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Outline

● Introducing “The Problem”
○ Typological Feature Prediction

● Is Typology “The Solution”?
○ NLP Models Encode Typology

○ NLP Models Need Typology

○ ...but does adding more Typology help?
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The Big Problem
Modern society relies on NLP tools,

but most languages do not have access to such tools,

nor the resources or data to create them
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The Big Problem is Really a Problem
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Cause: Languages are Different
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Cause: Multilingual Data is Scarce
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[Joshi et al., ACL2020]



Is Typology the Solution?
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Typological Feature Prediction
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World Atlas of Language Structure (WALS)
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Feature 81A – Order of Subject, Object and Verb

● 2,500 languages

● 192 features



Typological Features

• Syntax

• Morphology

• Phonology

• …
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eat      an apple



Motivation: Typological Databases are Incomplete

� Sparse: 
Most languages are 
covered by only a handful 
of features

� Skewed: 
A few features have much 
wider coverage than 
others
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Languages are different
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Languages are different



Differences are often correlated

go         to       SIGTYP
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go         to       SIGTYP

SIGTYP        -ni       iku 

SIGTYP          に      行く
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Differences are often correlated



Typological Feature Correlations
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[Bjerva, Kementchedjhieva, Cotterell, Augenstein (NAACL 2019)]



Typological Feature Prediction

[Bjerva, Salesky, Mielke, Chaudhary, Celano, Ponti, Vylomova, Cotterell, Augenstein (SIGTYP 2020)]



Typological Feature Prediction

● Not difficult with knowledge of related languages

● Controlling for Phylogenetic Relationships
○ Evaluation on held-out language families

● Controlling for Geographic Influence
○ Training languages > 1000 km 

from evaluation languages



Data Splits



Results

[Bjerva, Salesky, Mielke, Chaudhary, Celano, Ponti, Vylomova, Cotterell, Augenstein (SIGTYP 2020)]



Detailed Results

[Bjerva, Salesky, Mielke, Chaudhary, Celano, Ponti, Vylomova, Cotterell, Augenstein (SIGTYP 2020)]



Sufficient In-family Training
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[Bjerva, Kementchedjhieva, Cotterell, Augenstein (NAACL 2019)]



Typological Feature Prediction: Conclusion

● “Solved” when we have knowledge of related languages

● Difficult in the SIGTYP 2020 setting
○ Rare features are difficult

■ Best systems: > 65% accuracy
■ Worst systems: ~20% accuracy

● Future work: 
○ Explainable modelling
○ More useful to point at real text examples
○ ...certainly easier to convince typologists that way
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The Big Problem:
Is Typology the Solution?
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Overview

● Is typology the solution?
○ NLP models encode typology

○ NLP models rely on typology

○ ...so how about adding some more typology to our models?
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Is Typology the Solution?
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elle mange une pomme rouge

she’s eating  a      red      apple

[*SEM 2021]



Is Typology the Solution?
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[*SEM 2021]
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NLP Models Encode Typology

● ...or at least something that correlates strongly

● Typological Prediction from Language 

Representations

● Task-Dependent Change in Language Similarities
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[Bjerva and Augenstein (NAACL 2018)]



General Experimental Set-up
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Typological Feature 
Prediction

[Östling and Tiedemann, EACL 2017]



Typological Prediction: Phonology

● 20 phonological features from WALS

● Grapheme-to-Phoneme

● 102 languages
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[Bjerva and Augenstein (NAACL 2018)]

● A model trained on a phonological task, is 

better at predicting phonological features



Typological Prediction: Morphology

● 41 morphological features from WALS

● SIGMORPHON -2017 Data

● 29 languages
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[Bjerva and Augenstein (NAACL 2018)]

● A model trained on a morphological task, is 

better at predicting morphological features



Language Representations

● Language similarities shift depending on 

the task
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[Bjerva and Augenstein (NAACL 2018), 

Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]



Language Representations

● Language similarities shift depending on 

the task

● What do Language Representations 

Represent?
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[Bjerva and Augenstein (NAACL 2018), 

Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]



Language Representations

● Language similarities shift depending on 

the task

● What do Language Representations 

Represent?

