
SIGTYP 2022

The 4th Workshop on Computational Typology and
Multilingual NLP

Proceedings of the Workshop

July 14, 2022



The SIGTYP organizers gratefully acknowledge the support from the following
sponsors.

Supported By

ii



©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-93-3

iii



Introduction

SIGTYP 2022 is the fourth edition of the workshop for typology-related research and its integration into
multilingual Natural Language Processing (NLP). The workshop is co-located with the 2022 Annual
Conference of the North American Chapter of the Association for Computational Linguistics (NAACL
2022), which takes place in Seattle, Washington. This year our workshop features a shared task on
prediction of cognate reflexes.
The final program of SIGTYP contains 3 keynote talks, 5 shared task papers, 6 archival papers, and 4
extended abstracts. This workshop would not have been possible without the contribution of its program
committee, to whom we would like to express our gratitude. We should also thank Kristen Howell,
Isabel Papadimitriou, and Graham Neubig for kindly accepting our invitation as invited speakers. The
workshop is generously sponsored by Google. Please find more details on the SIGTYP 2022 website:
https://sigtyp.github.io/ws2022-sigtyp.html

iv



Organizing Committee

Workshop Organizers

Ekaterina Vylomova, The University of Melbourne
Hila Gonen, University of Washington
Jonas Pfeiffer, New York University
Edoardo Ponti, The University of Edinburgh
Alexey Sorokin, Moscow State University
Andrey Shcherbakov, The University of Melbourne
Sabrina Mielke, Johns Hopkins University
Gabriella Lapesa, University of Stuttgart
Harald Hammarström, Uppsala University
Pranav A, Dayta AI
Ryan Cotterell, ETH Zürich
Ritesh Kumar, Dr. Bhimrao Ambedkar University

v



Program Committee

Program Chairs

Johannes Bjerva, Aalborg University
Emily Ahn, University of Washington
Miriam Butt, University of Konstanz
John Mansfield, The University of Melbourne
Daan van Esch, Google AI
Elisabetta Ježek, University of Pavia
Paola Merlo, University of Geneva
Joakim Nivre, Uppsala University
Robert Östling, Stockholm University
Ivan Vulić, The University of Cambridge
Richard Sproat, Google Japan
Željko Agić, Corti
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Keynote Talk: Grammar Inference for Local Languages.
Leveraging Typology for Automatic Grammar Generation

Kristen Howell
University of Washington

Abstract: In this talk I will describe the benefit of implemented grammars as well as the challenges
involved in creating them. I present an inference system that can be used to automatically generate such
grammars on the basis of interlinear glossed text (IGT) corpra. The inference system, called BASIL –
Building Analyses from Syntactic Inference in Local Languages, leverages typologically informed heu-
ristics to infer syntactic and morphological information from linguistic corpora to select analyses that
model the language. We will engage with the question of whether and to what extent typological features
are apparent in IGT data and how effectively grammars generated with these features can model human
language.

Bio: Kristen Howell is a data scientist at LivePerson Inc. in Seattle, Washington. Her research interests
range from grammar engineering and grammar inference to conversational NLP. Throughout this resear-
ch, the common thread is multilingual NLP across typologically diverse languages. Kristen received her
PhD from the University of Washington in 2020, where she engaged with typological literature to deve-
lop technology for automatically generating grammars for local languages. Recent work at LivePerson
has focused on multilingual NLP, leveraging deep learning techniques for conversational AI.
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Keynote Talk: Graham Neubig’s Invited Talk
Graham Neubig

Carnegie Mellon University

Abstract: Will be announced later.

Bio: Graham is an associate professor at the Language Technologies Institute of Carnegie Mellon Uni-
versity. His research focuses on multilingual natural language processing, natural language interfaces to
computers, and machine learning methods for NLP, with the final goal of every person in the world being
able to communicate with each-other, and with computers in their own language. He also contributes
to making NLP research more accessible through open publishing of research papers, advanced NLP
course materials and video lectures, and open-source software, all of which are available on his web site.
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Keynote Talk: Learning from our Differences. How
Typologically Distinct Modalities of Data Help Demystify

Language Models
Isabel Papadimitriou

Stanford University

Abstract: Looking beyond a single language, or to non-linguistic forms of data, can yield new insigh-
ts into linguistic representation and use in language models. This talk will explore this theme in two
threads: Firstly, what can we learn from passing non-linguistic data through language models? From
natural modalities like music to controlled synthetic parentheses languages, we can use datasets with
different underlying structures to explore knowledge in language model transfer learning. Knowing the
structures in this data lets us understand if and how different features are acquired and generalized in
language model training. Secondly, we will look at how typologically-aware analysis can help us un-
derstand joint multilingual representation in language models, with experiments that focus on agenthood
and case in different languages in multilingual models. The typological diversity of agenthood gives us a
handle into understanding how representations can be shared and also separated between languages. Ex-
amining language models at the points where diverse data differs – and systematically knowing the ways
in which data differs – offers a useful window into how linguistic knowledge is represented in language
models.

Bio: Isabel is a PhD student at Stanford in the Natural Language Processing group, advised by Dan Ju-
rafsky. Her main research focuses on exploring the linguistic basis of computational language methods.
She likes to focus on how language is both a discrete symbolic system and a system of continuous grada-
tions, and exploring the limits of how large neural models can emcompass this combination. She is very
interested in looking at the behavior of large language models in multilingual settings, and analyizing
the ways in which languages and dialects co-occur and interfere in single models.

ix



Table of Contents

Multilingualism Encourages Recursion: a Transfer Study with mBERT
Andrea Gregor De Varda and Roberto Zamparelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Word-order Typology in Multilingual BERT: A Case Study in Subordinate-Clause Detection
Dmitry Nikolaev and Sebastian Pado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Typological Word Order Correlations with Logistic Brownian Motion
Kai Hartung, Gerhard Jäger, Sören Gröttrup and Munir Georges . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Cross-linguistic Comparison of Linguistic Feature Encoding in BERT Models for Typologically Diffe-
rent Languages

Yulia Otmakhova, Karin Verspoor and Jey Han Lau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Tweaking UD Annotations to Investigate the Placement of Determiners, Quantifiers and Numerals in
the Noun Phrase

Luigi Talamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Database for Modal Semantic Typology
Qingxia Guo, Nathaniel Imel and Shane Steinert-Threlkeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes
Johann-Mattis List, Ekaterina Vylomova, Robert Forkel, Nathan Hill and Ryan Cotterell . . . . . 52

Bayesian Phylogenetic Cognate Prediction
Gerhard Jäger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Mockingbird at the SIGTYP 2022 Shared Task: Two Types of Models forthe Prediction of Cognate
Reflexes

Christo Kirov, Richard Sproat and Alexander Gutkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Transformer Architecture for the Prediction of Cognate Reflexes
Giuseppe Celano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Approaching Reflex Predictions as a Classification Problem Using Extended Phonological Alignments
Tiago Tresoldi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Investigating Information-Theoretic Properties of the Typology of Spatial Demonstratives
Sihan Chen, Richard Futrell and Kyle Mahowald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

How Universal is Metonymy? Results from a Large-Scale Multilingual Analysis
Temuulen Khishigsuren, Gábor Bella, Thomas Brochhagen, Daariimaa Marav, Fausto Giunchiglia

and Khuyagbaatar Batsuren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

PaVeDa - Pavia Verbs Database: Challenges and Perspectives
Chiara Zanchi, Silvia Luraghi and Claudia Roberta Combei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ParaNames: A Massively Multilingual Entity Name Corpus
Jonne Sälevä and Constantine Lignos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



Program

Thursday, July 14, 2022

08:30 - 08:40 Opening Remarks

08:40 - 09:30 Grammar Inference for Local Languages: Leveraging Typology for Automatic
Grammar Generation (Keynote by Kristen Howell)

09:30 - 10:00 Multilingual Representations (Long Talks)

Multilingualism Encourages Recursion: a Transfer Study with mBERT
Andrea Gregor De Varda and Roberto Zamparelli

Cross-linguistic Comparison of Linguistic Feature Encoding in BERT Models for
Typologically Different Languages
Yulia Otmakhova, Karin Verspoor and Jey Han Lau

10:00 - 10:10 Break

10:10 - 11:10 Typology (Short Talks)

Word-order Typology in Multilingual BERT: A Case Study in Subordinate-Clause
Detection
Dmitry Nikolaev and Sebastian Pado

Investigating Information-Theoretic Properties of the Typology of Spatial
Demonstratives
Sihan Chen, Richard Futrell and Kyle Mahowald

Tweaking UD Annotations to Investigate the Placement of Determiners,
Quantifiers and Numerals in the Noun Phrase
Luigi Talamo

How Universal is Metonymy? Results from a Large-Scale Multilingual Analysis
Temuulen Khishigsuren, Gábor Bella, Thomas Brochhagen, Daariimaa Marav,
Fausto Giunchiglia and Khuyagbaatar Batsuren

Typological Word Order Correlations with Logistic Brownian Motion
Kai Hartung, Gerhard Jäger, Sören Gröttrup and Munir Georges

11:10 - 12:00 Graham Neubig’s Keynote Talk

xi



Thursday, July 14, 2022 (continued)

12:00 - 13:30 Lunch

13:30 - 14:50 Shared Task: Prediction of Cognate Reflexes

The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes
Johann-Mattis List, Ekaterina Vylomova, Robert Forkel, Nathan Hill and Ryan
Cotterell

Bayesian Phylogenetic Cognate Prediction
Gerhard Jäger

Mockingbird at the SIGTYP 2022 Shared Task: Two Types of Models forthe
Prediction of Cognate Reflexes
Christo Kirov, Richard Sproat and Alexander Gutkin

A Transformer Architecture for the Prediction of Cognate Reflexes
Giuseppe Celano

Approaching Reflex Predictions as a Classification Problem Using Extended
Phonological Alignments
Tiago Tresoldi

14:50 - 15:20 Linguistic Trivia

15:20 - 15:30 Break

15:30 - 16:20 Learning from our Differences: How Typologically Distinct Modalities of Data
Help Demystify Language Models (Keynote by Isabel Papadimitriou)

16:20 - 17:00 Databases and Corpora

A Database for Modal Semantic Typology
Qingxia Guo, Nathaniel Imel and Shane Steinert-Threlkeld

PaVeDa - Pavia Verbs Database: Challenges and Perspectives
Chiara Zanchi, Silvia Luraghi and Claudia Roberta Combei

xii



Thursday, July 14, 2022 (continued)

ParaNames: A Massively Multilingual Entity Name Corpus
Jonne Sälevä and Constantine Lignos

17:00 - 17:10 Best Paper Awards, Closing

xiii



Proceedings of the 4th Workshop on Computational Typology and Multilingual NLP (SIGTYP 2022), pages 1 - 10
July 14, 2022 ©2022 Association for Computational Linguistics

Multilingualism Encourages Recursion: a Transfer Study with mBERT

Andrea Gregor de Varda
University of Milano-Bicocca

a.devarda@campus.unimib.it

Roberto Zamparelli
CIMeC – University of Trento

roberto.zamparelli@unitn.it

Abstract

The present work constitutes an attempt to
investigate the relational structures learnt by
mBERT, a multilingual transformer-based net-
work, with respect to different cross-linguistic
regularities proposed in the fields of theoret-
ical and quantitative linguistics. We pursued
this objective by relying on a zero-shot transfer
experiment, evaluating the model’s ability to
generalize its native task to artificial languages
that could either respect or violate some pro-
posed language universal, and comparing its
performance to the output of BERT, a monolin-
gual model with an identical configuration. We
created four artificial corpora through a Prob-
abilistic Context-Free Grammar by manipulat-
ing the distribution of tokens and the structure
of their dependency relations. We showed that
while both models were favoured by a Zipfian
distribution of the tokens and by the presence of
head-dependency type structures, the multilin-
gual transformer network exhibited a stronger
reliance on hierarchical cues compared to its
monolingual counterpart.

1 Introduction

Massively Multilingual Models (MMMs) are neu-
ral networks that can perform a NLP task in mul-
tiple languages, relying on a shared set of param-
eters. At the time of writing, the state-of-the-art
performance of MMMs is achieved by transformer-
based models such as multilingual BERT (mBERT,
Devlin et al., 2019), XLM (Conneau and Lample,
2019), and XLM-R (Conneau et al., 2020a). They
are usually derived from monolingual language
models, trained simultaneously on multilingual text
in up 104 languages without major architectural
changes nor any reliance on explicit cross-lingual
signal. The practical need for MMMs in NLP is
undisputed: they drastically reduce resource and
maintenance requirements with respect to multiple
monolingual models, and benefit in particular low-
and mid-resource languages (Dufter and Schütze,

2020). MMMs reach impressive performance lev-
els in zero-shot cross-lingual transfer, enabling the
fine-tuning of a model on supervised data in a set of
N languages {Li}i= 1 . . . N and its application to a dif-
ferent language LN+1, with no additional training1.
Zero-shot cross-lingual transfer has been shown
to be effective across a variety of tasks and lan-
guages (Dufter and Schütze, 2020; Liu et al., 2020;
Pires et al., 2019; Wu and Dredze, 2019; see Dod-
dapaneni et al., 2021 for a review), and, although
performance levels tend to be higher for typologi-
cally similar languages, it yields surprising results
in languages written in different scripts (Pires et al.,
2019) and with little (Karthikeyan et al., 2020) or
no (Conneau et al., 2020b; Wang et al., 2019) vo-
cabulary overlap. The distribution of resources
available for NLP researchers in the world’s lan-
guages is extremely skewed, with only a small sub-
set of them being represented in the evolving lan-
guage technologies (Joshi et al., 2020). MMMs
constitute an attempt to mitigate the effects of this
uneven allocation of resources by leveraging the
knowledge that can be shared across languages.

