Typological Feature Prediction and Blinding for Cross-Lingual NLP

Johannes Bjerva Department of Computer Science Aalborg University Copenhagen

Outline

- Introducing "The Problem"
 - Typological Feature Prediction
- Is Typology "The Solution"?
 - NLP Models Encode Typology
 - NLP Models Need Typology
 - ...but does adding more Typology help?

The Big Problem

Modern society relies on **NLP tools**, but **most languages** do not have access to such tools, nor the **resources** or **data** to create them

The Big Problem is Really a Problem

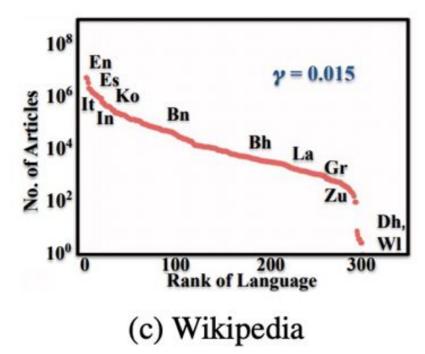
 Significantly increase access to information and communications technology and strive to provide universal and affordable access to the Internet in least developed countries by 2020

Indicators 🔺

9.c.1

Proportion of population covered by a mobile network, by technology

Cause: Multilingual Data is Scarce



Is Typology the Solution?

apple

red

pomme rouge

"Adjective-Noun Order"

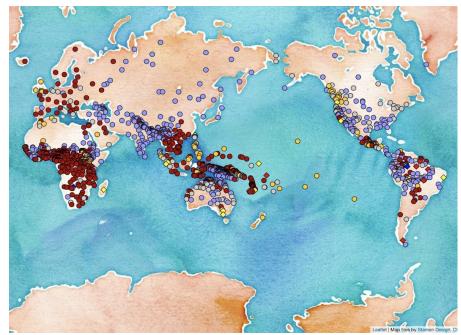
Typological Feature Prediction

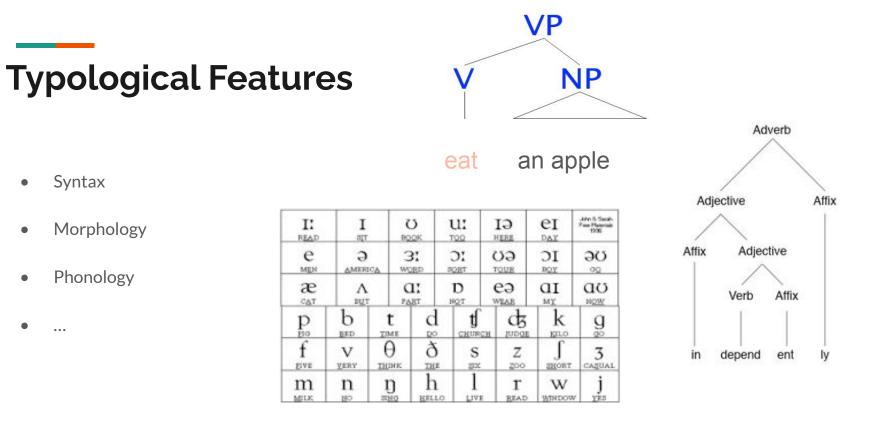
Feature 81A – Order of Subject, Object and Verb

World Atlas of Language Structure (WALS)

