
1 

 

 

1 Introduction 

In this paper we propose to use probabilistic 

graphical models (PGM) as a new theoretical and 

computational framework to study linguistic 

typology.  Such models can be used by researchers 

within the linguistics community to study 

classical problems in linguistic typology such as 

langauge universals. Researchers from the NLP 

community will also find them useful for tasks 

like predicting typological feature values of new 

languages as described in (Bjerva et al., 2020).  

Developed based on both probabilistic theory and 

graph theory probabilistic graphical models (PGM) 

use graph structure to represent the interactions 

between variables in a multidimensional 

distribution (Koller & Friedman, 2009). We propose 

the concept of a meta-language that has the 

universal properties of all languages in the world. 

This meta-language is defined by a limited set of 

linguistic features and the relationships among 

them. The graphical structure of a PGM provides 

an ideal representation for the meta-language. The 

probabilistic inference enables us to quantify the 

relationships among linguistic features using 

probability which describes the degree of 

confidence about the uncertain nature of 

typological feature correlations. Between the two 

types of PGMs: directed acyclic graph (Bayesian 

Network) and undirected acyclic graph (Markov 

Network) we chose the directed one. To construct 

a model, we learn structure and parameters from 

data. There are three difficulties in learning a 

PGM from the dataset we use which is WALS 

(Dryer & Haspelmath, 2013). The biggest difficulty 

which is also the classical problem in linguistic 

typology is often referred to as “geographical and 

genealogical biases”. Specifically the language 

samples in the WALS database are not 

independent and identically distributed (i.i.d.) 

because languages can share the same feature 

values due to either genetic or areal proximity 

(Dryer, 1989; Croft, 2002). Here we propose two 

models: one is FLAT, which assumes samples are 

independent and identically distributed (i.i.d.); the 

other is UNIV, which takes care of the possible 

dependencies among the samples. By comparing 

these two models we hope to find one that is closer 

to the real distribution. Aside from the i.i.d. 

problem there are two other issues with the dataset: 

one is large quantity of missing values and the 

other is small number of instances, both of which 

are addressed in our algorithms.  

2 Experiments 

In the WALS dataset there are 192 features in total. 

Learning models with all these features is still 

ongoing. Here we use the word order domain as an 

example. First, we manually select the features that 

are well defined and most representative of the 

domain, reducing the original 56 features to 13. 

One important part of our algorithm is model 

averaging or graph fusion which refers to the 

process of aggregating multiple graph structures 

and identify the features of higher confidence. 

Specifically for m number of datasets Di (i=1, 

2,…m), we induce a network structure Gi=G(Di) 

from each dataset, and define: 

 𝑝(𝑓) =
1

𝑚
∑ 𝑓(𝑚

𝑖=1 𝐺𝑖)       (1) 

where p(f) represents confidence of existence of 

feature f in the final structure G: if the value is 

close to 1 then f is present in G; if the value is close 

to 0 then it is not. In (Friedman et al., 1999) such 

features refers to edges in partially directed graphs 

(PDAGs) , Markov neighborhoods and orders. In 

this paper we use edges alone. From the linguistic 

perspective we can assume such measure as 

degree of universality: the larger the value is the 

more likely that this feature is universally found 

in all languages. One advantage of using PGMs is 
that it allows us to aggregate and average on the 

model structure level.  
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To learn a FLAT model, we use an iterative 

procedure combining imputation and both 

parametric and non-parametric bootstrap methods. 

A graphical illustration of the algorithm is shown 

in Figure 1. To learn a UNIV model we assume 

languages belongs to different groups along both 

genealogical and areal scales. Following the 

model averaging principle discussed in the 

previous section we assume for each group we can 

learn a set of structures then through aggregating 

and averaging we can identify the edges that have 

higher probabilities of being universally present 

across language groups. We chose the “Macroarea” 

classification as defined in (Dryer, 1989) which is 

based on geographical boundaries primarily but 

also taking genealogical grouping into account. 

To learn a UNIV model we learn local FLAT 

models for each area and aggregate all local 

models to get a final model. The structure of the 

UNIV model is shown in Figure 2. The 

confidence value is added next to each edge and 

also reflects in the thickness of the arrows.  

We use Bayesian score to evaluate the structure 

and prediction accuracy to evaluate the 

parameters. The accuracy for one-feature 

prediction for one language l is defined as such:  

𝑎𝑐𝑐𝑙
1 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
      (2) 

For a dataset with n languages the final accuracy 

for one-feature prediction is:  

 𝑎𝑐𝑐1𝑓 =
1

𝑛
∑ 𝑎𝑐𝑐𝑖

1𝑓 𝑛
𝑖=1        (3) 

Besides the FLAT and UNIV models we also learnt 

two more models: one is COMP which is learnt 

using 188 instances with no missing values and 

another EM which is learnt from the original 

dataset using the SEM algorithm  (Friedman, 1998). 