Besides the obvious practical advantages that
MMMs can bring to the NLP community, the na-
ture of the cross-linguistic information extracted
by these models is of high theoretical interest from
a linguistic standpoint, and can contribute to the
domain of artificial intelligence research in rele-
vant subfields such as representation learning and
interpretability. A modest but growing body of
findings suggests that the structure of the represen-
tation space that MMMs exploit is multilingual in
nature (Pires et al., 2019; Wu and Dredze, 2019;
Hu et al., 2020; Liu et al., 2020; although see
Dhar and Bisazza, 2021 for opposite conclusions).
For instance, syntactic trees can be retrieved from
mBERT’s intermediate representational subspaces,
with these subspaces being approximately shared

1{Li}i= 1 . . . N and LN+1 are typically resource-rich and
resource-poor languages, respectively.
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across languages (Liu et al., 2020). If MMMs
learn universal patterns which generalize across
languages, the structure of the representations they
induce could inform us of the presence of latent reg-
ularities in different language spaces. Furthermore,
the benefits of the study of the MMMs’ behaviour
extend to the domain of representation learning,
a subfield of AI research focusing on the devel-
opment of computational representations and the
analysis of their properties (Bengio et al., 2013).
While the present study will not analyze the inter-
nal states of the networks, it will be possible to
draw conclusions on the generality of their learned
representations through non-parametric probing, by
directly examining their behaviour in response to
non-linguistic input. More precisely, we will com-
pare the suitability of the representational formats
induced by mono- and multilingual models with re-
spect to different properties that are desirable from
a linguistic perspective.

The present work aims to analyze the generaliza-
tions that BERT and mBERT induced from natural
language data in a set of transfer learning experi-
ments. The use of transfer learning methods to shed
light on the relational structures learned by neural
networks has been recently adopted for monolin-
gual models (Papadimitriou and Jurafsky, 2020).
Here, we extended the transfer approach to a mul-
tilingual setting, and compare the performance of
mBERT and its monolingual counterpart in gen-
eralizing their native task (i.e. masked language
modelling) to artificial languages that display dif-
ferent degrees of structural similarity with natural
languages. We wish to highlight three main differ-
ences between our paradigm and the methodologies
Papadimitriou and Jurafsky proposed.

1. Cross-lingualism. The most significant con-
tribution of our study consists of the transposi-
tion of Papadimitriou and Jurafsky’s paradigm
to a multilingual setting.

2. Direction of the transfer. Papadimitriou and
Jurafsky (2020) evaluated the performances
of several LSTM models trained on non-
linguistic data and transferred zero-shot to a
natural language corpus in Spanish. We in-
vert the direction of the transfer, testing the
pre-trained multilingual model on artificial
corpora derived from formal grammars. This
choice is desirable for three reasons: first, it
allows to test the model once for each exper-

imental condition, and not in different lan-
guages. Second, it frees us from the need to
train several models – one for each artificial
corpus – since we can leverage one single mul-
tilingual pre-training. Third, it lets us draw
conclusions on the structural generalizations
which have been directly induced from natu-
ral language data. In the other direction, the
models could have extracted helpful general-
izations from the artificial dataset which might
still not have been visible when looking at nat-
ural language alone.

3. Neural architecture. Papadimitriou and Ju-
rafsky (2020) have employed LSTM models
for all their experiments; however, transform-
ers are gaining increasing popularity in NLP
research and applications, and achieve state-
of-the-art results across different downstream
tasks. Most MMMs are built as transformer ar-
chitectures, and mBERT is an instance of this
class. Hence, our study can be informative
also in terms of model comparison. Note that
moving to a bidirectional transformer requires
a different approach to calculating sequence-
level performance, one which eliminates the
randomness from the masking process. Our
approach, which we name iterative token-level
cloze task (ITCT) is detailed in Section 2.

Our experiment focused on the Zipf’s law and
hierarchy, which have been considered as universal
linguistic features (Zipf, 1935; Chomsky, 1957).
We evaluated the transfer performances of the two
transformers in four corpora, characterized by in-
creasing statistical and structural consistency with
natural languages. The models were tested on (a)
a RANDOM corpus, composed by sequences of to-
kens sampled from a uniform distribution, (b) a
ZIPFIAN corpus, where the tokens were extracted
from a Zipfian distribution, (c) a FLAT BRACK-
ETS corpus, composed of sequences of matching
parentheses with crossed dependencies, and (d) a
NESTED BRACKETS corpus, consisting of paired
symbols nested hierarchically. To anticipate the
results, we found that both models showed higher
performance scores in the ZIPFIAN compared to
the RANDOM condition, and in the FLAT BRACK-
ETS as opposed to the ZIPFIAN corpus, while only
the multilingual model showed a significant per-
formance advantage in the comparison between
the FLAT BRACKETS and the NESTED BRACKETS

2



corpora. We conclude that while mathematical reg-
ularities and pairwise head-dependent relationships
are detected across model types, the multilingual
input favours the reliance on structural cues, and
specifically on balanced constituent structures, a
hallmark of theoretical linguistic formalisms.

2 Methods

As a testing procedure, we froze all mBERT’s
weights setting it in evaluation mode, and assessed
its structural knowledge by studying its predictive
ability. To do so, we employed a non-parametric
evaluation procedure, which we named iterative
token-level cloze task (ITCT). The ITCT consists
of an adaptation of mBERT’s native functionality,
i.e. masked language modelling (MLM). The main
difference consists in the fact that while in MLM
the model has to predict the tokens correspond-
ing to the masks applied to a randomly selected
subpart of the input (15% of the tokens in the sen-
tence), in the ITCT all the tokens are masked itera-
tively. This mitigates the aleatory dimension in the
selection of the tokens that are masked, and pro-
vides an index of the predictability of a sequence,
where each token has to be predicted by the model
given the whole remaining context. After freezing
its weights2, at the first timestep t0 the model is
presented with the input sequence where the first
token is masked, i.e. substituted with a mask to-
ken, and two special characters – [CLS] and [SEP]
– are appended to the beginning and the end of
the sequence, to mark the sequence boundaries.
The model then predicts the original token relying
upon the right context, and the hidden vector cor-
responding to the masked token is passed through
a softmax over the vocabulary, in order to assign
it a probability. At t1, the mask is moved from
the first to the second token, and now mBERT’s
prediction is conditioned by both the right and the
left contexts. The process is repeated until the end
of the sequence, with the number of timesteps N
being equal to the length of the tokenized input
(see Figure 1). The mean probability assigned to
the masked tokens across all the timesteps is taken
as an index of the overall predictability of the se-
quence. Note that a proper sequence probability

2Freezing the model’s weights is a necessary condition
for this approach, since if this procedure was implemented
during training, the model trying to predict the target token at
t1 would have already seen it at t0; at the end of the sequence,
the prediction would be highly facilitated from having seen
N-1 times the target token in the same context.

metric would require a multiplicative chain rule
of the kind that is applicable for auto-regressive
models but not for masked language models. The
notion of average probability does not correspond
to any well-defined notion in probability theory, but
it serves the purpose of comparing different struc-
tural configurations in the context of our study3.
The predictions of mBERT were compared with
the ones produced by its monolingual counterpart;
this comparison provides a crucial element for dis-
tinguishing which generalizations are driven by the
multilingual input, and which can be extracted by
the same model from monolingual data.

t0 [MASK] should buy a car

t1 John [MASK] buy a car

t2 John should [MASK] a car

t3 John should buy [MASK] car

t4 John should buy a [MASK]

Figure 1: Unfolding of the iterative token-level cloze
task for every timestep t in a sample sentence.

3 Data

The corpora on which our analyses were performed
were created in a way such that the sequence length
varied within each condition, but was identical
across all conditions, both in terms of the number of
sequences and of the number of tokens within each
sequence; they all shared a 50,000 three-letter to-
kens vocabulary. These design choices were made
in order to license pairwise comparisons at the se-
quence level, so that the difference in probability
assigned by the models to a given item of a corpus
could be compared with the probability assigned to
the corresponding item in the other datasets. This
approach allowed us to rule out the effects of inter-
vening variables such as vocabulary and length, so
that the differences in the models’ predictions could
be driven only by structural differences between
the corpora. The models were tested on 1,000 se-
quences in each corpus; within each condition, the
mean sequence length was 9.90, with a standard
deviation equal to 14.74.

3.1 Nested brackets
A NESTED BRACKETS corpus consisting of se-
quences of nested matching symbols was created

3We thank Reviewer pYcV for bringing this issue to our
attention.
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to test the transfer performance of mBERT on hi-
erarchical structures. The corpus was built from a
vocabulary of 50,000 three-letter tokens, obtained
from random combinations of Latin characters.
The tokens were assembled into nested structures
through the application of probabilistic rules, de-
fined by a Probabilistic Context-Free Grammar
(PCFG). The grammar was composed by a set of
recursive rules of the form in (1):

(1) S→ toki S toki S [P1]

Where S denotes the start symbol, toki a given
terminal symbol sampled from the vocabulary, and
P1 the probability assigned to the application of
the rule. Rules of this form are said to be recur-
sive since the same non-terminal symbol S appears
on both sides of the formula, which enables it to
be reapplied to its own output. The rule in (1)
allows for both right and central recursion, since
the non-terminal symbol S is rewritten into itself
both within a pair of terminal symbols and in the
rightmost part of the formula. The probabilities in
P1 followed a Zipfian distribution, so that the ter-
minal symbols were distributed accordingly in the
corpus; their distribution summed up to 0.4. This
set of rules was complemented by the rule in (2),
where the start symbol was rewritten into the empty
string ε. The probability assigned to this rule was
higher than the sum of all the previous rules, in or-
der to contain the growth of the tree depth. Empty
sequences were removed from the corpus.

(2) S→ ε [0.6]

The most prominent feature of the sequences
generated by this grammar is that the pairwise de-
pendency arcs instantiated between tokens never
cross (see Figure 2). In other words, the pairing
between tokens can only be nested hierarchically
within the overlying dependency relations. This
condition is equivalent with respect to this property
to the nested parentheses corpus created by Pa-
padimitriou and Jurafsky (2020), although in their
work they created the structured sequences with
a stack-based grammar, designed to either open
a new bracket or close the last one that had been
opened at each timestep.

3.2 Flat brackets

A FLAT BRACKETS corpus was created in order to
isolate the effects of non-nested dependency pair-
ing from the presence of hierarchical structures

ABC BCA BAC BAC BCA CAB CAB ABC

Figure 2: Example of a NESTED BRACKETS sequence.

in the transfer performances. The corpus was de-
rived by randomly shuffling the tokens of each item
of the NESTED BRACKETS corpus, a process that
creates structures where the dependencies do not
necessarily nest, and the pairing arcs instantiated
within an entry may cross (see Figure 3). Differ-
ently from Papadimitriou and Jurafsky (2020), who
created a novel corpus for this condition without
any reference to the hierarchical one, we adopted
a procedure that kept constant the length of the
sequences, and the identity of the tokens within
them. We maintain that our methodology licences
more meaningful comparisons between the two cor-
pora, since the only difference between them is the
hierarchical property of recursive nesting.

ABC BCA ABC CAB BAC BCA BAC CAB

Figure 3: Example of a FLAT BRACKETS sequence.

3.3 Zipf’s corpus

The ZIPF’S CORPUS was created in order to eval-
uate whether BERT and mBERT’s performances
were affected by the mathematical distribution of
the token frequencies in the corpus. The sequences
were constructed so that their length had to coin-
cide with the one of the corresponding entry in
the previous corpora. For each item in the NESTED

BRACKETS corpus, we sampled a number of tokens
coinciding with its length from a Zipf’s distribu-
tion, and conjoined them to form a sequence of
tokens. In the creation of this corpus no depen-
dency relation was explicitly encoded. We remark
that this corpus is similar to the FLAT BRACKETS

corpus, with the only difference that the tokens are
not repeated twice within each sequence, and so
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Model

BERT mBERT

Corpus Zipf Pairing Nesting Mean SD Mean SD

Random corpus 0.0121 0.0137 0.0094 0.0135
Zipf’s corpus 0.0253 0.0457 0.0250 0.0525
Flat brackets 0.6784 0.1780 0.6353 0.1558
Nested brackets 0.6576 0.1677 0.6417 0.1536

Table 1: Featural summary of the structural and mathematical properties of the four corpora, and descriptive statistics
of the results of the transfer. The best performances for each model are highlighted in bold.

there are no structural correspondences between
tokens.

3.4 Random corpus

In order to define a baseline for the evaluation of
the networks’ predictions, we constructed a RAN-
DOM CORPUS where the tokens composing the
sequences were sampled from a uniform distribu-
tion. As for the ZIPF’S CORPUS, the length of each
sequence matched the length of the corresponding
entry in the other corpora.

