audhkhasi et al.,
2017), and whole-word speech recognition (Ben-
gio and Heigold, 2014; Settle et al., 2019).

Many approaches have been explored for con-
structing and learning AWEs, including template-

Figure 1: Acoustic word embedding (AWE) model
f and two acoustically grounded word embedding
(AGWE) models g, corresponding to either phone or
distinctive feature sequence input.

based techniques (Levin et al., 2013) and neu-
ral network-based models (Settle and Livescu,
2016; Kamper, 2018), but prior work in this area
largely focuses on English. In this work, we study
the learning of AWEs/AGWEs for multiple low-
resource languages. Recent related work (Kam-
per et al., 2020) has begun to explore multilingual
AWEs, specifically for zero-resource languages.
Our work complements this prior work by explor-
ing, in addition to the zero-resource regime, a num-
ber of low-resource settings, and the trade-off be-
tween performance and data availability.1

2 Embedding models
An AWE model f maps a variable-length spoken
segment X ∈ RT×D, where T is the number of
acoustic frames and D is the frame feature dimen-
sionality, to an embedding vector f(X) ∈ Rd. The
goal is to learn f such that segments correspond-
ing to the same word are embedded close together,
while segments of differing words are embedded
farther apart.

Our approach is based on prior work on
AWE/AGWE learning using a multi-view con-
trastive loss (He et al., 2017; Settle et al., 2019),

1This abstract is based on Hu et al. (2020). Our
code, phone set, and feature set can be found at
github.com/Yushi-Hu/Multilingual-AWE



Figure 2: Test acoustic AP for models trained with
varying amounts of target language data, supervised
with distinctive features.

which jointly learns models for an acoustic view
(f ) and a written view (g) (Figure 1). The input
to the acoustic embedding model f is a variable-
length spoken word segment. In prior work (He
et al., 2017), the input to g is a character sequence,
but for multilingual training, we use phonetic se-
quences. However, approximately 60% of phones
appear in only one of the 12 languages, so we also
investigate using distinctive features (DFs), such as
manner and place features, rather than phones.

3 Experimental Setup

We use conversational data covering 12 languages
from Switchboard (Godfrey et al., 1992) and the
IARPA Babel project (Babel). We consider the
following settings: single (train/test on the target
language), unseen (train on non-target languages,
test on the unseen target language), and fine-tune
(train on non-target languages, fine-tune/test on the
target language). Training data is varied for single
and fine-tune experiments among 10min, 60min,
and “all” (full target language training set).

To evaluate our models, we use task-agnostic
evaluation approaches similar to prior work (Carlin
et al., 2011; He et al., 2017), including acoustic
word discrimination and cross-view word discrim-
ination. Results are reported as average precision
(AP) where “acoustic AP” and “cross-view AP” de-
scribe acoustic and cross-view word discrimination
performance, respectively.

Figure 3: Test set cross-view AP in the unseen setting.

4 Results

Figure 2 gives our main acoustic AP results for
distinctive feature-based models across the 12 lan-
guages in the three training settings. These results
indicate that, when resources are limited in the
target language, multilingual pre-training offers
clear benefits. Fine-tuning a multilingual model
on 10 minutes of target language data can out-
perform training on 60 minutes from the target
language alone. On average, our unseen models
significantly outperform the unsupervised DTW
baselines—confirming results of other recent work
in the zero-resource setting (Kamper et al., 2020)—
as well as the single-10min models, and perform
similarly to the single-60min models.

Figure 3 shows that cross-view AP of unseen
models typically benefits from using distinctive
features over phones. The two languages with the
largest improvement from distinctive features are
Cantonese and Lithuanian. The Cantonese data
includes a large number of diphthongs that are
unseen in other languages, so their embeddings
cannot be learned in the phone-based model, but
the features of those diphthongs are shared with
phones in other languages. In the Lithuanian data,
vowels are paired with their tones, making these
phones unique to Lithuanian and again making it
impossible to learn the vowel embeddings from
other languages using phone-based supervision.