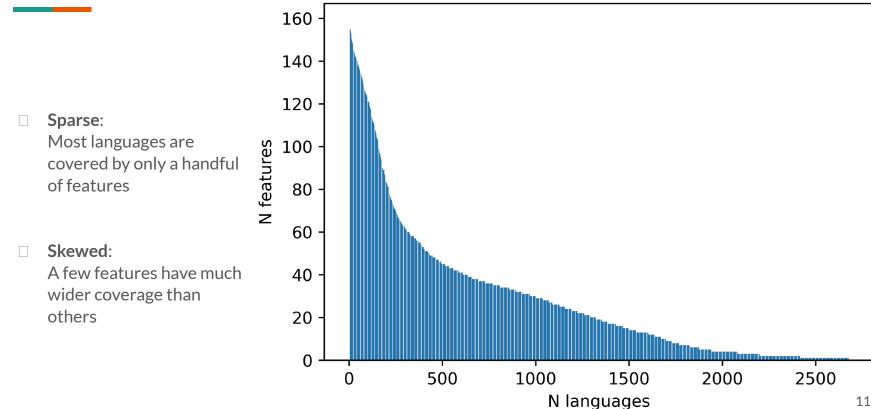
- 2,500 languages
- 192 features

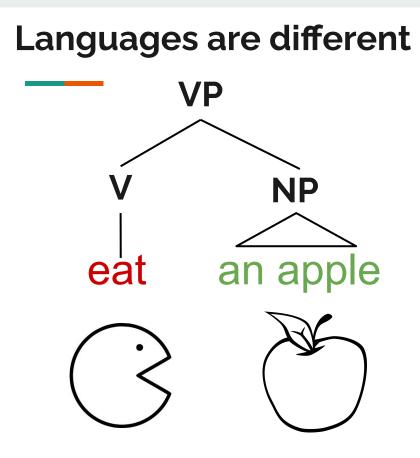
Values					
\bigcirc	SOV	565			
•	SVO	488			
0	VSO	95			
\diamond	VOS	25			
٠	OVS	11			
٠	OSV	4			
0	No dominant order	100			