4 Models and experimental setup

All our experiments were performed employing
BERT’s native masked language modelling com-
ponent. The configuration of the model was left
unaltered with respect to Devlin et al.’s (2019) re-
lease. In particular, we relied on the monolingual
and multilingual models derived from BERTBASE,
which is composed of 12 layers, 12 self-attention
heads, and a hidden size of 768; the overall network
comprises 110M parameters. The networks did not
undergo any fine-tuning nor adaptation process, as
they were employed as out-of-the-box masked lan-
guage models. As mentioned above, BERT and
mBERT only differ in their vocabulary and the
weights learned during training, sharing an iden-
tical configuration both in terms of architectural
choices and learning objectives. While BERT was
pre-trained on 800M words of the monolingual
BooksCorpus (Zhu et al., 2015) and 2,500 words
of the English Wikipedia, mBERT was trained on
the entire Wikipedia dump of 104 languages. The
two models rely on different tokenizers, each com-
prising a separate WordPiece vocabulary (Wu et al.,
2016). The different tokenizations of the input se-
quences do not allow us to directly compare the raw
probabilities assigned by the two models to a given
sequence; for this reason, we will not consider

the absolute item-wise difference in the models’
predictive performance, but rather the pattern of
results between the experimental conditions. This
comparative approach is also needed in light of
the models’ vocabulary. If we simply compared
probabilities across models and conditions, our re-
sults might be biased by the fact that some of the
three-letter tokens might be assigned different prob-
abilities depending on whether they form English
meaning-bearing vocabulary items (e.g. “for”) or
not (e.g. “zyi”). However, since we only compare
conditions within models, and the two conditions
of main interest (i.e. FLAT and NESTED BRACK-
ETS) are composed by the same tokens in different
arrangements, our contrasts are robust with respect
to this possible confound.

5 Results

Table 1 reports the mean and the standard deviation
of the average probabilities assigned by BERT and
mBERT to the token sequences in the four corpora
considered in the study, along with a schematic
summary of the structural features characterizing
each corpus. In line with our expectations, both
models assigned on average higher probabilities to
the correct tokens in the ZIPF’S CORPUS than in
the RANDOM CORPUS, despite a low absolute dif-
ference in the scores (0.0132 for the monolingual
and 0.0156 for the multilingual model). The sub-
stantial increase in performance was obtained with
the transition from the ZIPF’S CORPUS to the FLAT

BRACKETS corpus, with an average improvement
of 0.6531 for BERT and 0.6103 for mBERT in the
metric. Interestingly, the two networks started di-
verging in their behaviour with the subsequent step
of the structural hierarchy. While the target tokens
of the recursive structures in the NESTED BRACK-
ETS corpus were associated with higher probabili-
ties by the multilingual model, monolingual BERT
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Model

BERT mBERT

Corpus 1 Corpus 2 t p d t p d

Random corpus Zipf’s corpus 8.9740 ≪ .001 0.3918 9.2296 ≪ .001 0.4069
Zipf’s corpus Flat brackets 116.9351 ≪ .001 5.0255 117.4448 ≪ .001 5.2476
Flat brackets Nested brackets -12.7494 ≪ .001 -0.1205 3.2662 0.0011 0.0415

Table 2: Pairwise comparisons of the results of the transfer to the four corpora. The comparisons are made
exclusively between the corpora that are adjacent in the hierarchy of structuredness. The reported p-values are
uncorrected, but all the contrasts remain significant when a Bonferroni correction is applied to the α threshold
(0.05/3 = 0.0166).

showed no facilitation induced by the presence of
nested dependencies. On the contrary, the best
performing condition for monolingual BERT was
the transfer to the FLAT BRACKETS corpus. While
mBERT’s results reflected a positive association
with the hierarchy of levels of structure that char-
acterizes our four corpora, its monolingual coun-
terpart showed an inverted trend in the last two
conditions.

We tested the statistical significance of this dis-
sociation through a set of paired samples t-tests
between the mean probability assigned by the mod-
els to the sequences of two corpora. We performed
the tests only on the pairs of corpora that were ad-
jacent in the structural hierarchy; this choice led
us to three comparisons which we summarized in
Table 2. The first two columns of the table specify
the two conditions being contrasted; the following
three columns report the t statistic, the associated p-
value, and Cohen’s d as a measure of the effect size
for BERT; the last three columns indicate the same
statistical indexes for mBERT. As can be evinced
by the table, the first two contrasts (RANDOM COR-
PUS-ZIPF’S CORPUS and ZIPF’S CORPUS-FLAT

BRACKETS) are highly significant for both models,
with an increment in performance attested by the
positive sign of the t and d statistics. The effect size
associated with the comparisons is modest in the
first case and extremely high in the second, with
no considerable differences between the models.
Nonetheless, as shown in the third row of the table,
the pairwise contrast between the FLAT BRACK-
ETS corpus and the NESTED BRACKETS corpus
supports the observation of a dissociation between
the results of BERT and mBERT. Indeed, while
for both models the performance in the NESTED

BRACKETS and the FLAT BRACKETS corpus is sig-
nificantly different, the direction of such difference
is the opposite, as shown by the sign of the t statis-

tic and the Cohen’s d. While the effect sizes as-
sociated with such contrasts are negligible, both
dissociations are statistically significant.

6 Discussion

In discussing the present findings, we begin by
focusing on the commonalities in the networks’
output, and conclude by commenting on the dis-
sociation in their results on the two corpora with
token pairing. First, both models showed a pref-
erence for sequences where the mathematical dis-
tribution of the tokens resembled their empirical
distribution in natural languages. We believe that
the higher average predictability that characterized
the ZIPF’S CORPUS when compared with the RAN-
DOM CORPUS reflects a tendency of the networks
to expect a non-uniform distribution of the tokens
in input that is coherent with the data on which the
pre-training had been performed. Then, we main-
tain that the substantial gain in performance on the
FLAT BRACKET corpus is to be attributed to the
paired correspondences between tokens, which in
turn might mimic head-dependency type structures
in natural language corpora. Arguably, the most
surprising result that we obtained is the dissociation
between BERT and mBERT’s results in the transfer
to the two corpora characterized by token pairing.
While the multilingual model was facilitated in its
native task by the presence of nested structures –
although with a minimal effect size –, the same im-
provement in performance is not found in its mono-
lingual counterpart. On the contrary, the strongest
transfer performance is achieved by BERT in the
FLAT BRACKETS corpus. These results suggest
that the presence of multiple languages in the in-
put during pre-training leads the models to rely on
more structured grammatical abstractions. Obvi-
ously, this finding does not imply that mBERT does
not capture the paired relationships with crossing
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arcs; the biggest progress is undoubtedly obtained
when these simpler one-to-one correspondences are
included in the input. Nonetheless, it seems that
when more complex structures are instantiated be-
tween the tokens in the sequences, the multilingual
model is able to capture these configurational regu-
larities, and exploit them in order to make stronger
predictions regarding the masked input. This differ-
ence should be attributed to the nature of the input
that the networks had been presented with during
pre-training, since under every other aspect except
vocabulary and training set size (e.g. architectures,
training regimes, objective functions) the models
were identical.

6.1 Follow-up analyses

While the results of mBERT can be given a straight-
forward interpretation, the fact that the mono-
lingual model showed a preference for the non-
recursive corpus needs to be explained. Indeed,
if its results had been exclusively driven by the
absence of a hierarchical bias, we would have ex-
pected no significant difference between its perfor-
mance scores in the transfer on the two corpora
characterized by token pairing. What we found
was instead a clear, significant preference for the
FLAT BRACKETS corpus, that cannot be explained
in terms of sequence length or identity of the to-
kens, since all these low-level factors were main-
tained unaltered in the two corpora (see Section
3). Without any clear a priori expectation on the
factors that might have driven this effect, we in-
spected the ninety-ninth percentile of the sequences
that showed the highest difference between the
probability assigned by BERT to the flat and the
nested structures. In other words, we computed
the difference of the ITCT scores assigned by the
model to the nested and the corresponding flat se-
quences (henceforth Δ score), and selected the
first 10 sequences after ranking them in descending
order. We remind the reader that the sequences
in the two conditions comprised the same tokens,
assembled hierarchically and projectively in the
NESTED SEQUENCES corpus, and randomly shuf-
fled in the FLAT SEQUENCES corpus. The most
salient property of the items with the highest Δ
score that we derived was that 80% of them were
four-token sequences, with the form abab in the
FLAT BRACKETS condition and either aabb or abba
in the NESTED BRACKETS condition. We reasoned
that a property that distinguishes these three classes

of sequences is the presence of identical adjacent
tokens, which characterizes both forms of the FLAT

BRACKETS corpus, but not the abab sequence in
the NESTED BRACKETS condition. We speculate
that the models – and in particular the monolingual
one – might not expect the same token to appear in
two immediately adjacent positions within a given
sentence, and that this tendency might have driven
the higher performance scores of the monolingual
model on the FLAT BRACKETS corpus. For this hy-
pothesis to have a plausible theoretical ground, we
needed to assess whether the contiguous repetition
of identical tokens is indeed a rare phenomenon
in natural language. While it is well known that
lexical repetition is common at the discourse level –
words that have entered the discourse have a higher
reuse probability than lexical frequency (Heller
et al., 2010) –, the probability of reoccurrence of
the same token in two contiguous positions has not
been assessed through corpus studies. To do so,
we counted the number of such instances of repe-
tition in four corpora of 1M tokens, derived from
Wikipedia dumps in three languages (English, Chi-
nese, and Finnish) belonging to three different lan-
guage families (Indoeuropean, Sino-Tibetan, and
Uralic). We tokenized each corpus with mBERT’s
WordPiece tokenizer, removed punctuation and un-
known characters, and counted the number of oc-
currences of a given token at index i and i+1. Per-
haps surprisingly, we found that in two out of three
corpora the probability of having the same token
k at index i and i+1 was lower than chance (i.e.,
lower than the probability of having a random token
sampled from the corpus’ vocabulary; see Table 3).
These results support the idea that the juxtaposition
of identical tokens is indeed an unusual occurrence
in natural language.

Once we verified the low frequency of identi-
cal adjacent tokens in three natural languages, we
needed to evaluate whether subsequences of this
kind had an actual effect on the models’ predic-
tions. In order to test this hypothesis, we ran four
linear regression models (one for each considered
corpus × model combination) with the score as-
signed to each sequence as a dependent variable,
and the amount of identical adjacent tokens as a
predictor. More precisely, we employed as indepen-
dent variable the ratio of token reoccurrences over
the total amount of token pairs in the sequence.4

4We chose not to employ the raw amount of adjacent pairs
as a regressor in order to mitigate the effects of sequence
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Language Family Repetitions Vocabulary P repetitions P random

English Indoeuropean 19 24,443 1.9-5 4.1-5

Chinese Sino-Tibetan 1,891 9,604 1.8-3 1.0 -4

Finnish Uralic 21 17,546 2.1-5 5.7-5

Table 3: Probability of adjacent tokens repetitions and chance level sampling. The probability of the repetitions
was computed by dividing the raw count of the repetitions by the number of tokens in the corpus (1M), while the
probability of sampling a random token from the vocabulary was obtained dividing 1 by the word types in the
corpus.

In line with our expectations, we found a nega-
tive, highly significant effect of the ratio of reoccur-
rences on BERT’s scores in the FLAT BRACKETS

condition (B = -0.1958, t = -16.098, p≪ 0.001, R2

= 0.206). A similar pattern of results was found
in the NESTED condition (B = -0.1667, t = -7.949,
p≪ 0.001), although the model explained a lim-
ited amount of variance (R2 = 0.06). Crucially, we
found no significant effect of the adjacent pairs ra-
tio on the results of the multilingual model neither
in the FLAT BRACKETS (B = -0.0214, t = 1.795, p
= 0.073, R2 = 0.003) nor in the NESTED BRACK-
ETS condition (B = 0.0312, t = 1.577, p = 0.115,
R2 = 0.002). These results corroborate our previ-
ous suspicion concerning the different performance
patterns of the two transformers models. More pre-
cisely, they suggest that for the monolingual model,
local heuristics relying on linear order prevail, hid-
ing to the model the structural cues that are instan-
tiated in the nested brackets corpus. Conversely,
the cross-lingual model seems to be able to rely
on more abstract structural features and to exploit
them in its predictive behaviour, while not being in-
fluenced by shallow linguistic factors such as token
repetition.

7 Conclusion

The mathematical regularities of the pre-training
input seemed to have been absorbed to the same ex-
tent by the monolingual and the multilingual trans-
former models, since the ZIPF’S CORPUS exerted
a similar facilitation effect with respect to the RAN-
DOM CORPUS across model types. Furthermore, to-
ken pairing appears to have elicited a much stronger
advantage in the predictive task we employed in
our study, suggesting that regardless of the mono-
or multilingual nature of the input the pre-training
procedure had induced a strong structural transfer
towards non-hierarchical and non-projective struc-
tures. We agree with Papadimitriou and Jurafsky’s

length.

(2020) conclusion that this facilitation emphasizes
the importance of pairing, head-dependency type
structures in the linguistic embeddings of neural
language models. In addition, our results extend the
previous findings to the generalizations employed
by pre-trained transformer models, and validate the
methodological choice of inverting the direction of
the transfer. More importantly, the difference in
BERT and mBERT’s performances when recursion
is implemented in the data suggests that the high
surface inconsistency of the input the multilingual
model is exposed to during pre-training promotes
stronger structural generalizations. This finding
directly answers a question raised in the Introduc-
tion, concerning the relevance of this study with re-
spect to the domain of representation learning. We
noted that the comparison between mono- and mul-
tilingual models on linguistic and non-linguistic
tasks could have allowed us to draw conclusions
on the aptness of their induced representational
formats with respect to different properties that
are desirable from a linguistic perspective. While
the behaviour of the monolingual model seems to
be influenced by other non-structural congruences
with the pre-training input (such as the presence of
adjacent paired tokens), this experiment suggests
that multilingual representations are more deeply
aligned with the structures posited in theoretical
linguistics, showing a hierarchical bias when trans-
ferred zero-shot to non-linguistic input.