The structure score and one-feature accuracy of the 

four models are shown in Figure 3 and 4. For 

accuracy calculation we use the 188 complete cases 

as the test set. It is not surprising that COMP has 

the highest values for both while UNIV 

outperforms both EM and FLAT.  

3 Results 

In this section we discuss how to use a PGM to 

study linguistic typology. For better visualization 

we use SamIam which is a tool for modeling and 

reasoning with Bayesian networks. First, we can 

exam the relationships between the typological 

features visually from the graph. Features can 

influence each other directly or indirectly. Also, 

instead of simply stating X is correlated to Y, we 

see correlation between two features are relative 

rather than absolute: the correlation can be present 

or absent depending on the information we have 

about other features. Besides using the graph, we 

can also perform the following probabilistic 

queries to examine more typological properties of 

the domain: 

Conditional probability queries: most linguistic 

universals are implicational and stated in 

conditional statements. In a PGM framework the 

question is formulated as conditional probability 

P(Q|C) where C is the condition variable and Q 

the query variable. We calculated all pairwise 

conditional probabilities using the UNIV model. 

The top ten pairs are listed in Table 1. We can also 

set multiple conditions at the same time. For 

example, when a language has values postposition 

and adjective preceding noun, in SamIam we set 

POST1 and AN1 as observed values and the 

probabilities of all other values are calculated as 

shown in Figure 5.  

MAP queries aim to find the most likely joint 

assignment to a specific set of variables 

simultaneously given evidence. For example, 

given the value of O_V we can calculate the joint 

probability of having all other 12 values together. 

Probability of evidence: If we calculate the joint 

probability of all 13 features then we have a 

probability indicating the likelihood of having all 

these feature values in a language, in other words, 

the likelihood of existence of such a language in 

terms of these features.  

Prediction of unknown feature values of new 

languages: Here we use Hakka as an example. In 

the WALS database it has five feature values 

missing. The predicted values are listed in Table 

2. According to the resources we found and also 
through elicitation from Hakka speakers, we filled 

in the missing values in the “TRUE” row. Both 

COMP and UNIV get 80% of the values correct 

while local model AREA6 get 60%.  

Prediction of macroarea: Finally given the 

values of a new language, we can also use our 

models to tell which macroarea it belongs to. Take 

Mandarin as an example: We calculate the 

probabilities of evidence using the six local 

models. The results are shown in Table 3. We can 

see that the local model for the area “Southeast 

Asia and Oceania” gives the highest probability of 

evidence therefore it is most likely that Mandarin 

belongs to this area.  

http://reasoning.cs.ucla.edu/samiam/
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Figure 2: Structure of the UNIV model. 

 

 
Figure 3: Structure scores of the four models.  

 

 

 

 

 

 

 

 

 
Figure 4: One-feature accuracy of the four models. 

Query Probability 

p(O_V(OV1) -> S_V(SV1)) 0.973 

p(R_N(RN2) -> O_V(OV1)) 0.964 

p(R_N(RN2) -> S_V(SV1)) 0.962 

p(AdSub_Cl(Final2) -> 

ADP_NP(POST1)) 

0.957 

p(R_N(CORRELATIVE4) -> 

S_V(SV1)) 

0.947 

p(O_V(VO2) -> R_N(NR1)) 0.947 

p(R_N(IN_HEAD3) -> 

S_V(SV1)) 

0.945 

p(S_V(VS2) -> O_V(VO2)) 0.937 

p(ADP_NP(PRE2) -> 

O_V(VO2)) 

0.930 

p(R_N(CORRELATIVE4) -> 

O_V(OV1)) 

0.929 

Table 1:  The top 10 pairwise probability queries. 

 

Model Pr(e) 

UNIV 0.0000031141 

Africa 0.0000033638 

Australia-New Guinea 0.0000027589 

Eurasia 0.0000042880 

North America 0.0000029587 

South America 0.0000013548 

Southeast Asia and Oceania 0.0000044322 

Table 3:  Probability of evidence of Mandarin in 

seven models. 
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Figure 1: Illustration of the algorithm for learning the FLAT model. 

 

 
Figure 5: Example of probability query with multiple condition variables. 

 

Hakka S_V O_V ADP_NP G_N A_N Dem_N Num_N R_N Deg_A PoQPar IntPhr AdSub_Cl Neg_V 

WALS 1 2    1 1 2 3  2  1 

TRUE 1 2 1 1 1 1 1 2 3 2 2 1 1 

COMP 1 2 1 1 1 1 1 2 3 1 2 1 1 

AREA6 1 2 5 1 1 1 1 2 3 6 2 1 1 

UNIV 1 2 1 1 1 1 1 2 3 1 2 1 1 

Table 2:  Prediction of missing values for Hakka. 
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