● Generally seem to correspond to 

structural similarities
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[Bjerva and Augenstein (NAACL 2018), 

Bjerva, Östling, Han Veiga, Tiedemann, Augenstein (CL 2019)]



Language Similarities under Different Tasks
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Summary: NLP Models Encode Typology

● Language representations can predict typology
○ Task-specific representations are better at related features

● Language representations evolve to make typologically similar languages more similar
○ Phonologically dissimilar languages diverge in a phonological task

○ Syntactically similar languages converge in a syntactic task
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NLP Models Need Typology

● Can we force a model not to use typology?
○ Inspired by Domain Adversarial Networks

[Ganin and Lepitsky, 2014] -> blinding
○ Using a “Sluice Network” 

[Ruder et al., AAAI 2019] -> sharing

● We introduce an auxiliary task based on 

typological feature prediction

● We add an optional gradient reversal (-λ)
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[Bjerva and Augenstein (EACL 2021)]



Gradient Reversal Layer / Typological Blinding
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● Original formulation:
○ Domain-invariant features
○ Maximising loss on domain-prediction 

wrt. θ
f
 

○ Feature distributions as similar as possible, 
regardless of the domain

● Our formulation:
○ Feature distributions as similar as possible

regardless of typological feature
○ Hypothesis: If the model relies on typology:

■ Performance will drop
■ Sharing will be affected

[Ganin and Lepitsky, 2014]
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Experiments

• Conditions:
○ Blinding vs. Prediction
○ Baseline: No blinding or prediction

• Typological Categories:
○ Syntax
○ Morphology
○ Phonology (control)
○ Geneaology (control)

• NLP Tasks:
○ Named Entity Recognition
○ POS tagging
○ Natural Language Inference

• Up to 40 languages (XTREME, Hu et al. 2020)

WALS 
features

[Bjerva and Augenstein (EACL 2021)]



Research Questions

● How is the model’s performance affected by blinding and prediction?
○ Does the type of feature blinded/predicted affect results in any particular way?

○ E.g. does blinding to a syntactic feature decrease performance on a task that requires syntax?

● How is the model’s sharing affected by blinding/prediction?
○ Does the model represent syntactically similar languages differently under syntactic blinding?
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Cross-lingual Sharing

[Bjerva and Augenstein (EACL 2021)]



So...

● NLP Models Encode Typology

● NLP Models Need Typology

● ...why doesn’t it help to add more?
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Incorporating Typological Knowledge

Input

Hidden

Output
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WALS 
Syntax

Incorporating Typological Knowledge

● As features

● Does not seem to make much of a difference
○ [Moreno & Oncevay, SIGTYP 2021], [Bjerva 

et al. (2018)]
○ See Miryam’s keynote for 

parsing-experiments on this!

● Ongoing work, follow-up from [Moreno & 
Oncevay, SIGTYP 2021]

○ Typological features on input and output side 
of MT?

Input

Hidden

Output
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Incorporating Typological Knowledge

● As auxiliary task

● Does not seem to make much of a difference
○ [Bjerva and Augenstein, EACL 2021]

Input

Hidden

Output

Laux

WALS 
Syntax



Incorporating Typological Knowledge

● Directly:
○ As features
○ As auxiliary tasks

● Indirectly:
○ Predict beneficial language pairings using typology 

(Dolicki and Spanakis, https://arxiv.org/pdf/2105.05975.pdf)
■ Results can be predicted, but do not seem to fit typological expectations
■ Best source language for Bulgarian:

● French (POS)
● Russian (NER)
● Thai (NLI)
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https://arxiv.org/pdf/2105.05975.pdf


How can we inform models of Typology?
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Is Typology the Solution?
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[*SEM 2021]
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