8 Limitations and further directions

While our results provide empirical evidence for a
higher structural awareness in mBERT as opposed
to BERT, the generalizability of our findings to nat-
ural language is yet to be assessed. In the present
paper we employed artificial languages in order to
maximize the experimental control over the input;
we leave to future research an evaluation of the
structural biases operating in mono- and multilin-
gual models in a more naturalistic setting.
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Abstract

The capabilities and limitations of BERT and
similar models are still unclear when it comes
to learning syntactic abstractions, in particu-
lar across languages. In this paper, we use
the task of subordinate-clause detection within
and across languages to probe these properties.
We show that this task is deceptively simple,
with easy gains offset by a long tail of harder
cases, and that BERT’s zero-shot performance
is dominated by word-order effects, mirroring
the SVO/VSO/SOV typology.

1 Introduction

Analysing the ability of pre-trained neural language
models, such as BERT (Devlin et al., 2019), to ab-
stract grammatical patterns from raw texts has be-
come a prominent research question (Jawahar et al.,
2019; Rogers et al., 2020). Results remain mixed.
While BERT-based models have been shown to
learn syntactic representations that are similarly
structured across languages (Chi et al., 2020), some
grammatical patterns, such as discontinuous con-
stituents, remain challenging for them even when
training data is plentiful (Kogkalidis and Winholds,
2022). In practical terms, zero-shot performance
of BERT-based models is lower for typologically
distant languages (Pires et al., 2019), and they can
profit from direct exposure to typological features
during fine-tuning (Bjerva and Augenstein, 2021).

In this study, we add another datapoint to the con-
versation by analysing the ability of BERT-based
models to capture the distinction between main
and subordinate clauses across languages. This
task is promising for two reasons. First, it high-
lights variability in the way main and subordinate
clauses are structured across languages, thus act-
ing as an informative probe into the relationship
between BERT and typological categories. Sec-
ond, the task is arguably relevant for downstream
performance on natural-language understanding,

where (some notion of) syntactic scope and compo-
sitionality should support tasks such as analysing
commitment (Jiang and de Marneffe, 2019; Zhang
and de Marneffe, 2021) or factuality (Lotan et al.,
2013), text simplification (Sikka and Mago, 2020),
or paraphrase detection (Timmer et al., 2021). In
order to operationalise it in a cross-lingual fash-
ion, we use the Universal Dependencies framework
(UD; Nivre et al., 2020) with its large multilingual
collection of corpora.

Our analysis proceeds in two stages. First, we
survey the performance of BERT models fine-tuned
and tested on the same language across 20 typo-
logically diverse languages (§ 3). For the majority
of languages, distinguishing main and subordinate
clauses is easily solved with base-size models and
relatively small training sets. However, some lan-
guages demonstrate a non-negligible number of
errors, which we analyse.

Then we study the performance of Multilingual
BERT (mBERT) in a zero-shot setting (§ 4), where
we fine-tune the model on labeled data in 10 differ-
ent languages and then test its performance on 31
datasets representing 27 different languages. We
find that the performance of mBERT is dominated
by word-order effects well known from the typo-
logical literature (Comrie, 1981): the Arabic model
shows best-in-class performance on Irish, and the
Japanese model has best-in-class performance on
Korean, while both have poor performance overall.
European languages with large training sets pro-
vide good inductive bias for typologically diverse
languages but fail on SOV languages.

2 Experimental Setup

Data To make our analysis maximally compa-
rable across languages, we start from the Parallel
Universal Dependencies (PUD) collection (Zeman
et al., 2017), which contains translations for a set
of 1000 English sentences. PUD only contains
test corpora. As these are too small to be further
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Language Mandarin Vietnamese Korean Arabic Hindi German Armenian Turkish Welsh Indonesian
Accuracy 88.7 90 90.4 91.2 93.6 94.1 94.3 95.1 95.6 96

Language Basque Spanish Irish English Hebrew Afrikaans French Japanese Czech Russian
Accuracy 96.9 97.1 97.4 97.9 98.2 98.8 99 99.1 99.6 99.7

Table 1: Performance of single-language models.

split into train/test subsets, we use other corpora to
fine-tune the models. We also add corpora for lan-
guages not covered by PUD for better typological
coverage. See Appendix § A.2 for the full list.

Model The experimental setup is identical in
the single-language and zero-shot settings. A pre-
trained mBERT model (a variant of bert-base)
and several pre-trained single-language BERT mod-
els, all provided by HuggingFace (Wolf et al.,
2020), are fine-tuned on the binary classification of
predicates into main vs. subordinate clauses. We
operationalize main clauses as those headed by
predicates with the UD label root and subordi-
nate clauses through the UD labels acl, ccomp,
advcl, csubj, and xcomp. The last hidden state
of the embedding model for the first subword of
each predicate is fed to a two-layer MLP with a
tanh activation after the first layer, and the model is
fine-tuned using cross-entropy loss. For the single-
language setup, the model is fine-tuned for five
epochs, and we report the best result on the vali-
dation set. Most models begin overfitting after the
second epoch, so in the zero-shot setting all models
are fine-tuned for two epochs.

3 Single-Language Models

The main results obtained by the models fine-tuned
and tested on the same language are shown in Ta-
ble 1. Results are above 90% for almost all lan-
guages, while a majority baseline (always assign
subordinate clause) attains an accuracy of 50–70%
depending on the language. (Table 3 in the Ap-
pendix provides more details about the models
and corpora, including exact baseline results.) At
first glance, neither the size of the training set nor
the size of the model seem to be a major factor:
mBERT demonstrates better performance when
fine-tuned on the small Afrikaans and Hebrew
datasets than when trained on a bigger Chinese
dataset. When fine-tuned on the English data, it
attains the same performance as an English-only
bert-large.1

1The mBERT result is reported in Table 2.

A more fundamental distinction seems to exist
between major European languages, the results on
which are generally at > 97% accuracy (except for
German), and Mandarin Chinese, Vietnamese, and
Korean where results are around 90%. Our analy-
sis indicates that these differences are partly due
to discrepancies in UD annotations across corpora
but also due to genuine syntactic differences. An
example of an annotation-related confound is the
treatment of quotations. The PUD corpora that we
use preferentially as test sets treat quotations as
sentential complements of communication verbs.
Some of the corpora we use for fine-tuning, how-
ever, analyse the cases where quotation precedes
the verb of speech as parataxis. The head predi-
cate of the quotation therefore receives the label
root and becomes the main predicate of the whole
sentence, leading to spurious mistakes in the anal-
ysis of PUD corpora, where they are annotated
as ccomp’s. This discrepancy accounts for the
lion’s share of classification mistakes in German
and some mistakes in Mandarin.

In contrast, an example of genuine ambiguity is
provided by the Mandarin gēnjù construction. This
construction means ‘according to’ and can incor-
porate both nominal and verbal constituents. Thus,
gēnjù shàng biǎogé zhōng qı̄ gè yuánsù de guānxì
from the Mandarin GSD corpus, which we used
for fine-tuning, means ‘based on the relationship
of the seven elements in the above table’, and the
annotation treats this construction as an oblique
prepositional phrase. Cf. the following example
from the Mandarin PUD corpus: gēnjù kěxíng xìng
yánjiū gūjì ‘according to the feasibility study / the
feasibility study estimates that / as the feasbility
study estimates’. The analysis of this sentence in
PUD makes gūjì ‘estimate’ the main predicate of
the sentence, while an alternative analysis would
make it the head of an adverbial clause, and yet an-
other analysis would label it as a nominal element.
The ability of Mandarin words to act as different
parts of speech in different contexts (especially in
case of verbs, which can act as clause heads, auxil-
iaries, complementisers, and compound elements)
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makes this kind of disambiguation difficult even
for human annotators, which in turn makes it hard
to formulate the exact rule that language models
are supposed to extract from the data. A similar
situation holds for Vietnamese.2

A different type of systematic ambiguity is pre-
sented by Korean, which also demonstrates poorer
performance. Korean has about sixty markers con-
necting two clauses, and many of those allow for
both coordinative and conjunctive readings, which
makes either the first or the second clause the main
one, respectively (Cho and Whitman, 2020, 220–
227). Examples of this type are responsible for a
large share of mistakes in Korean.

Overall, these results indicate that subordinate-
clause detection is a long-tail task: major easily
learnable patterns account for more than 90% of
test cases for all languages, but in some languages
there is an assortment of harder cases that prevent
language models from efficiently generalising.

4 Zero-Shot Setting

4.1 Quantitative Results

We now turn to the analysis of the performance
of the models in the zero-shot setting. The model
described in § 2 is fine-tuned for two epochs on
five European languages (English, Russian, Czech,
French, and German) and five Eurasian languages
(Standard Arabic, Mandarin Chinese, Turkish, Ko-
rean, and Japanese) with larger training corpora
(the ones shown in Table 3). Each of the fine-tuned
models is then applied in a zero-shot way to a range
of test corpora from the UD collection.3

Based on the results in Table 2, several obser-
vations can be made. First, there is a set of Euro-
pean languages with large training corpora that can
act as ‘general approximators’: they demonstrate
high performance across the board. The best over-
all performance is attained by Russian, which has
the second-largest training corpus (nearly 33k sen-
tences). German, with the largest training corpus
(nearly 56k sentences) performs worse than both
Russian and English (the second best, with only

2‘Syntactic category classification for Vietnamese is still
in debate. That lack of consensus is due to the unclear limit be-
tween the grammatical roles of many words as well as the fre-
quent phenomenon of syntactic category mutation’ (Nguyen
et al., 2004).

3Where available, we experiment with two test sets for the
same language to assess domain-induced variance. As Table 2
shows, the difference in scores between different testing cor-
pora for the same language can reach 5–6%, but it does not
change the overall pattern.

circa 6k training sentences). While this good re-
sult for English may be attributed to more informa-
tive pre-training (English Wikipedia is much larger
than the German one), such a bias would also have
favoured German compared to Russian. An alter-
native explanation is provided by the more idiosyn-
cratic German word-order patterns (V2 in main
clauses vs. V-last in subordinate clauses), which
help it achieve best-in-class performance on the
similar Afrikaans. Notably, Russian beats English
even though PUD corpora were translated from
English and therefore should contain some traces
of its morphosyntactic patterns (Rabinovich et al.,
2017; Nikolaev et al., 2020).

At the other end of the spectrum, we find
mediocre general approximators (Arabic, Turkish)
and outright bad ones (Japanese and Korean). At
first glance, their performance could be an artefact
of lower-quality annotations or suboptimal tokeni-
sation (Mielke et al., 2021). This, however, does
not explain a remarkable set of results that is clearly
due to word-order patterns. While the fine-tuned
model for Arabic, a VSO language, performs worse
on its own test corpus than models fine-tuned on
European languages, it provides best-in-class per-
formance on Irish, another VSO language (96%
accuracy). The English-based model is not far be-
hind (95%), but given the overall large gap in per-
formance between them across the board, it seems
that congruent word-order patterns provide a strong
inductive bias for subordinate-clause identification.

Unfortunately, VSO languages are rare,4 and
it is impossible to check if this pattern gener-
alises to other language pairs. However, our test-
corpus suite includes data on strict SOV languages
(Japanese, Korean) and languages where SOV is
the dominant (Hindi, Turkish) or a common (Man-
darin, Basque) pattern. These provide us with a
large number of language pairs with different de-
grees of word-order congruence and fairly clear
patterns of model performance. First, universal
approximators, despite good performance on VSO
languages, struggle on strict SOV languages, es-
pecially Japanese, while SOV languages demon-
strate consistently good performance among them-
selves. E.g., Korean demonstrates best-in-class
performance on Turkish, tied with Turkish itself,
while Japanese has best-in-class performance on
Korean. Turkish also demonstrates decent perfor-

4Out of 1376 languages in WALS (Dryer and Haspelmath,
2013), 95 are VSO, 564 are SOV and 488 are SVO.
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ar
padt

ga
idt

af
booms

de
pud

cs
pud

cy
ccg

en
ewt

en
pud

es
pud

fi
pud

fr
pud

he
hdt

hy
arm

id
pud

is
pud

it
pud

English 96 95 93 94 94 86 98 98 96 96 96 93 93 95 96 98
Russian 95 94 86 93 95 90 94 96 95 97 99 94 94 93 96 96
Czech 94 94 83 95 100 92 92 93 94 94 98 95 88 89 92 94
French 94 91 84 92 95 90 92 97 95 95 99 94 87 93 96 96
German 94 87 95 94 88 82 90 95 94 92 93 91 90 89 95 96
Arabic 90 96 76 85 84 90 85 87 86 85 84 87 84 85 89 85
Mandarin 86 84 85 87 87 85 85 86 86 89 87 87 81 83 86 87
Turkish 67 61 61 65 71 62 64 69 75 77 71 73 73 68 68 74
Korean 51 53 63 53 61 52 51 54 59 65 59 59 57 55 54 61
Japanese 55 56 41 39 52 63 51 52 52 54 55 54 58 53 51 54

pl
pud

pt
pud

ru
pud

ru
syntag

sv
pud

eu
bdt

hi
pud

tr
pud

ja
gsd

ja
pud

ko
pud

vi
vtb

th
pud

zh
gsd

zh
pud mean

English 95 97 93 93 96 88 87 83 66 70 67 82 84 67 71 88.9
Russian 98 95 100 99 95 88 90 90 68 72 70 79 80 64 69 89.2
Czech 97 93 94 96 92 87 88 88 64 66 68 78 79 65 71 87.5
French 98 96 96 97 94 85 89 86 54 61 66 77 76 63 69 87.0
German 89 94 93 88 97 81 86 78 59 62 57 78 78 67 68 85.2
Arabic 85 86 88 85 89 71 70 65 63 66 59 74 79 66 65 80.3
Mandarin 85 85 86 85 86 82 87 89 80 78 77 74 80 91 86 84.6
Turkish 76 73 71 71 69 79 83 94 82 83 88 63 68 72 71 72.3
Korean 66 58 59 59 53 74 76 94 87 88 88 52 61 67 66 63.1
Japanese 54 52 55 55 50 57 63 88 99 98 95 54 70 72 66 60.3

Table 2: Performance of zero-shot models. Rows: source languages; columns: target languages and corpora.
Underlined values fail to beat the majority-class baseline (always predict subordinate clause). See § A.1 for language
abbreviations and § A.2 for details about corpora.

mance on Hindi, with which it shares a relatively
flexible SOV order.

