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Abstract

We summarise findings from our recent work
showing that a large self-supervised model
trained only on English speech provides a
noise-robust and speaker-invariant feature ex-
traction method that can be used for a speech
information retrieval task with unrelated low
resource target languages. A qualitative error
analysis also revealed that the majority of the
retrieval errors could be attributed to the dif-
ferences in phonological inventories between
English and the evaluation languages. With a
longer-term aim of leveraging typological in-
formation to better adapt such models for the
target languages, we also report on work in
progress which examines the phonetic infor-
mation encoded in these representations.

Introduction. Language documentation efforts of-
ten yield a sizeable amount of untranscribed speech,
which is difficult to index and search. These dif-
ficulties have a direct impact on how easily such
resources may be used for language maintenance
and revitalisation activities by many interested
parties. One way to alleviate such difficulties is
through query-by-example spoken term detection
(QbE-STD), which, as shown in Figure 1, is a
long-standing speech information retrieval task of
finding all regions within a corpus of audio docu-
ments where a spoken query term occurs (Myers
et al., 1980; Rohlicek, 1995; Fiscus et al., 2007;
Rodriguez-Fuentes et al., 2014; Ram et al., 2020).

As QbE-STD involves directly comparing
speech samples, retrieval performance can be poor
when the query and corpus are spoken by different
speakers and produced in different recording condi-
tions. Using data selected from a variety of speak-
ers and recording conditions from 7 Australian
Aboriginal languages and Gronings (a regional va-
riety of Dutch), all of which are endangered or
vulnerable, we evaluated whether QbE-STD per-
formance on these languages could be improved by
leveraging features extracted from the pre-trained
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I said There's a car
hello

hello

Spoken query Test item 1 Test item 2

Figure 1: Query-by-example spoken term detection

English wav2vec 2.0 model (Baevski et al., 2020,
henceforth w2v2). The w2v2 model consists of
an encoder network that reads in raw audio and
outputs latent speech representations that are then
fed to a 24-layer Transformer network to build con-
textualised representations. The self-supervised
training objective was to correctly predict randomly
masked portions of the speech representations.
QbE-STD with wav2vec 2.0 features. Compared
to the use of Mel-frequency cepstral coefficients
and bottleneck features, we find that representa-
tions from the middle layers of the w2v2 Trans-
former network offer large gains in task perfor-
mance. In the worst of cases, retrieval performance
improved 56–86% from only 27–28% of queries
being retrievable to 42–52% when using w2v2 fea-
tures (Transformer layer 11). This is a tolerable
operating range, given the alternative is browsing
untranscribed audio in near real-time.

Phonological similarity to the training language
(English) resulted in higher QbE-STD performance,
with performance on the regional variety of Dutch
(Gronings) being higher than on the Australian lan-
guages with comparable dataset characteristics. A
qualitative error analysis revealed that phonologi-
cal differences between English and the Australian
languages account for a substantial portion of the
retrieval errors. For example, for the Kaytetye
query [aïanp@] ‘medicinal sap’, an erroneous re-
trieval was the word [an@nk@] ‘to sit’, both of which
share the VNVNTV template (where V represents
a vowel, N a nasal, and T a plosive). In other words,
the representations of the w2v2 English model do
not appear to be sufficiently fine-grained to dif-
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Figure 2: Multidimensional scaling (MDS) visualisations of features extracted using Transformer layer 11 of the
wav2vec 2.0 model from English (TIMIT corpus) and Kaytetye consonants (Harvey et al., 2015), averaged over
the duration of the consonant. Ellipses represent 95% confidence intervals and text labels represent means.

ferentiate between segments differing primarily in
place of articulation, especially for those that do
not occur contrastively in English (e.g. retroflex
nasal [ï] vs. alveolar nasal [n]).

Exploring the wav2vec 2.0 features. To further
examine the phonetic information encoded by the
w2v2 English model, we used the Transformer
layer 11 (the best performing layer for our QbE-
STD evaluations) to extract features of English
consonants (from the TIMIT corpus) and Kayte-
tye consonants (from audio stimuli collected by
Harvey et al., 2015). Figure 2 shows the dissimilar-
ities between each of the consonant types for En-
glish and Kaytetye in the 1024-dimensional space
of the w2v2 English model (averaged across the
duration of the consonant and reduced to 2 dimen-
sions through multidimensional scaling for each
language). For considerations of space and visual
clarity, we focus on the nasals and plosives.