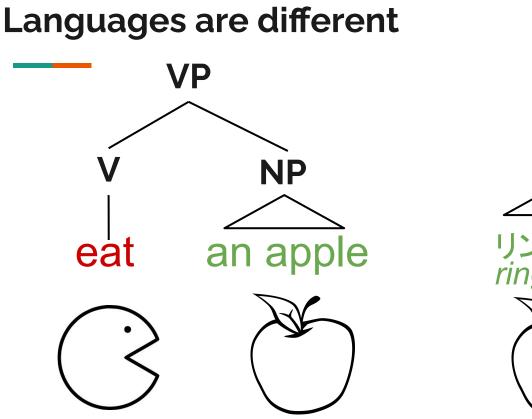


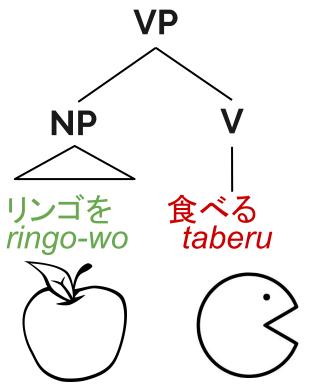


Motivation: Typological Databases are Incomplete

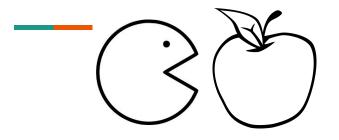


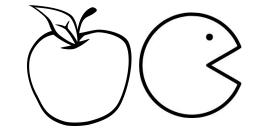




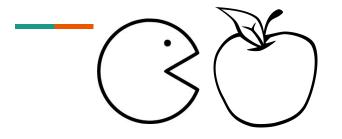


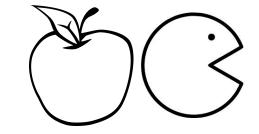
Differences are often correlated

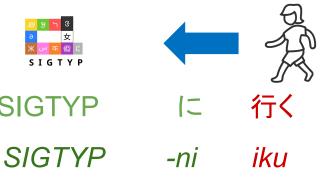




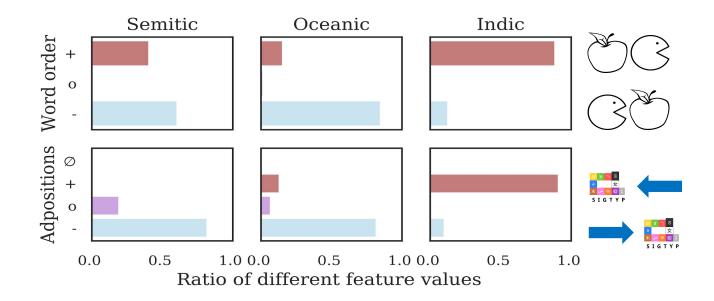
Differences are often correlated







Typological Feature Correlations



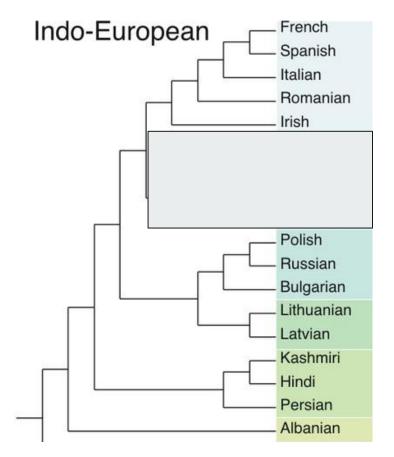
Typological Feature Prediction

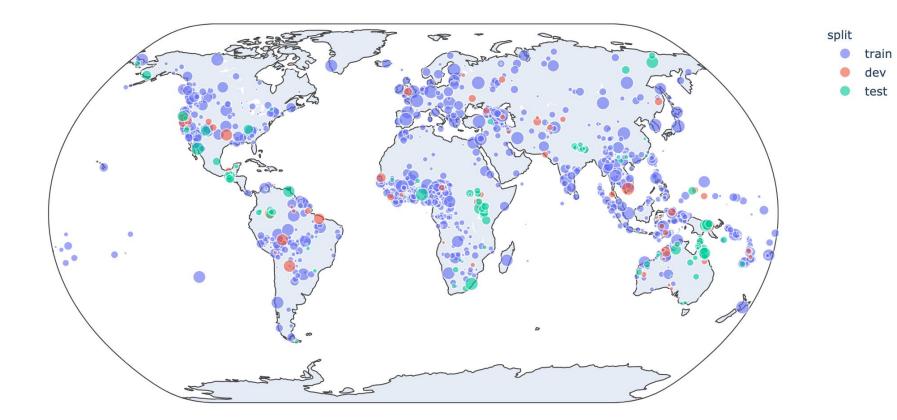
	Lang code	Name	Lat	Long	Genus	Family	Count Code	Features
Input	mhi	Marathi	19.0	76.0	Indic	Indo-European	IN	order_of_subject,_object,_and_verb=? number_of_genders=?
	jpn	Japanese	37.0	140.0	Japanese	Japanese	JP	case_syncretism=? order_of_adjective_and_noun=?
Output	mhi	Marathi	19.0	76.0	Indic	Indo-European	IN	order_of_subjectobject,_and_verb=SOV number_of_genders=three
Output	jpn	Japanese	37.0	140.0	Japanese	Japanese	JP	case_syncretism=no_case_marking order_of_adjective_and_noun=demonstrative-Noun

Table 1: Data format for two test instances of the SIGTYP 2020 shared task dataset

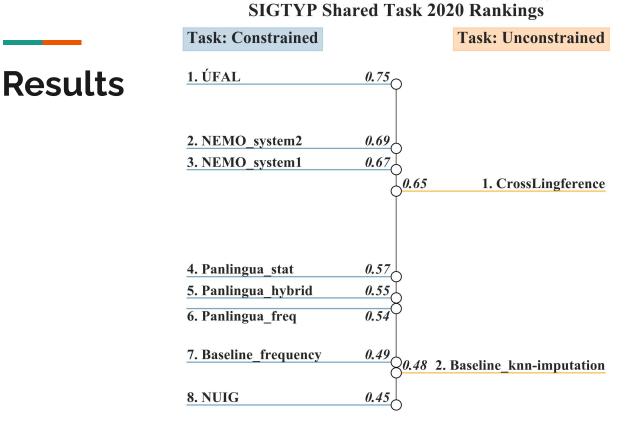
Typological Feature Prediction

- Not difficult with knowledge of related languages
- Controlling for Phylogenetic Relationships
 - Evaluation on held-out language families
- Controlling for Geographic Influence
 - Training languages > 1000 km from evaluation languages