Another language with strong SOV tendencies
is Mandarin Chinese, which has been argued to
be in transition from SVO to SOV order (Sun and
Givón, 1985). Mandarin, which we already found
difficult to model in § 3, is very hard to generalise
to, with no source languages attaining accuracy
above 71–72%. Tellingly, Turkish is the only other
language with decent results on both Mandarin test
sets. Mandarin is also the only language to always
beat the majority-class baseline.

4.2 Case Study: English–Mandarin

In order to get a better understanding of the dif-
ficulties that models face in the zero-shot setting
we analysed the mistakes that the English-based
fine-tuned model made when making predictions
on Mandarin data.

Setting aside errors stemming from annotation
discrepancies,5 the major source of model mistakes
seems to be the fact that Mandarin complex sen-
tences are predominantly right-headed: 99% of

5E.g., as discussed in §3, the model expects direct quotes
to have the form ccomp (quote) + root (verb of speech)
and not root (quote) + parataxis (verb of speech).

advcl, 100% of acl, and 96% of dep6 have
their parent node to the right. In contrast, 75%
of English advcl and 98% of English acl are
left-headed in PUD. This makes an English-based
zero-shot model prejudiced against finding root
nodes in the final clause of the sentence, and it
incorrectly analyses a wide range of right-headed
Mandarin complex clauses. Statistically, there are
142 sentence-initial subordinate clauses mistakenly
analysed as main clauses and only 6 reverse er-
rors. By contrast, there are 278 sentence-final main
clauses mistakenly analysed as subordinate ones
and 82 reverse errors.

Sometimes this divergence further interacts with
ways in which English and Mandarin alternate be-
tween clause coordination and subordination. Thus,
Mandarin tends to describe sequences of events as
a pair of an adverbial clause and a main clause
(after having taken a shower, he dried himself )
instead of as two coordinated clauses (he took a
shower and dried himself ). English UD treats the
first conjoined clause as the matrix one, while it
is often advcl in Mandarin, and the absence of
overt unambiguous complementisers makes it hard

6dep labels different kinds of hard-to-analyse relations
and is frequent in Mandarin PUD (397 occurrences).
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for the model to see beyond mere frequencies.
A similar situation obtains with some English

postposed descriptive subordinate clauses, such as
it’s X–that Y constructions7 and non-restrictive rel-
ative clauses.8 In these cases, Mandarin uses a
coordinative construction, in which the head, ac-
cording to the UD analysis, is on the right conjunct,
corresponding to the English acl, and the first con-
junct is attached to it using the dep label. Again,
the English-based model expects to find the root
in the first of the two clauses, and there is no overt
complementiser to suggest otherwise.

4.3 Attention Patterns

An analysis of the properties of the models under-
lying these findings is beyond the scope of this
paper, but preliminary checks of the attention pat-
terns show that successful models strongly attend
to complementisers in the last two layers. As SVO
and VSO languages tend to have complementis-
ers before subordinate clauses and SOV languages
after (Hawkins, 1990), fine-tuning biases models
towards looking for them in only one direction.
The attention of subordinate-clause heads to main-
clause heads is weaker, presumably due to higher
lexical variety in that position.

5 Related Work

Both aspects of our analysis – subordinate-clause
detection and the study of word-order effects – have
been addressed but not in conjunction and not in
a multiple-source-language setting. Our study ex-
tends previous approaches by providing a ZS ‘up-
per baseline’ derived from the study of the per-
formance of several monolingual models and then
conducting a novel many-sources-to-many-target
analysis of zero-shot performance.

Lin et al. (2019) test BERT on the auxiliary-
classification task (main vs. subordinate clause)
as part of their investigation of BERT’s linguistic
knowledge. Rönnqvist et al. (2019) extend this
analysis to the multilingual setting with a focus on
Nordic languages.

Word-order differences have been shown to
impact the performance of English-based cross-
lingual models, especially in the domain of syn-
tactic parsing (Ahmad et al., 2019) and with tasks
that rely on syntactic information (Liu et al., 2020;

7It’s fantastic that they got the Paris Agreement, but...
8However, they could not find this same pattern in tissues

such as the bladder, which are not directly exposed.

Arviv et al., 2021), while reordering has been long
known to be an efficient preprocessing step in syn-
tactic transfer (Rasooli and Collins, 2019) and ma-
chine translation, both statistical (Wang et al., 2007)
and neural (Chen et al., 2019).

6 Conclusion

We extend previous work on syntactic capabilities
of BERT, mostly focusing on English, by provid-
ing a more comprehensive analysis of its perfor-
mance on the task of subordinate-clause detection
in multiple languages and language pairs in the
zero-shot setting. We show that the performance of
single-language models is uneven across languages:
East and Southeast Asian languages with less rigid
boundaries between POS categories and coordina-
tion and subordination prove harder to model. We
also show that mBERT’s performance in the zero-
shot setting, while being largely correlated with
the size of the pre-training and fine-tuning corpora,
with Russian being the best source language across
the board, is well aligned with the word-order ty-
pology: language pairs with congruent word orders
demonstrate better results, with both SVO and SOV
orders having higher in-group than across-group
accuracies. A single pair of VSO languages in the
data further corroborates this finding, showing that
the verb-final order is not important per se.

The clause-initial position of complementisers
in VSO languages partly blurs this effect and helps
SVO languages with large training corpora serve as
good sources for fine-tuning, but even Russian and
English fail on SOV languages, where complemen-
tisers tend to be postposed and dependent-clause
predicates never appear in the sentence-final po-
sition. This shows that at least for some tasks,
training on a single source language is not enough.
Moreover, our results from single-language mod-
elling seem to indicate that even superficially sim-
ple syntactic tasks vary in difficulty across lan-
guages, which imposes a hard limit on how well
cross-lingual projection can perform.
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A Appendix

A.1 Abbreviations

af Afrikaans

ar Standard Arabic

cs Czech

cy Welsh

de German

en English

es Spanish

eu Basque

ga Irish

fi Finnish

fr French

he Hebrew

hi Hindi

hy Eastern Armenian

id Indonesian

is Icelandic

it Italian

ja Japanese

ko Korean

pl Polish

pt Portuguese

ru Russian

sv Swedish

th Thai

tr Turkish

vi Vietnamese

zh Mandarin Chinese

A.2 Corpora

In addition to the Parallel Universal Dependencies
collection (Zeman et al., 2017), the following cor-
pora were used to train and/or validate models:

• Afribooms: UD Afrikaans-AfriBooms,
https://github.com/
UniversalDependencies/UD_
Afrikaans-AfriBooms

• ArmTDP: Universal Dependencies treebank
for Eastern Armenian,
https://github.com/
UniversalDependencies/UD_
Armenian-ArmTDP

• BDT: Basque UD treebank,
https://github.com/
UniversalDependencies/UD_
Basque-BDT

• CCG: Corpws Cystrawennol y Gymraeg
(Syntactic Corpus of Welsh),
https://github.com/
UniversalDependencies/UD_
Welsh-CCG

• EWT: Universal Dependencies English Web
Treebank,
https://github.com/
UniversalDependencies/UD_
English-EWT

• GSD (French): UD French GSD,
https://github.com/
UniversalDependencies/UD_
French-GSD (Guillaume et al., 2019)

• GSD (Japanese): UD Japanese Treebank,
https://github.com/
UniversalDependencies/UD_
Japanese-GSD

• GSD (Korean): Google Korean Universal
Dependency Treebank,
https://github.com/
UniversalDependencies/UD_
Korean-GSD (Chun et al., 2018)

• GSD (Mandarin): Traditional Chinese
Universal Dependencies Treebank,
https://github.com/
UniversalDependencies/UD_
Chinese-GSD
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• GSD (Spanish): Spanish UD treebank,
https://github.com/
UniversalDependencies/UD_
Chinese-GSD

• HDT: UD version of the Hamburg Depen-
dency Treebank,
https://github.com/
UniversalDependencies/UD_
German-HDT (Borges Völker et al.,
2019)

• HDTB: Hindi Universal Dependency Tree-
bank,
https://github.com/
UniversalDependencies/UD_
Hindi-HDTB (Bhat et al., 2017)

• HTB: Universal Dependencies Corpus for
Hebrew,
https://github.com/
UniversalDependencies/UD_
Hebrew-HTB (Tsarfaty, 2013)

• IDT: Irish UD Treebank,
https://github.com/
UniversalDependencies/UD_
Irish-IDT

• KENET: Turkish-Kenet UD Treebank,
https://github.com/
UniversalDependencies/UD_
Turkish-Kenet

• PADT: UD version of the Prague Arabic
Dependency Treebank,
https://github.com/
UniversalDependencies/UD_
Arabic-PADT (Hajič et al., 2009)

• PDT: UD version of the Prague Dependency
Treebank,
https://github.com/
UniversalDependencies/UD_
Czech-PDT (Bejček et al., 2013)

• Syntagrus: SynTagRus Dependency Tree-
bank,
https://github.com/
UniversalDependencies/UD_
Russian-SynTagRus

• VTB: UD version of the VLSP constituency
treebank,
https://github.com/

UniversalDependencies/UD_
Vietnamese-VTB (Nguyen et al., 2009)

A.3 Single-language model results
The results attained by the models fine-tuned and
tested on the same language are shown in Table 3.
See § A.2 for the details about the train and test
corpora.
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Language Train corpus Test corpus Model #Train #Test
Main-
Main

Main-
Sub

Sub-
Main

Sub-
Sub

Acc.

Mandarin GSD-Train PUD mBERT 3196 736 556 180 122 1364 86.4

Mandarin GSD-Train PUD
HFL-
BERT-
WWM

3196 736 570 166 85 1401 88.7

Vietnamese VTB-Train VTB-Dev mBERT 1105 619 510 109 90 1283 90
Korean GSD-Train PUD mBERT 2201 618 603 15 149 936 90.4
Arabic PADT-Train PUD mBERT 3755 520 436 84 31 752 91.2
Hindi HDTB-Train PUD mBERT 5167 565 506 59 32 831 93.6
German HDT-Train PUD mBERT 55938 441 427 14 49 578 94.1

Armenian
ArmTDP-
Train

ArmTDP-
Dev

mBERT 1165 149 145 4 21 269 94.3

Turkish KENET-Train PUD mBERT 6784 731 653 78 25 1338 95.1
Welsh CCG-Train CCG-Dev mBERT 377 341 315 26 27 824 95.6
Indonesian GSD-Train PUD mBERT 2770 572 553 19 42 923 96
Basque BDT-Train BDT-Dev mBERT 3181 1029 979 50 39 1758 96.9
Spanish GSD-Train PUD mBERT 7247 548 513 35 5 824 97.1
Irish IDT-Train IDT-Dev mBERT 2323 236 226 10 8 441 97.4

English EWT-Train PUD
BERT-
LARGE-
CASED

5968 556 529 27 4 915 97.9

Hebrew HTB-Train HTB-Dev mBERT 2342 206 201 5 4 297 98.2

Afrikaans
Afribooms-
Train

Afribooms-
Train

mBERT 643 97 96 1 2 142 98.8

French GSD-Train PUD mBERT 7712 572 563 9 6 956 99

Japanese GSD-Train PUD
TOHOKU-
BERT-
LARGE

5101 844 838 8 18 2090 99.1

Czech PDT-Train PUD mBERT 26277 504 502 2 3 779 99.6

Russian
Syntagrus-
Train

PUD mBERT 32851 595 593 2 2 961 99.7

Table 3: Performance of single-language models across languages. #Train and #Test denote the number of sentences
in the train and test corpus respectively. In the ‘Main-Main’, ‘Main-Sub’, ‘Sub-Main’, and ‘Sub-Sub’ columns, the
part before the hyphen is the gold label of a predicate (main/subordinate clause) and the second part is the guessed
label. Acc: Accuracy.
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Abstract

In this study we address the question to what
extent syntactic word-order traits of different
languages have evolved under correlation and
whether such dependencies can be found uni-
versally across all languages or restricted to
specific language families. To do so, we use
logistic Brownian Motion under a Bayesian
framework to model the trait evolution for 768
languages from 34 language families. We test
for trait correlations both in single families and
universally over all families.

Separate models reveal no universal correlation
patterns and Bayes Factor analysis of models
over all covered families also strongly indicate
lineage specific correlation patters instead of
universal dependencies.

1 Introduction

Over the long time of their history, humans have
come to develop a wide variety of languages. Over-
all, these languages share basic structural similar-
ities. The nature and extent of these similarities
have been subject of many theories. As language
structure is mostly described in terms of syntax
trees, these are often used as explanatory models
for structural confines of possibly observable word
orders in different languages. The explanations
for such confines differ from Chomskian innate
universal grammar (Chomsky, 1986), to more gen-
eral aspects of computational ease of for the brain
(Hawkins, 2009). On the other hand, increasing
data about languages and computational means
have prompted examinations of which structural
universalities can be found empirically (Greenberg,
1963; Dryer, 1992; Dunn et al., 2011; Jäger, 2018).

