Anlirika: an LSTM–CNN Flow Twister for Spoken Language Identification

Andrei Shcherbakov[#], Liam Whittle^{\(\phi\)}, Ritesh Kumar^{\(\Phi\)}, Siddharth Singh^{\(\Phi\)}, Matthew Coleman^{\(\phi\)}, Ekaterina Vylomova[#]

[#] University of Melbourne ^{\$} Monash University

Bhim Rao Ambedkar University

ultrasparc@yandex.ru

Task

"Anlirika" system was submitted to **SIGTYP** 2021 Shared Task on RobustSLI (Salesky et al., 2021).

The code is available at

https://github.com/andreas-softwareengineer-pro/speech-language-classifier

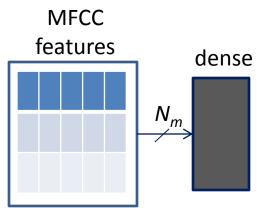
- In terms of the task, systems are trained to predict language id from an audio signal.
- Importantly, the task aims at development of robust systems that can generalize well to new domains and speakers.
 - Many languages are under-resourced and lacks speaker diversity.
 - Therefore, it is essential for a system to be speaker-invariant and robust

Dataset

- 16 typologically diverse languages from Afro-Asiatic, Austronesian, Basque, Dravidian, Indo-European, Niger-Congo, and Tai-Kadai families
- **Train set:** from the CMU Wilderness dataset (Black, 2019)
 - speech utterances from the Bible; predominantly a single speaker per language
 - ➤ 4,000 utterances per language
- Validation and test sets: from CommonVoice (Ardila et al., 2019) and other corpora
 - multiple speakers per language
 - ➤ 500 samples per language each set
- The length of each speech utterance is 3..7 seconds.
- Audio signal represented via Mel-Frequency Cepstral Coefficients (MFCC).

Remove sound harmonics *→* dense layer

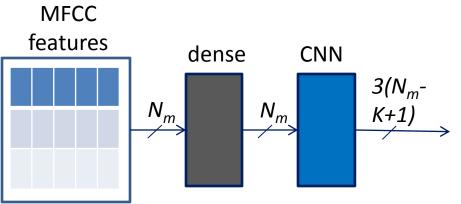
- Recognize spectral line shape
 > 1D-CNN (convolving by input feature vector index [sound tone])
- Recognize ``local'' temporal constructs
 > an optional stack of temporal LSTMs
- 4. Reduce temporal patterns into single-vector representation
 ▷ LSTM
- 5. Finally, classify it into one of 16 languages
 > dense layer



1. Remove sound harmonics

dense layer

- 2. Recognize spectral line shape
 - > 1D-CNN (convolving by input feature vector index [sound tone])
- Recognize ``local'' temporal constructs
 > an optional stack of temporal LSTMs
- 4. Reduce temporal patterns into single-vector representation
 ▷ LSTM
- 5. Finally, classify it into one of 16 languages
 > dense layer



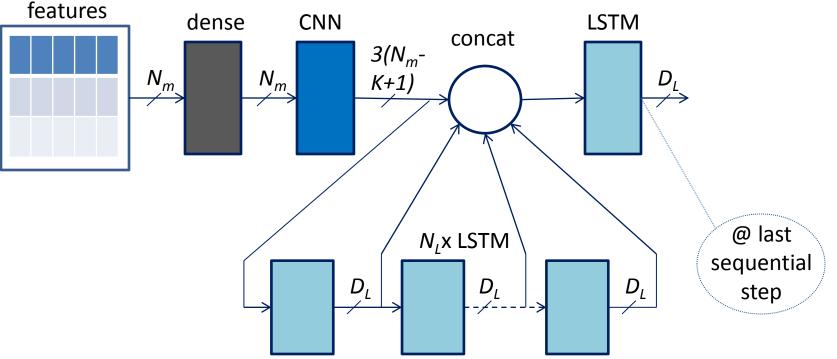
- Remove sound harmonics
 ▶ dense layer
- Recognize spectral line shape
 > 1D-CNN (convolving by input feature vector index [sound tone])
- **3. Recognize ``local'' temporal constructs** *▶ an optional stack of temporal LSTMs*
- 4. Reduce temporal patterns into single-vector representation
 ▷ LSTM
- 5. Finally, classify it into one of 16 languages
 > dense layer