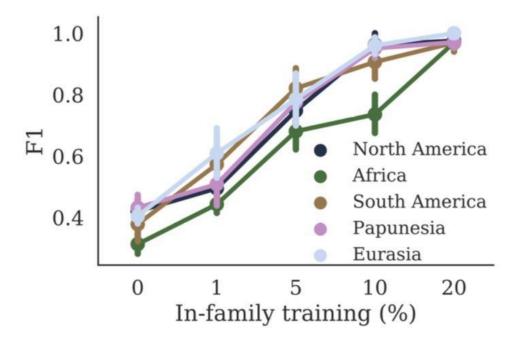
[Bjerva, Salesky, Mielke, Chaudhary, Celano, Ponti, Vylomova, Cotterell, Augenstein (SIGTYP 2020)]



Submission	Tucanoan (8)	Madang (9)	Mahakiranti (13)	Nilotic (15)	Mayan (17)	N. Pama-Nyungan (24)	Other genera (63)
ÚFAL	0.73	0.78	0.74	0.71	0.80	0.76	0.76
NEMO_system2	0.71	0.72	0.72	0.76	0.76	0.67	0.69
NEMO_system1	0.70	0.72	0.68	0.75	0.71	0.68	0.67
Panlingua_stat	0.70	0.64	0.55	0.55	0.33	0.62	0.58
Panlingua_hybrid	0.65	0.64	0.57	0.51	0.34	0.61	0.53
Panlingua_freq	0.59	0.64	0.53	0.55	0.31	0.59	0.55
Baseline_frequency	0.51	0.53	0.37	0.49	0.41	0.58	0.53
NUIG	0.51	0.56	0.35	0.45	0.32	0.45	0.48
CrossLingference	0.71	0.73	0.67	0.68	0.57	0.60	0.65
Baseline_knn-imputation	0.48	0.57	0.46	0.48	0.32	0.52	0.51

Table 2: Macro-averaged results across each unobserved genus, as compared to genera with languages observed in training with randomly sampled splits, shown with number of languages in each genus.

Sufficient In-family Training



Typological Feature Prediction: Conclusion

- "Solved" when we have knowledge of related languages
- Difficult in the SIGTYP 2020 setting
 - Rare features are difficult
 - Best systems: > 65% accuracy
 - Worst systems: ~20% accuracy
- Future work:
 - Explainable modelling
 - More useful to point at real text examples
 - ...certainly easier to convince typologists that way

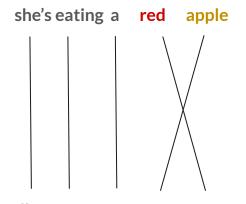
The Big Problem: Is Typology the Solution?

Overview

- Is typology the solution?
 - NLP models **encode** typology
 - NLP models **rely on** typology
 - ...so how about **adding** some more typology to our models?

[*SEM 2021]

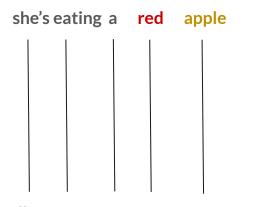
Is Typology the Solution?



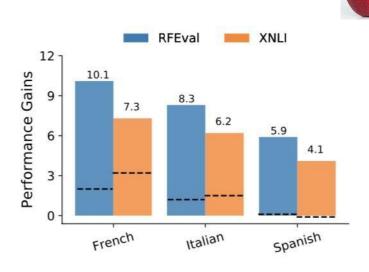
elle mange une pomme rouge

[*SEM 2021]

Is Typology the Solution?