More recent representatives of this start also to
account for the historical evolution and relation-
ships of the researched languages (Dunn et al.,
2011; Jäger, 2018). By treating the evolution of
languages analogous to biological evolution, they
apply a method from bioinformatics (Pagel et al.,

2004) to model historical transition rates between
word-order traits. For Dunn et al (2011) the fo-
cus lay on four language families: Austronesian,
Bantu, Indo-European and Uto-Aztecan. Across
those they found widely differing trait correlations,
proposing that correlations arise only specific to
lineages and not from cognitive factors universally
determining language evolution, but instead due to
more local cultural evolution.

Jäger (2018) applied the models on a set of 34
families including models which cover all families
at once comparing universal with lineage-specific
correlations. This comparison resulted in a group
of word-order traits being correlated universally.
This suggests that phylogenetic models for indi-
vidual language families cannot fully capture the
universal correlations between different families.

In this work, we attempted to test this assump-
tion with a different phylogenetic model. We used
Brownian Motion to describe the evolutionary pro-
cess of the trait change over time. This type of
application is common in a biological phylogenetic
context. It is described by, e.g., Harmon (2018).
The Brownian Motion part of the model below is
also based on this description. We then applied
logistic linkage to model the observed categorical
features of word order with a binomial distribution.

The paper is structured as follows. Section 2 de-
scribes the Brownian Motion models used. Section
3 will give a short overview of the data. The ex-
perimental setup is described in Section 4. Finally,
we present the results in Section 5, followed by the
conclusions in Section 6.

2 Brownian Motion Model

A Brownian Motion model is used in this study.
It describes the process of evolutionary change of
specified traits through time as a multivariate nor-
mal distribution. We denote it here as

x ∼MultiNormal(a, V ) (1)
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with means a and Variance-Covariance matrix V ,
describing the distribution of the observed traits x.

Let V be the variance-covariance matrix which
is computed of two matrices C and R. C encodes
the degree of relation t between species such that
languages with a longer shared history in a phylo-
genetic tree have a stronger covariance. We then
define R as the correlation matrix. It is composed
of the traits’ evolutionary rates σ2

n and their corre-
lations σ12:

R =

(
σ2
1 σ12

σ12 σ2
2

)
(2)

V is computed by the Kronecker product as
shown below on the example of a family with two
traits and two species:

V = R⊗ C =

(
σ2
1 σ12

σ12 σ2
2

)
⊗
(
t1 t12
t12 t2

)

=




σ2
1 · t1 σ12 · t1 σ2

1 · t12 σ12 · t12
σ12 · t1 σ2

2 · t1 σ12 · t12 σ2
2 · t12

σ2
1 · t12 σ12 · t12 σ2

1 · t2 σ12 · t2
σ12 · t12 σ2

2 · t12 σ12 · t2 σ2
2 · t2




The means a and the correlation R are parame-
ters to be estimated. The traits x and phylogenetic
matrix C are observed data as described in the fol-
lowing section.

Finally, logistic linking is introduced to model
the categorical word-order traits x as a binomial
distribution with probabilities p. Their logits,
logistic(p) are modelled as Brownian Motion:

x ∼ Binomial(p) (3)

logistic(p) ∼MultiNormal(a, V ) (4)

3 Word-order Traits & language families

The data used in this paper are of two kinds. The
first are language features that are to be modeled.
The second are phylogenetic data used as basis for
the evolutionary model. Combined, these provide
data for 768 languages from 34 language fami-
lies as described in more detail by Wichman et al.
(Wichman et al., 2016). All data were kindly pro-
vided by Gerhard Jäger(2018). We provide the data
as part of this work1.

We considered the same eight word-order traits
(table 1) as in Dunn et al.(2011) and Jäger (2018).

1https://github.com/Hartunka/
TypologicalWordOrderCorrelations/tree/
main/dataprep/dat

Figure 1: Example phylogenetic tree of the Sko lan-
guage family.

These word order traits are based on the World At-
las of Languages (Dryer and Haspelmath, 2013),
but their respective values are summarized into
three possible values per trait. Each of these three
values represents order configurations for the con-
cerned syntactic elements. The first two classes
represent the most dominant values. The third class
summarizes all alternative configurations, appear-
ing more rarely overall. For this work, we summa-
rized the data as binary to be used in the binomial
model. The distinction is only between a language
having a value of the first majority class or not.

The phylogenetic data represent the languages’
historical relations in the form of binary trees as
for example in Figure 1. The trees’ edge lengths
represent the time since the last common ancestor
split up. They have been estimated by Jäger (2018)
and range from 10 to 1000 samples per family.

4 Experiments

In our experiments, we compared variations of this
model with different base assumptions:

(A), we fitted two models to each of the 34 lan-
guage families separately and pairwise to each of
the eight traits. One version assumes strict indepen-
dence of the traits by defining the trait correlations
σ12 in R as constants with value 0. In the other
version, the correlation between the characteristics
is taken into account by keeping the values in R as
parameters to be estimated. In this way, we could
test whether we could find any correlation patterns
by examining the families separately.

(B), we fitted three models for each trait pair,
describing all language families together. Here
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trait 0 1
AN !adjective-noun adjective-noun
PN !postpositions postpositions
ND !demonstrative-noun demonstrative-noun
NG !genitive-noun genitive-noun

NNum !numeral-noun numeral-noun
VO !object-verb object-verb

NRc !relative clause-noun clause relative clause-noun
VS !subject-verb subject-verb

Table 1: Word-order features based on WALS (Dryer and Haspelmath, 2013). The features are summarised as
binary such that every feature is given either ’1’ for the listed value being present, or ’0’ for it being absent.

the first version assumes the same universal cor-
relation R over all families. The second assumes
distinct lineage-specific correlation RF for each
family. The last assumes strict universal indepen-
dence for all families. The different versions were
each compared with three different metrics. The
first of these are Bayes Factors (Kass and Raftery,
1995), which allow a comparison with previous
works (Dunn et al., 2011; Jäger, 2018). Bayes Fac-
tors above 10 indicate strong, values above 100
decisive evidence (Kass and Raftery, 1995). Fur-
ther, we adopted 5 as minimum threshold for mean-
ingful comparisons from Dunn et al. (2011). The
Bayes Factors were obtained using bridgesampling
(Gronau et al., 2020).

In addition, we used the information criteria
WAIC (Watanabe and Opper, 2010) & LOOIC
(Vehtari et al., 2016). These were added to test
for consistency across different metrics. They are
both based on pointwise log-likelihoods and can
become unreliable, when dealing with strongly de-
pendent data points (McElreath, 2020). Both ex-
press model comparisons primarily in differences
where the value of the difference is not directly
amenable to assess how strongly one model is
favoured over another. To address this, we utilized
the rethinking package by McElreath (2020).
This offers a convenient function to compare mod-
els via WAIC including the assignment of weights
ranging from 0 to 1 to give an accessible overview
over the relative quality of the models.

The models were implemented in the Stan Mod-
eling Language (2020) which uses the NUTS sam-
pler (Hoffman et al., 2014) for parameter estima-
tion. The code is available here2 . Based on the
suggestion of (Gronau et al., 2020) the models are

2https://github.com/Hartunka/
TypologicalWordOrderCorrelations

run for 21,000 iterations after warm-up, to achieve
reliable Bayes factors. Distributed on 14 chains,
this becomes 1.500 iterations per chain, in addition
to 1,500 warm-up iterations each. The sampling
was done with the default control parameters for
Stan’s sampler. With these parameters the lineage-
specific models of the ND-NNum trait pair and the
independent models of the NG-VO & AN-VO trait
pairs did return a too small effective sample size
for the bridgesampling to be effective. So these
models were rerun with max_treedepth raised
from 10 to 15.

Figure 2: Numbers of families for which each trait pair
was estimated to be correlated. Counts all cases for
which Bayes Factors in favour of the dependent model
have a value of at least five.
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5 Results

For the single-family models, the comparisons did
not yield Bayes factors above 5 for 15 of the 34
families. Therefore, no conclusions about preferred
models are possible in those cases. Those trait
correlations that did come up, only appeared in
a minority of the covered families, not providing
any pattern for universal correlations. Figure 2
shows for each trait pair in how many families it
was estimated to be correlated.

The information criteria at face value find up to
22 families for which the same trait-pair is corre-
lated. We filtered cases close to equivalence with
WAIC weights to test how many cases have a robust
preference. We chose the cutoff at 0.6. Filtering
such cases results in less cross-family similarities,
with no more than 3 families sharing the same trait
pair as correlated. Cross-metric agreement: The
percentage of model comparisons where Bayes Fac-
tors & WAIC weights favoured the same model or
both don’t favour any model at all is 85.5% with a
LOOIC & WAIC agreement of 99.8%.

The model comparison between universal and
lineage specific models strongly favour lineage
specificity, with Bayes Factors favouring lineage-
specific correlation for each trait pair (Figure 3).

In contrast to single family models, Bayes Fac-
tors and information criteria strongly disagree.
Both WAIC & LOOIC strongly favour univer-
sal correlation models for each trait pair. WAIC
weights are fully assigned to the universal mod-
els. Comparing lineage specificity with universal
independence shows similar results. Bayes Factors
strongly favour lineage-specificity but information
criteria favour independence.

Universal trait pair correlations, based on the
dependent-independent model comparisons center
around the Adposition-Noun order (Figure 4).

6 Conclusions

We applied logistic Brownian Motion under a
Bayesian framework to model the trait evolution
for 768 languages from 34 language families. The
models for single language families and those
across all families indicate no universal word-order
trait correlations across language families when
compared using Bayes Factors.

This result matches with the observations made
by Dunn et al.(2011), but contradicts the results
over all families presented by Jäger (2018). Thus,

Figure 3: Model comparisons of lineage-specific vs
universal correlations. The y-axis shows the strength of
the Bayes Factors in favour of the models with lineage-
specific correlations for each trait pair on the x-axis.

Figure 4: Universal trait correlations from directly com-
paring dependence and independence assumptions. For
connected trait pairs, the dependence assumption is
stronger in terms of Bayes Factors.

representing all families in one model did not add
much information to single family models.

It is noteworthy, that the results from the infor-
mation criteria contradict those from the Bayes
Factors regarding the universal models. Although
this could be attributed to some unreliability of the
information criteria given the data and the nature
of the model, it is still worth further investigation.
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Abstract

Though recently there have been an increased
interest in how pre-trained language models en-
code different linguistic features, there is still
a lack of systematic comparison between lan-
guages with different morphology and syntax.
In this paper, using BERT as an example of a
pre-trained model, we compare how three typo-
logically different languages (English, Korean,
and Russian) encode morphology and syntax
features across different layers. In particular,
we contrast languages which differ in a partic-
ular aspect, such as flexibility of word order,
head directionality, morphological type, pres-
ence of grammatical gender, and morphological
richness, across four different tasks.

1 Introduction

Transformers (Vaswani et al., 2017) and especially
pre-trained language models based on them, such
as BERT (Devlin et al., 2019), had a revolutionary
impact on the field of Natural Language Processing
(NLP), allowing to achieve new heights in classifi-
cation, retrieval, text understanding, and generation
tasks. However, though major progress was made
in adapting Transformers to different downstream
tasks, they largely remain black-box models, es-
pecially from the linguistic point of view. In par-
ticular, though we know that they roughly follow
the same pipeline as human-made natural language
processing (NLP) systems when encoding the fea-
tures (the lower layers of a Transformer encode
part-of-speech information, the middle layers per-
form syntax parsing, while the top layers enable
such tasks as coreference resolution) (Tenney et al.,
2019), it is still unclear if there is a systematic
relation between the type of morphological, syntac-
tical and discourse features encoded and particular
layers of Transformer-based models. More impor-
tantly, though there have been some attempts to
examine this for languages other than English (see,
for example, a study by de Vries et al. (2020) for

Dutch), we still do not know if there is a consis-
tency between models for different languages in
encoding such features, especially if the languages
in question are typologically different. Thus it is
important to analyse how Transformers encode dif-
ferent linguistic features for dissimilar languages,
as it would help us to better understand how they
work and ultimately allow to improve their perfor-
mance in such tasks as translation or multi-lingual
information retrieval and summarisation.

In this study, we compare how Transformers en-
code particular linguistic features for the following
languages: English, Russian, and Korean. The
choice of languages are motivated linguistically:
English, Russian and Korean are morphologically
very distant languages (analytical, fusional and ag-
glutinative respectively) which are also different
in term of syntax such as word order. To exam-
ine Transformers encodings more systematically,
we conduct a series of pairwise comparisons of
languages which contrast in a particular linguistic
feature, similarly to how it is performed in the-
oretical linguistics. In particular, using targeted
manipulation of inputs to produce a binary correct-
ness classification or a masked token prediction
task, we examine the following research questions:

1. How sensitive are the encoders and their par-
ticular layers to correct word orders in lan-
guages with fixed and free word order?

2. Does the encoding of word order depend on
the morphological type of the language (ag-
glutinative vs inflected) and on its head direc-
tionality (head-initial vs head-final)?

3. How well is long-distance agreement encoded
for languages with rich and poor morphology
and agreement patterns?

4. Are gender biases encoded more strongly in
languages with agreement in gender?
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In the following sections we describe our experi-
ments for these tasks and present our findings.