Despite being given no phone labels at training
time, the w2v2 model learns to encode broad man-
ner of articulation classes within its representations,
as evidenced by ellipses forming two distinct clus-
ters for nasals (solid lines) and plosives (dashed
lines) in Figure 2. In line with findings from our
qualitative error analysis, features from the w2v2
English model under-differentiate place of articu-
lation contrasts, as evidenced by the overlapping
ellipses within each of the nasal and plosive man-
ners of articulation in Figure 2. Interestingly, this
under-differentiation is present for both Kaytetye
and English, the latter for which the distributions
of the velar [N, k] and alveolar consonants [n, t] are
entirely overlapping within each manner class, and

the labial consonants [m, p] also partially overlap-
ping with the other two places.

As Australian languages typically have 4-6 place
of articulation contrasts with relatively few con-
trasts based on manner of articulation, their phono-
logical inventories have been described as ‘long
and thin’ (Butcher, 2012).1 Erroneous retrievals
that occur with the Australian languages can be as
explained as the result of an interaction between
these languages’ phonological inventories (place-
rich/manner-poor) and the representations of the
evaluated w2v2 model (place-poor/manner-rich),
learned from unlabelled English speech. In our fu-
ture work we will investigate whether information
relating to place of articulation is learned through
additional training of the English w2v2 model on
unlabelled speech in the target languages and how
this affects QbE-STD performance.

For these low resource languages, features ex-
tracted using the w2v2 English model trained on
960 hours of speech offer noise-robust and speaker-
invariant speech representations that are highly ef-
fective for speech information retrieval. A pre-
liminary investigation revealed that phonetic infor-
mation is selectively encoded in these represen-
tations: predominantly of manner of articulation,
based on English speech. As such, leveraging typo-
logical information about how phonetic categories
and phonological contrasts are distributed within
various languages may be the key to training eas-
ily adaptable self-supervised models for use with
various low resource target languages.

1In relation to the horizontal and vertical dimensions of
the standard IPA consonantal chart.



References
Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,

and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. In Advances in Neural Information Process-
ing Systems, volume 33, pages 12449–12460. Cur-
ran Associates, Inc.

Andy Butcher. 2012. On the phonetics of long, thin
phonologies. Quantitative approaches to problems
in linguistics, edited by C. Donohue, S. Ishihara, and
W. Steed (LINCOM, Munich, Germany), pages 133–
154.

Jonathan G. Fiscus, Jerome Ajot, John S. Garofolo, and
George Doddingtion. 2007. Results of the 2006 spo-
ken term detection evaluation. In Proceedings of SI-
GIR 2007, volume 7, pages 51–57.

Mark Harvey, Susan Lin, Myfany Turpin, Ben Davies,
and Katherine Demuth. 2015. Contrastive and non-
contrastive pre-stopping in Kaytetye. Australian
Journal of Linguistics, 35(3):232–250.

Cory Myers, Lawrence Rabiner, and Andrew Rosen-
berg. 1980. An investigation of the use of dy-
namic time warping for word spotting and connected
speech recognition. In Proceedings of ICASSP 1980,
pages 173–177.

Dhananjay Ram, Lesly Miculicich, and Hervé
Bourlard. 2020. Neural Network based End-to-
End Query by Example Spoken Term Detection.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 28:1416–1427.

Luis J. Rodriguez-Fuentes, Amparo Varona, Mikel Pe-
nagarikano, Germán Bordel, and Mireia Diez. 2014.
High-performance query-by-example spoken term
detection on the SWS 2013 evaluation. In Proceed-
ings of ICASSP 2014, pages 7819–7823.

Jan Robin Rohlicek. 1995. Word spotting. In Modern
Methods of Speech Processing, volume 327 of The
Springer International Series in Engineering and
Computer Science, pages 123–157. Springer.

https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fb a3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fb a3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fb a3227870bb6d7f07-Paper.pdf
https://core.ac.uk/download/pdf/11468110.pdf
https://core.ac.uk/download/pdf/11468110.pdf
https://doi.org/10.1080/07268602.2015.1023170
https://doi.org/10.1080/07268602.2015.1023170
https://doi.org/10.1109/ICASSP.1980.1171067
https://doi.org/10.1109/ICASSP.1980.1171067
https://doi.org/10.1109/ICASSP.1980.1171067
https://doi.org/10.1109/TASLP.2020.2988788
https://doi.org/10.1109/TASLP.2020.2988788
https://doi.org/10.1109/ICASSP.2014.6855122
https://doi.org/10.1109/ICASSP.2014.6855122
https://doi.org/10.1007/978-1-4615-2281-2_6