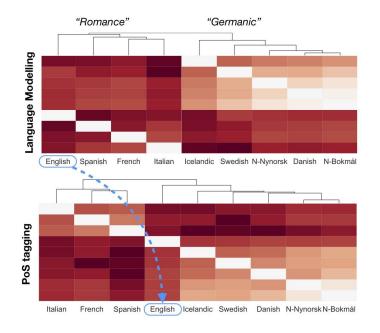
elle mange une rouge pomme

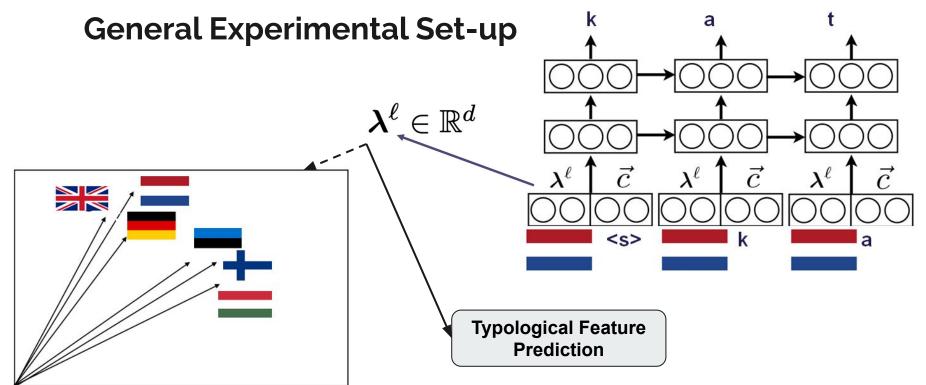


(b) Reversing adjective-noun order

NLP Models Encode Typology

- ... or at least something that correlates strongly
- Typological Prediction from Language Representations
- Task-Dependent Change in Language Similarities





Typological Prediction: Phonology

- 20 phonological features from WALS
- Grapheme-to-Phoneme
- 102 languages

 (English, variation) -> vɛəri'eı∫ən
 (French, variation) -> vaʁja'sjõ
- A model trained on a **phonological task**, is better at predicting **phonological features**

System / features	Random phon.	Unseen phon.	All feat.
Most Frequent Class	* 59.39 %	63.71%	*58.12%
k-NN (fine-tuned)	53.09%	*77.45%	51.9%

[Bjerva and Augenstein (NAACL 2018)]

Typological Prediction: Morphology

- 41 morphological features from WALS
- SIGMORPHON -2017 Data
- 29 languages

```
(release, V;V.PTCP;PRS) -> releasing
```

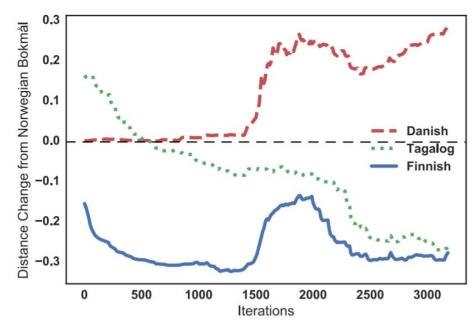
• A model trained on a **morphological task**, is better at predicting **morphological features**

System / Features	Random morph.	Unseen morph.	All feat.
Most Frequent Class	77.98%	85.68%	84.12%
k-NN (fine-tuned)	*82.91%	*91.92%	84.95%

[Bjerva and Augenstein (NAACL 2018), Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]

Language Representations

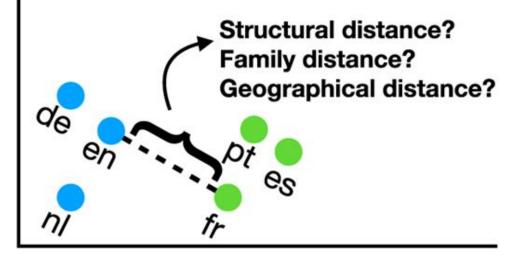
• Language similarities shift depending on the task



[Bjerva and Augenstein (NAACL 2018), Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]

Language Representations

- Language similarities shift depending on the task
- What do Language Representations Represent?



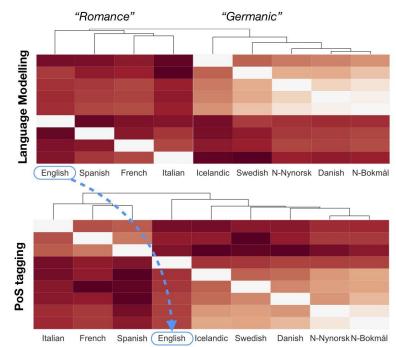
[Bjerva and Augenstein (NAACL 2018), Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]

Language Representations

- Language similarities shift depending on the task
- What do Language Representations Represent?
- Generally seem to correspond to structural similarities