2 Sensitivity to word order in languages
with fixed vs free word order

In this section we compare the ability of a BERT-
based classification model to detect the corruption
of word order in languages with fixed vs free word
order. We hypothesise that as languages with free
word order allow for more permutations in terms
of token positions in the sentences, it would be
more difficult for the model to detect word order
corruption.

2.1 Fixed and free word order

We use English as an example of a fixed word
order language and Russian as a free word order
language as they are related languages which
typologically differ in one aspect: while in Russian
the grammatical and syntactical meaning is mostly
expressed through morphological means such
as suffixes and particles which allows the words
to be relatively unconstrained in terms of their
position in the sentence, in English due to limited
morphology the grammatical and syntactical
meaning is linked to the position of a word in a
sentence and thus the word order is fixed. For
example, to show that the word "apples" is an
object rather than a subject, it should occupy the
position after the predicate (verb) in English:

Emma ate apples.
Subject Verb Object

On the other hand, in Russian the word “apples”
can potentially occupy both the position before
and after the verb without changing the meaning1:

Эмма ела яблоки
Emma ate apples.
Subject Verb Object (normal word order)

Яблоки ела Эмма.
Apples ate Emma.
Object Verb Subject
(inverted word order, more focus on “Emma”)

Despite this flexibility, the word order in Russian
is not random or arbitrary: there is still a strong
tendency for constituents (such as noun phrases
and predicates) to occupy a particular position, and

1Though, as we explain in Section 3, there is a strong
preference for the position after the verb.

the movement of words across the constituent bor-
ders is very limited. However, as there is still more
word movement allowed compared to English, we
postulate that it would be more difficult to automat-
ically detect ungrammatical word order changes in
Russian than in English.

2.2 Dataset

For the experiments in this section we use UMC
0.1, a Czech-Russian-English corpus of news
articles automatically aligned at sentence level
(Klyueva and Bojar, 2008). We chose to use a
parallel corpus for this task to ensure that the diffi-
culty of classification is not affected by the syntac-
tic complexity or the length of the sentences. We
use the train/test data split provided by the authors
of the corpus. For both the train and test data we
remove the pairs where either the English or Rus-
sian sentence contains less than two tokens, since
otherwise it is impossible to swap tokens. We also
remove pairs where either of the sentences has over
100 tokens, as the task’s difficulty would increase
in case of very long inputs. The statistics of the
resulting dataset are provided in Table 1.

2.2.1 Model and experiments
The bigram shift (BShift) probing task introduced
by Conneau et al. (2018) allows to check the capa-
bility of a model to distinguish between sentences
with correct and incorrect word orders. Specifically,
it is a binary classifier which has to distinguish be-
tween intact sentences and sentences where some
two random adjacent tokens were swapped. For
this task, we randomly sample half of the sentences
in the training and test datasets and corrupt the
token order in them at a random position.

We use BERT-Base Cased (Devlin et al., 2019)2

as a pre-trained model for English and RuBERT
(Kuratov and Arkhipov, 2019)3, which was initial-
ized with the multilingual version of BERT-Base
and trained on the Russian Wikipedia and news,
for Russian. We choose these particular models
as the most closely matching in terms of their ar-
chitecture and parameters (12-layer, 768-hidden,
12-heads for both models, 110M parameters for
BERT-Base Cased and 180M Parameters for Ru-
BERT). Unlike most studies which use the uncased
version of BERT, we choose the cased one, as only

2https://huggingface.co/
bert-base-cased

3https://huggingface.co/DeepPavlov/
rubert-base-cased
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cased models are available for Russian.
To ensure that the classification results reflect

the performance of the pre-trained model itself on
the task, we add a only single linear layer on top
of the pre-trained model, freeze the BERT layers,
and train the model only for 1 epoch. For the train-
ing optimization we use Adam (Kingma and Ba,
2014) with the learning rate of 2e-5. As usual for
the classification tasks, we use the embedding of
the first token [CLS] as the input to the linear layer.
However, to explore how well the word order in-
formation is encoded in the different layers of the
pre-trained model, we do this not only for the last
layer, but for all layers in the pre-trained model.

2.3 Results

The results of the BShift classification tasks for all
layers of BERT-Base Cased and RuBERT models
are shown in Table 2. We report classification ac-
curacy averaged over 5 runs with various random
seeds. For all layers, the difference between the
accuracy of the models was statistically significant,
while the variation among the different runs was
minimal, which shows that there is a visible dif-
ference in the ability of the Russian and English
models to encode the correct word order.

In particular, though at lower layers the Russian
model underperforms in terms of accuracy, it per-
forms better than the English one at middle and
higher layers. The English model also achieves
its maximum performance at an earlier layer (5)
than the Russian one (11). Both of these phenom-
ena can be largely explained by the fact that the
models’ layers follow the so-called classic NLP
pipeline (Tenney et al., 2019), where the lower lay-
ers specialize in lower-level language features such
as parts of speech and other morphological infor-
mation, the middle layers are responsible for more
complex syntactic relations, while the higher layers
deal with even more high-level language phenom-
ena such as anaphora and coreference. Therefore,
we might conclude that though it takes more lay-
ers for the Russian model to encode more complex
morphology and syntax relations which are neces-
sary to detect if the word order was corrupted, once
it does that, it performs better on the task since
the morphology of the inflected language binds the
words together by the means of suffixes showing
their gender, number, aspect, or tense. Thus, in con-
trast to our expectations, the free word order is not
that free, as moving a word arbitrarily has a high

probability of breaking such rich morphological
and syntactical ties.

Train Test
EN RU EN RU

Sentences 85663 2753
Tokens 1798267 1599786 49642 44006

Table 1: Dataset statistics for the English vs Russian
BShift task.

EN RU

Layer 1 0.786 0.903
Layer 2 0.902 0.867
Layer 3 0.893 0.824
Layer 4 0.926 0.855
Layer 5 0.931 0.937
Layer 6 0.903 0.944
Layer 7 0.895 0.945
Layer 8 0.893 0.935
Layer 9 0.875 0.935
Layer 10 0.869 0.944
Layer 11 0.873 0.948
Layer 12 0.863 0.911

Table 2: The accuracy of detecting word order corrup-
tion for the languages with fixed and free word order.

3 Sensitivity to word order corruption in
agglutinative and inflected languages
with different head directionality

In this section we compare the ability of pre-trained
models to recognize word order corruption in such
languages as Russian and Korean. We originally
chose to analyse these languages as they differ in
terms of head directionality (Haider, 2015) (see
below) while both having a free word order. We
hypothesized that since the attention mechanism in
Transformer models (Vaswani et al., 2017) is able
to capture the context to the both sides of a focus
token, the performance on the word order corrup-
tion task should be comparable between these two
languages. However, our experiments showed that
some other aspects of these languages are affect-
ing the task, namely the type of their morphology
(inflected for Russian vs agglutinative for Korean).

3.1 Head directionality
Head directionality refers to the position of a head
(main) word in a phrase relative to its subordinate
word (Haider, 2015), and languages can be roughly
categorized into head-initial and head-final. In
head-initial languages such as Russian the verb
(predicate) normally precedes the object (VO
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word order), while in head-final languages such
as Korean they follow the object (OV word order)
(Lehmann, 1973)4:

Эмма ела яблоки.
Emma ate apples.
Subject Verb Object

엠마는 사과를 먹었다

Emma apples ate.
Subject Object Verb

As head directionality essentially refers to the
expected position of subordinates relative to head
words, it affects the importance of right-hand and
left-hand context of a focus (head) word in repre-
senting the input text. However, as the attention
mechanism (Vaswani et al., 2017) allows to capture
both the right-hand and left-hand context equally
well, we hypothesised that there should not be a
remarkable difference in word corruption detec-
tion between these two languages, i.e. neither VO
nor OV syntax should make it more difficult for a
direction-agnostic model.

3.2 Inflection vs agglutination

Both Korean and Russian are morphologically rich
synthetical languages, that is, grammatical mean-
ing is expressed by adding a diverse variety of mor-
phemes to the lexical root. However, while in Rus-
sian morphemes expressing tense, aspect, gender,
person, number etc are fused together and one suf-
fix can thus carry several grammatical meanings,
in Korean morphemes can be stacked on top of
each other in various combinations. For example,
while in Russian the verb иду ("I am going") is
a fusion of a stem ид- and a morpheme у which
simultaneously signifies present tense, inperfect as-
pect, single number, and 1st person, in Korean the
verb 가고있어요 with the same meaning can be
split into a stem가 and a stack of morphemes: 고
(continuous aspect),있어 (present tense),요 (po-
liteness marker). Such difference in morphology
is reflected in approaches to tokenization: while
in Russian texts are normally tokenized by space,
i.e. each token represents a lexical item together
with its grammatical meanings, in Korean words
are usually split into stems and particles, each rep-
resenting a distinct lexical or grammatical meaning.

4As both languages are relatively free in their word order,
VO structures are possible in Korean while OV structures are
legal in Russian, but such word order is inverted or emphatic.

Thus, in this experiment we also compare how the
tokenization before word order corruption affects
the model’s ability to recognize the latter.

3.3 Dataset

For this task, similar to Section 2, we use a parallel
corpus of Russian and Korean sentences, this time
based on TED talk subtitles5. We apply the same
preprocessing steps, and randomly sample 10% of
the sentences to create the training/test split. The
statistics of the dataset are presented in Table 3.

3.4 Model and experiments

For this set of experiments we use the same Ru-
BERT model for Russian as in Section 2; for Ko-
rean we use a similar BERT-Kor-base model6. We
follow the same method for corrupting the word
order, training and evaluation as in Section 2. How-
ever, for this task we restrict BShift to VO chunks
for Russian and OV chunks for Korean. To do that,
we apply part-of-speech tagging using morpholog-
ical analysers for Russian (Korobov, 2015)7 and
Korean8, and then restrict the application of BShift
only to spans with a verb and the following (for
Russian) or preceding (for Korean) noun.

We also experiment with two types of tokeniza-
tion for BShift in Korean. For the first experiment,
we tokenize the text using Kkma parser8 and then
swap the resulting tokens which can be lexical
stems or grammatical particles; for the second one,
we apply the usual whitespace tokenization and
thus swap the whole words with grammatical par-
ticles attached to them. The reason for such setup
is that we intend to compare the effect of swap-
ping the entire lexical units vs swapping subunits,
potentially including grammatical ones.

3.5 Results and discussion

Table 4 reports the accuracy of detecting the sen-
tences which underwent BShift in Korean and Rus-
sian. For Korean, we report the results for two ap-
proaches to word order corruption described above.

The most striking finding is probably an almost
perfect accuracy even at the lowest layers achieved
by the Korean model with the native (morphology-
based) tokenization, where morphological parti-
cals/subunits could potentially be switched. This

5https://github.com/ajinkyakulkarni14/TED-Multilingual-
Parallel-Corpus

6https://huggingface.co/kykim/bert-kor-base
7https://pypi.org/project/pymorphy2/
8https://konlpy.org/en/v0.4.4/api/konlpy.tag
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Train Test
KO1 KO2 RU KO1 KO2 RU

Sentences 299769 33308
Tokens 7477635 3597639 4283921 826887 397301 473650

Table 3: Dataset statistics for the Korean vs Russian BShift task. KO1 refers to BShift using morphology-based
tokenization; KO2 refers to BShift based on whitespace tokenizer.

shows that the order of particles that are attached
to the stem is strongly encoded even at the low-
est layers of the model, i.e. the pre-trained model
is aware of agglutination and learned the correct
slots for suffixes with a particular meaning. On the
other hand, compared to the Korean model with the
native tokenization, the performance of the model
where the BShift occurred after whitespace tok-
enization is considerably lower and worsens even
more at higher levels. This shows that whitespace
tokenization makes it much harder to recognize
word swaps, as in that case the whole word moves
together with its suffixes and thus the basic mor-
phology is preserved.

Interestingly, the performance of the Russian
model and the Korean model with whitespace-
based corruption is very similar at the lowest (mor-
phology) layers, which supports our claim that the
attention mechanism is agnostic to head directional-
ity at lower levels and can recognize incorrect word
order equally well for both OV and VO languages.
However, at higher layers, with more syntactic in-
formation taken into account, it becomes easier for
the Russian model to recognize corruption, while
the performance of the Korean model falls signifi-
cantly.

Another thing to note is that the accuracy of
classification for the Russian model is higher here
than reported in Section 2, and the best results are
achieved at lower RuBERT layers. This can be
explained by the fact that we restricted possible
movements to one type of structure, so the task
is inherently easier and potentially requires less
information about the syntactic structure; another
reason for such discrepancy can simply be a much
larger training dataset available for this task. Thus,
though these experiments provide some intuition
into the abilities of the models to encode word order
information and detect different types of word order
shift, more rigorous experiments across different
datasets and with more exact and diverse chunking
strategies are in order.

KO1 KO2 RU

Layer 1 0.988 0.940 0.948
Layer 2 0.989 0.928 0.928
Layer 3 0.995 0.942 0.886
Layer 4 0.996 0.921 0.899
Layer 5 0.994 0.896 0.981
Layer 6 0.991 0.895 0.983
Layer 7 0.990 0.902 0.982
Layer 8 0.987 0.888 0.977
Layer 9 0.985 0.863 0.976

Layer 10 0.989 0.844 0.979
Layer 11 0.990 0.888 0.979
Layer 12 0.990 0.875 0.921

Table 4: The accuracy of word order corruption for
an agglutinative SOV language vs inflected SVO lan-
guage. KO1 refers to BShift using morphology-based
tokenization; KO2 refers to BShift based on whitespace
tokenization.