 D_L

MFCC features dense CNN concat 3(N_m-K+1) N_m N_m $N_L x LSTM$ D_L D_L ·-/--

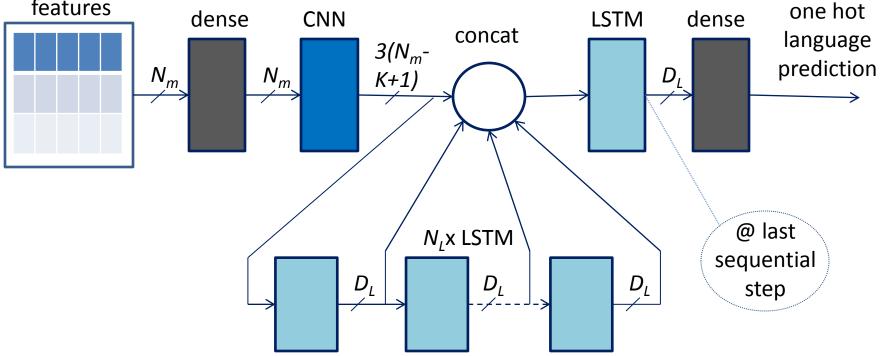
- Remove sound harmonics
 ▶ dense layer
- Recognize spectral line shape
 > 1D-CNN (convolving by input feature vector index [sound tone])
- Recognize ``local'' temporal constructs
 ➤ an optional stack of temporal LSTMs
- 4. Reduce temporal patterns into single-vector representation *≻ LSTM*
- 5. Finally, classify it into one of 16 languages
 > dense layer

MFCC features



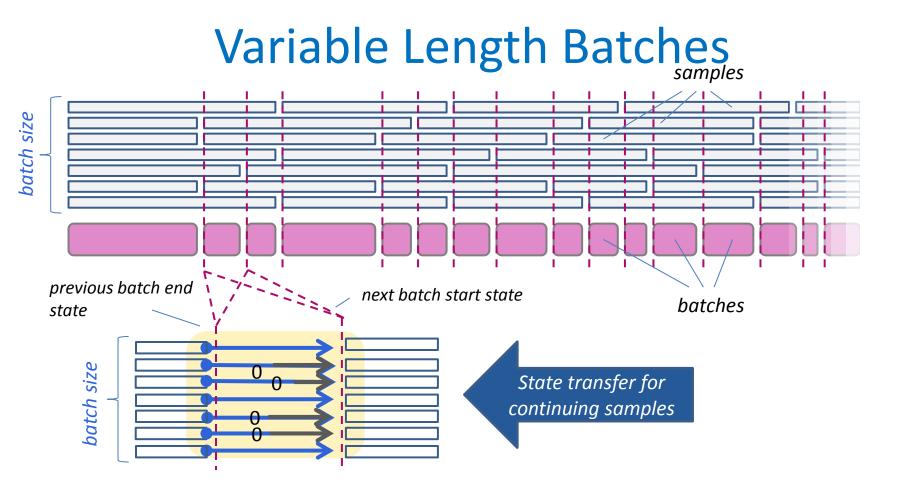
- Remove sound harmonics
 ▶ dense layer
- Recognize spectral line shape
 1D-CNN (convolving by input feature vector index [sound tone])
- Recognize ``local'' temporal constructs
 ➤ an optional stack of temporal LSTMs
- 4. Reduce temporal patterns into single-vector representation
 ▶ LSTM
- Finally, classify it into one of 16 languages
 > dense layer

MFCC features



Variable Length Batches

- A batched learning process with
 - fixed number of processed samples per batch (64)
 - variable number of time steps per batch
 - determined by the shortest sample within a given batch.
- Samples which do not fit within a batch length, are passed to the next batch for further processing, having their already-processed prefixes removed.
- Drawback: temporal depth of backpropagation through time is constrained



Tuning of hyperparameters

- N_L number of extra LSTM layers
 - A choice of N_L=2 was found to be producing the highest accuracy.
- D_L output size of LSTM layers
 - Values of 200 and 300 were tried: no significant difference in performance was observed.

Augmenting train set

- Using the original train set:
 - ➢ slow learning dynamic; fails to converge at learning rates above 4.10⁻⁴
 - > Accuracy is below 12% at validation set.
- Augmenting training data with validation set samples:
 - A much superior accuracy of 74% on (cross-) validation set was achieved.
- Generalization across speakers yet remains too challenging for the system

Confusion matrix

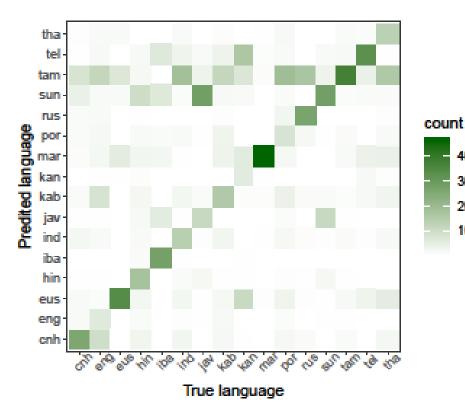
(cross validation on augmented train set)

400

300

200

100



Frequently overpredicts Tamil (tam) and Sundanese (sun)
Surprisingly, fails to predict English.

Shared task submission

Set	Accuracy	Micro Avg	Micro Avg
Valid.	43.6%	43.6%	42.1%
Test	29.9%	29.8%	28.2%

• Trained on an augmented set.

Conclusion & future work

- To address the task of language classification in speech samples, we implemented and explored a neural network model inspired by an idea of phoneme sequence recognition.
- Our experiments are yet in progress, still it is clear that the generalization across domains appears to be an extremely challenging problem.
- A hypothesis to explore: Phonetic generalization may be enforced by insertion of "bottlenecks" (layers with low output size).