Geo	0.31						
Struct	0.53*	0.42*					
Raw	0.23	0.023	0.48*				
Func	0.31	-0.09	0.43*	0.85*			
POS	0.13	0.014	0.45*	0.85*	0.78*		
Phrase	0.31	0.025	0.52*	0.91*	0.86*	0.82*	
Deprel	0.33	-0.02	0.49*	0.9 *	0.87*	0.81*	0.91*
6	Gen	Geo	Struct	Raw	Func	POS	Phrase

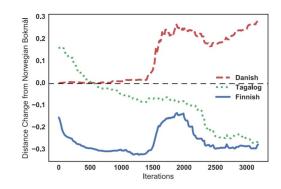
Language Similarities under Different Tasks



Summary: NLP Models Encode Typology

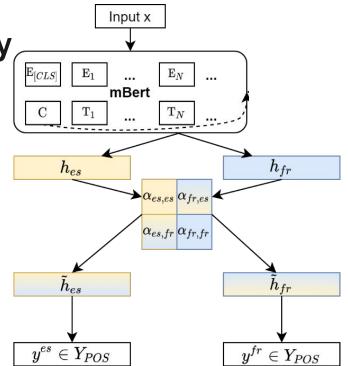
System / features	Random phon.	Unseen phon.	All feat.
Most Frequent Class	*59.39%	63.71%	*58.12%
k-NN (fine-tuned)	53.09%	*77.45%	51.9%

- Language representations can predict typology
 - $\circ \qquad {\sf Task-specific representations are better at related features}$
- Language representations evolve to make typologically similar languages more similar
 - Phonologically dissimilar languages diverge in a phonological task
 - Syntactically similar languages converge in a syntactic task



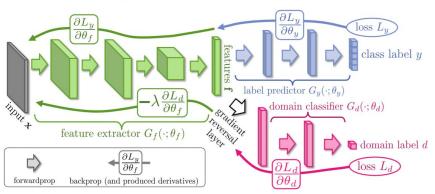
NLP Models Need Typology

- Can we force a model not to use typology?
 - Inspired by Domain Adversarial Networks
 [Ganin and Lepitsky, 2014] -> blinding
 - Using a "Sluice Network"
 [Ruder et al., AAAI 2019] -> sharing
- We introduce an auxiliary task based on typological feature prediction
- We add an *optional* gradient reversal (-λ)



Gradient Reversal Layer / Typological Blinding

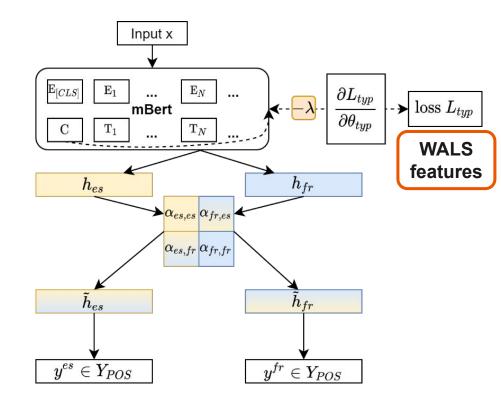
- Original formulation:
 - Domain-invariant features
 - Maximising loss on domain-prediction wrt. θ_{ℓ}
 - Feature distributions as similar as possible, regardless of the domain
- Our formulation:
 - Feature distributions as similar as possible regardless of **typological feature**
 - Hypothesis: If the model relies on typology:
 - Performance will drop
 - Sharing will be affected