5 Conclusion

Multilingual pre-training improves the quality of
of acoustic and acoustically grounded word embed-
dings when we have only a small amount of (or
no) labeled training data for the target language,
and phonological feature-based training allows for
better transfer to languages with rare phones. In
ongoing work we are applying the learned embed-
dings to improve multilingual query-by-example
search.



References
Kartik Audhkhasi, Andrew Rosenberg, Abhinav Sethy,

Bhuvana Ramabhadran, and Brian Kingsbury. 2017.
End-to-end ASR-free keyword search from speech.
IEEE Journal of Selected Topics in Signal Process-
ing, 11(8):1351–1359.

IARPA Babel. IARPA Babel language pack: IARPA-
babel101b-v0.4c, IARPA-babel102b-v0.5a, IARPA-
babel103b-v0.4b, IARPA-babel104b-v0.4by,
IARPA-babel105b-v0.5, IARPA-babel106-v0.2g,
IARPA-babel204b-v1.1b, IARPA-babel206b-v0.1e,
IARPA-babel304b-v1.0b, IARPA-babel305b-v1.0c,
IARPA-babel306b-v2.0c.

Samy Bengio and Georg Heigold. 2014. Word em-
beddings for speech recognition. In Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP).

Michael A Carlin, Samuel Thomas, Aren Jansen, and
Hynek Hermansky. 2011. Rapid evaluation of
speech representations for spoken term discovery.
In Twelfth Annual Conference of the International
Speech Communication Association.

John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel. 1992. SWITCHBOARD: Telephone speech
corpus for research and development. In Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP).

Wanjia He, Weiran Wang, and Karen Livescu. 2017.
Multi-view recurrent neural acoustic word embed-
dings. In ”Proc. Int. Conf. on Learning Represen-
tations (ICLR)”.

Yushi Hu, Shane Settle, and Karen Livescu. 2020. Mul-
tilingual jointly trained acoustic and written word
embeddings. In Proc. Interspeech.

Herman Kamper. 2018. Truly unsupervised acoustic
word embeddings using weak top-down constraints
in encoder-decoder models. In Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP).

Herman Kamper, Aren Jansen, and Sharon Goldwa-
ter. 2016. Unsupervised word segmentation and
lexicon discovery using acoustic word embeddings.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(4):669–679.

Herman Kamper, Yevgen Matusevych, and Sharon
Goldwater. 2020. Multilingual acoustic word em-
bedding models for processing zero-resource lan-
guages. In Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP).

Keith Levin, Katherine Henry, Aren Jansen, and Karen
Livescu. 2013. Fixed-dimensional acoustic embed-
dings of variable-length segments in low-resource
settings. In Proc. IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU).

Keith Levin, Aren Jansen, and Benjamin Van Durme.
2015. Segmental acoustic indexing for zero resource
keyword search. In Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP).

Shane Settle, Kartik Audhkhasi, Karen Livescu, and
Michael Picheny. 2019. Acoustically grounded
word embeddings for improved acoustics-to-word
speech recognition. In Proc. IEEE Int. Conf. Acous-
tics, Speech and Signal Processing (ICASSP).

Shane Settle, Keith Levin, Herman Kamper, and Karen
Livescu. 2017. Query-by-example search with dis-
criminative neural acoustic word embeddings. In
Proc. Interspeech.

Shane Settle and Karen Livescu. 2016. Discrimina-
tive acoustic word embeddings: Recurrent neural
network-based approaches. In Proc. IEEE Work-
shop on Spoken Language Technology (SLT).

Yougen Yuan, Cheung-Chi Leung, Lei Xie, Hongjie
Chen, Bin Ma, and Haizhou Li. 2018. Learning
acoustic word embeddings with temporal context for
query-by-example speech search. In Proc. Inter-
speech.