Unsupervised Domain Adaptation by Backpropagation

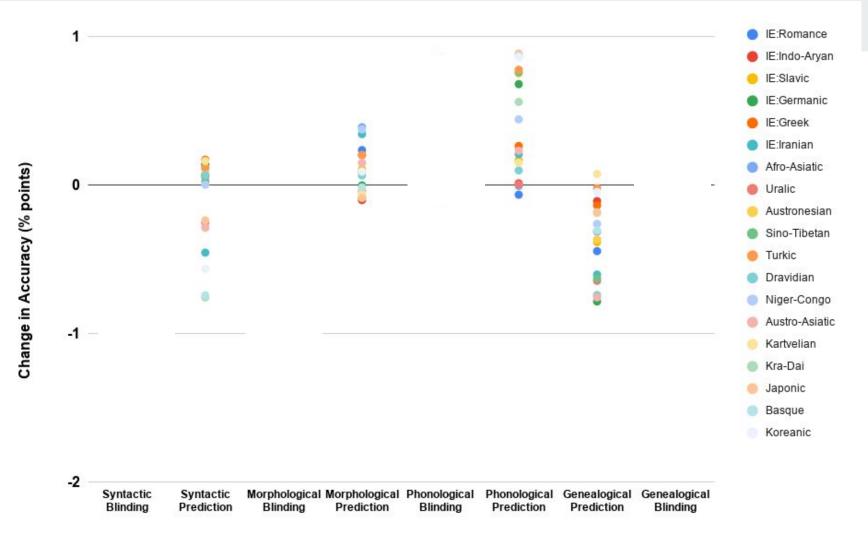
Experiments

- Conditions:
 - Blinding vs. Prediction
 - Baseline: No blinding or prediction
- Typological Categories:
 - Syntax
 - Morphology
 - Phonology (control)
 - Geneaology (control)
- NLP Tasks:
 - Named Entity Recognition
 - POS tagging
 - Natural Language Inference
- Up to 40 languages (XTREME, Hu et al. 2020)



Research Questions

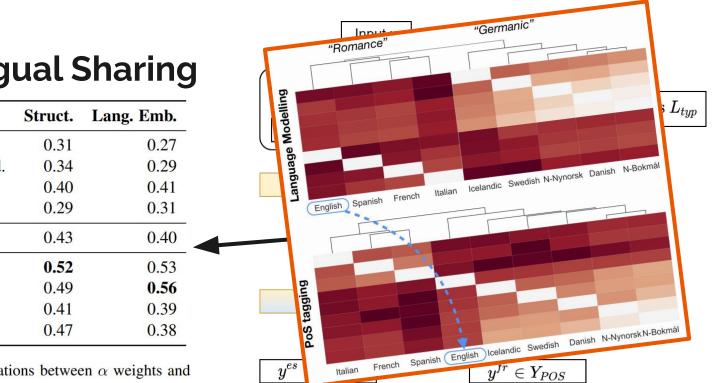
- How is the model's **performance** affected by blinding and prediction?
 - Does the type of feature blinded/predicted affect results in any particular way?
 - E.g. does blinding to a syntactic feature decrease performance on a task that requires syntax?
- How is the model's **sharing** affected by blinding/prediction?
 - Does the model represent syntactically similar languages differently under syntactic blinding?



Research Questions

- How is the model's **performance** affected by blinding and prediction?
 - Does the type of feature blinded/predicted affect results in any particular way?
 - E.g. does blinding to a syntactic feature decrease performance on a task that requires syntax?
- How is the model's **sharing** affected by blinding/prediction?
 - Does the model represent syntactically similar languages differently under syntactic blinding?

[Bjerva and Augenstein (EACL 2021)]



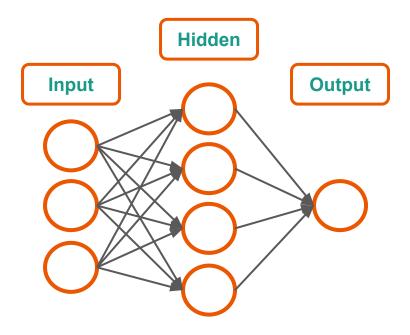
Cross-lingual Sharing

Model	Struct.	Lang. Emb.
Syntactic Blind.	0.31	0.27
Morphological Blind.	0.34	0.29
Phonological Blind.	0.40	0.41
Genealogical Blind.	0.29	0.31
No blind./pred.	0.43	0.40
Syntactic Pred.	0.52	0.53
Morphological Pred.	0.49	0.56
Phonological Pred.	0.41	0.39
Genealogical Pred.	0.47	0.38

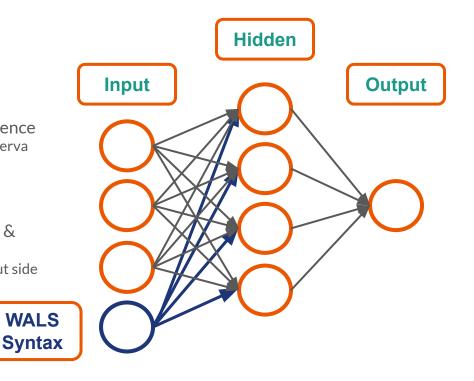
Table 2: Pearson correlations between α weights and language similarity measures.

So...

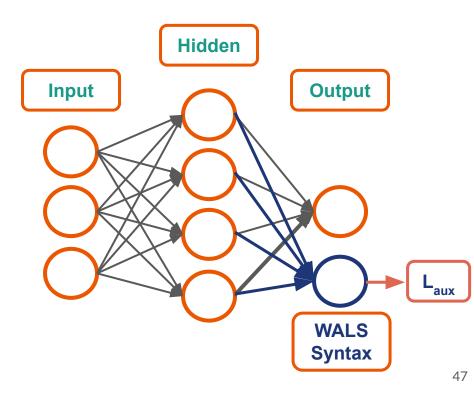
- NLP Models Encode Typology
- NLP Models **Need** Typology
- ...why doesn't it help to add more?



- As features
- Does not seem to make much of a difference
 - [Moreno & Oncevay, SIGTYP 2021], [Bjerva et al. (2018)]
 - See Miryam's keynote for parsing-experiments on this!
- Ongoing work, follow-up from [Moreno & Oncevay, SIGTYP 2021]
 - Typological features on input and output side of MT?



- As auxiliary task
- Does not seem to make much of a difference
 - [Bjerva and Augenstein, EACL 2021]

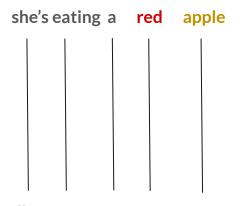


- Directly:
 - As features
 - As auxiliary tasks
- Indirectly:
 - Predict beneficial language pairings using typology (Dolicki and Spanakis, <u>https://arxiv.org/pdf/2105.05975.pdf</u>)
 - Results can be predicted, but do not seem to fit typological expectations
 - Best source language for Bulgarian:
 - French (POS)
 - Russian (NER)
 - Thai (NLI)

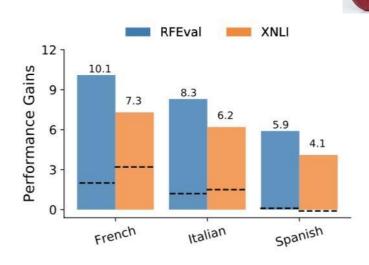
How can we inform models of Typology?

[*SEM 2021]

Is Typology the Solution?



elle mange une rouge pomme



(b) Reversing adjective-noun order

Thanks to all of my collaborators!

[NAACL 2018]

From Phonology to Syntax: Unsupervised Linguistic Typology at Different Levels with Language Embeddings Johannes Bjerva, Isabelle Augenstein

[CL 2019] What do Language Representations Really Represent? Johannes Bjerva, Robert Östling, Maria H Veiga, Jörg Tiedemann, Isabelle Augenstein

[NAACL 2019] A Probabilistic Generative Model of Linguistic Typology Johannes Bjerva, Yova Kementchedjhieva, Ryan Cotterell, Isabelle Augenstein

[SIGTYP 2020] SIGTYP 2020 Shared Task: Prediction of Typological Features Johannes Bjerva, Elizabeth Salesky, Sabrina J Mielke, Aditi Chaudhary, Giuseppe GA Celano, Edoardo M Ponti, Ekaterina Vylomova, Ryan Cotterell, Isabelle Augenstein

[*SEM 2021]

Inducing language-agnostic multilingual representations Wei Zhao, Steffen Eger, Johannes Bjerva, Isabelle Augenstein

[EACL 2021] Does Typological Blinding Impede Cross-Lingual Sharing? Johannes Bjerva, Isabelle Augenstein