4 Long-distance agreement in
morphologically rich and poor
languages

In this task we test the ability of attention-based
models to encode long-distance agreement, in par-
ticular the agreement in number (plural vs singular).
We choose this task as it tests the model’s ability to
encode hierarchical syntactic structure, for exam-
ple to determine the number of a verb based on the
form of the noun related to it in the syntactic tree,
rather than on the form of the closest noun.

4.1 Long-distance agreement

Agreement refers to a linguistic phenomenon
where the grammatical form of one word depends
on the form of another word. While in English
agreement is restricted only to nouns and verbs
in the present tense, in Russian nouns agree with
verbs in all tenses and also with adjectives and
some pronouns. Though in Russian words agree
in several different grammatical aspects such as
gender, person, case, and number, in this task
we focus only on the number agreement as it is
the only agreement type present in English. In
particular, we focus on long-distance agreement,
which occurs when a head word (cue) that
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determines the form of a dependent (target) is
separated from it by intervening words (context).
As such agreement requires the model to consider
not only the nearby context but often far removed
tokens that are nevertheless closely connected with
the cue in terms of their position in the syntactic
tree, it should be able to encode at least some
hierarchical syntactic structure. We hypothesise
that a higher performance can be achieved on
this task for Russian, since the majority of parts
of speech are marked for number there. Thus it
is highly likely that there are some words in the
context between the cue and target words that
provide some clues for the correct long-distance
agreement. Consider the following example:

Выросли любимые мамой розы
Have grown loved by mom roses
pl verb pl adj sing noun pl noun

In this sentence, the words выросли (have
grown) and розы (roses) should both have the plu-
ral form as they agree in number, but there is a
noun in singular (mom) between them which can
potentially interfere with the ability of the model to
assign the correct plural number. However, unlike
English, in Russian there is another word in the
context between the cue and the target (любимые,
loved) which has plural number and thus allows to
infer the correct form.

4.2 Dataset

For this task we use the long-distance agreement
test set created by Gulordava et al. (2018)9. We
choose this dataset rather than a more popular
agreement dataset by Linzen et al. (2016) as in
addition to regular sentences with long-distance
agreement the authors generate nonce sentences
which retain the same syntactic structure but have
no meaning. They do so by replacing all content
words in a sentence by random words with the same
grammatical properties; 9 nonce sentences are gen-
erated for each normal sentence in this manner. Gu-
lordava et al. (2018) do so in attempt to disentangle
the abilities of the model to capture syntactic and
semantic information, as they notice that models
tend to rely on semantic and lexical features such
as frequency of co-occurance when resolving long-
distance relationships. Thus, in the example above
the model can choose the plural form of "have
grown" for "roses" not because it learned to ab-

9https://github.com/facebookresearch/colorlessgreenRNNs

stract such features as number and detect the long-
distance relationships, but simply because "have
grown" occurs more frequently around "roses" than
"has grown" in the corpus it was trained on. To see
how much of the performance on the task is due
to such effect, the nonce sentences contain random
words which are unlikely to frequently co-occur.
Overall, the dataset contains 41 original vs 369
generated sentences for English and 442 original
vs 3978 generated sentences for Russian.

4.3 Model and experiments

For this set of experiments we use BERT-Base
Cased and RuBERT models introduced above, and
BERT-Base Uncased model in addition to them.
We compare the cased and uncased variants of the
model to estimate the effect of capitalization on the
encoding and detection of long-distance agreement.

We adapt the evaluation protocol proposed by
Goldberg (2019) for our task. Namely, we cast it as
a masked token prediction task where we replace
the word which form we are trying to predict by
[MASK]. To predict the token, we use a masked
language model which is essentially a BERT model
with a feed-forward network projecting onto the
vocabulary. Then for each masked token we com-
pare the probability of the word in the correct form
(plural or singular) with the probability of the in-
correct form (opposite in number). We consider
the prediction to be correct if the probability of the
expected token is strictly higher than then probabil-
ity of the alternative form. As in the tasks above,
we perform the experiments for all layers of the
pre-trained models.

4.4 Results and discussion

EN uncased EN cased RU cased
orig. gen. orig. gen. orig. gen.

L 1 0.683 0.477 0.683 0.423 0.464 0.471
L 2 0.659 0.477 0.756 0.439 0.489 0.481
L 3 0.707 0.485 0.707 0.472 0.502 0.485
L 4 0.707 0.458 0.659 0.496 0.500 0.501
L 5 0.659 0.466 0.683 0.520 0.523 0.518
L 6 0.732 0.499 0.757 0.537 0.539 0.543
L 7 0.805 0.623 0.780 0.602 0.559 0.538
L 8 0.780 0.612 0.854 0.664 0.520 0.515
L 9 0.878 0.737 0.951 0.734 0.568 0.531

L 10 0.927 0.770 0.976 0.797 0.586 0.558
L 11 0.951 0.816 0.976 0.824 0.618 0.569
L 12 0.951 0.810 0.976 0.821 0.991 0.919

Table 5: The accuracy of long-distance agreement.

Table 5 shows the accuracy of grammatical form
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prediction related to long-distance agreement for
both semantically correct and nonce sentences.
First, we can observe a clear gap in performance
between the original and generated (nonce) test
sets for all three models, which shows that the abil-
ity to assign the correct number is largely due to
the co-occurrence and frequency effects rather than
recognizing syntactic structure. However, it can be
noticed that as the number of layers grow, the gap
in accuracy for normal and nonce sentences dimin-
ishes, which means that at higher layers the models
do learn to abstract from the lexical information
and encode long-distance syntactic relations even
when they cannot rely on co-occurrence.

When comparing the three models, it can be
observed that, as expected, the Russian model per-
forms better at the last layer than both English ones,
which shows that rich morphology helps to encode
long-distance relationships. Interestingly, the cased
variant of BERT-Base had a higher accuracy than
the uncased one, especially at some intermediate
layers, which can mean that capitalization helps to
encode morphological and syntactic relationships.
Another thing to note is a remarkable difference
in the progression of accuracy across layers be-
tween the Russian and English models: while in
BERT-Base Cased and Uncased there is a consis-
tent improvement with moving to higher layers,
in RuBERT the accuracy grows very slowly at all
but the last layer, where there is a huge jump in
performance. It can be explained by the fact that
due to complex morphology of the Russian lan-
guage it takes more layers to encode some lower-
level morphology and syntactic features before the
model is ready to handle long-distance agreement.
Lastly, compared to lower-level morphology tasks
in Sections 2 and 3, where the performance actually
downgraded at the last layer, here the last layers
are important, especially for Russian.

5 Gender bias encoding in languages with
and without gender marking

Though gender bias is a wide-known issue affect-
ing such down-stream tasks as machine translation
or text generation, it has been mostly studied only
through such phenomena as co-reference and pro-
noun resolution (Rudinger et al., 2018). In this task
we aim to explore if the gender bias is more promi-
nent in languages such as Russian where nouns,
adjectives and verbs can be marked for gender, i.e.
have masculine, neutral or feminine gender. We hy-

pothesise that the gender bias would be even more
pronounced in such languages.

5.1 Dataset
For this task we construct the test set using the
dataset provided by Stanovsky et al. (2019)10 as
a starting point. In particular, we extract the men-
tions of professions (triggers) and the relevant sen-
tences from their English dataset and modify them
as follows:

• We remove triggers that have a strong fem-
inine gender (i.e. feminine ending) since
they can only be used with feminine forms
of words according to grammar rules. For
example, referring to a nurse (медсестра)
as "her" is the only correct way in Russian
as the feminine ending of the word requires
such agreement. Therefore, agreement with
such words is due to grammatical conventions
rather than bias. For the same reason, we re-
move triggers which can be translated both in
a masculine and feminine form, as that would
pre-determine the agreement.11 As the result
we selected 30 triggers (see Appendix A).

• We simplify the sentences so that there is only
one trigger and it is referred to unambiguously.
We do this to ensure that any discrepancy in
gender usage is due to the model attending to
the trigger noun rather than other nouns.

• For English we mask the pronoun referring
to the trigger to test the assumed gender of
co-reference resolution.

• For Russian, we modify the sentence to create
three variants: with a masked pronoun, as in
English, with a masked adjective referring to
the trigger, and with a masked verb referring
to it, to compare the degree of bias for these
parts of speech. While doing so we ensure
that other words in the sentence do not reveal
the assumed gender; for instance, we change
the past tense verbs (marked for gender) into
their present tense forms (which are the same
for both genders). On the other hand, we try
to ensure that the masked word is predicted in
a form marked for gender, such as past tense,
by adding adverbs such as "yesterday".

10https://github.com/gabrielStanovsky/
11Some of nouns can have both neutral-style masculine

forms and derogative feminine forms; we included them as
we expect neutral forms also to be used for women.
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5.2 Model and experiments
We use the same approach to evaluation as in Sec-
tion 4, but here instead of comparing probabili-
ties of two tokens we extract the list of 50 most
prominent candidates and compare the probabili-
ties assigned to the top tokens with masculine and
feminine gender. If either a masculine or feminine
form did not occur in the list of top 50 tokens, we
record its probability as 0. We examine both the
percentage of cases where either masculine or femi-
nine genders were the winning ones (winning rate),
and the average probabilities assigned to masculine
and feminine forms.

5.3 Results and discussion
Table 6 shows the winning rate and the average
probability for masculine and feminine forms ap-
pearing in the pronoun, verb or adjective slot.

Winning rate Avg. prob.
M F M F

EN pronouns 50% 50% 0.268 0.296
RU pronouns 93% 7% 0.460 0.03

RU verbs 100% 0% 0.299 0.047
RU adjectives 100% 0% 0.091 0

Table 6: Winning rate of one gender over the other and
average probabilities for genders in particular position.

As it can be seen from the table, in Russian there
is a large skew towards masculine forms for all anal-
ysed parts of speech, while in English the gender
labels for pronouns were distributed almost equally.
It does not in any way imply the absence of bias:
we observed the well-known phenomenon of as-
signing the masculine gender to both "manly" pro-
fessions such as mechanic or guard and high-status
jobs such as CEO, manager or lawyer, while the
feminine gender was mainly assigned either to as-
sisting roles such as clerk or secretary or to creative
professions such as editor or designer. However,
in Russian even such professions as hairdresser or
assistant, which are more likely to be marked as
feminine in English, had a higher probability of
masculine forms than that of feminine ones. This
is even more so for verbs and adjectives, all of
which had masculine forms. Thus we can con-
clude that the strong gender bias in Russian which
we observed is rather a grammatical phenomenon
than encoded connotations of professions of partic-
ular type, as in English. In particular, though the
words we studied are gender-neutral in terms of
their applicability to people of both genders, gram-

matically they have a masculine form, and unlike
native speakers who would choose feminine forms
when referring to female professionals, the model
is unable to do that and selects the most probable
form based on the grammatical form only.

6 Conclusions and future work

In this study we used linguistic probes and masked
language models to explore several aspects of mor-
phology and syntax representation in Transformer-
based models. In particular, we examined the abil-
ity of the model and its particular layers to encode
the correct word order in languages with contrast-
ing morphology and syntax, their ability to capture
hierarchical structure represented by long-distance
agreement, and the degree of bias encoding in lan-
guages with and without gender morphology. In
doing so, we once again showed that the number
of layers in the model roughly corresponds to the
complexity of the encoded features, but also dis-
covered that languages differ in layers where such
encoding happens.

One of the most important takeaways of
analysing the pre-trained models’ performance
layer by layer is that the best accuracy is not neces-
sarily achieved at the last layer, which leads us to
question the practice of using the complete model
for all downstream tasks. Therefore, a potential
extension of this work would be to explore the per-
formance of such tasks as classification or genera-
tion when using only some layers of the pre-trained
model. Another observation is that in general the
Russian model needed more layers to achieve its
optimal performance, while both Korean and En-
glish ones showed their best results at much earlier
layers. It can be explained by more complicated
morphology and syntax of Russian language which
potentially can require more layers to be properly
encoded. Thus it leads to a question whether adding
more layers to pre-trained models for inflected lan-
guages with rich morphology and syntax (for ex-
ample, Spanish or German) can help to improve
performance of downstream tasks. That said, one
of the limitation of the present study is that we fo-
cused only on one type of Transformer-based mod-
els and compared only two languages at a time; to
ensure the general applicability of our experiments,
they should be expanded to more languages with
similar typological characteristics to those analysed
above, and to attention-based models with different
training approaches.
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A Selected triggers

For the gender bias experiments we selected the
following English names of professions and their
direct translations into Russian:

English: developer, mechanic, clerk, mover, an-
alyst, assistant, salesperson, librarian, lawyer, hair-
dresser, cook, teacher, physician, baker, farmer,
CEO, manager, guard, editor, auditor, secretary,
designer, supervisor, cashier, driver, construction
worker, counselor, carpenter, janitor

Russian: разработчик, механик, клерк,
грузчик, аналитик, ассистент, продавец, биб-
лиотекарь, адвокат, парикмахер, повар, учи-
тель, врач, пекарь, фермер, CEO, менеджер,
охранник, редактор, аудитор, секретарь, ди-
зайнер, супервизор, кассир, водитель, строи-
тель, психолог, плотник, дворник
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Abstract
We describe a methodology to extract with
finer accuracy word order patterns from texts
automatically annotated with Universal De-
pendency (UD) trained parsers. We use the
methodology to quantify the word order en-
tropy of determiners, quantifiers and numer-
als in ten Indo-European languages, using UD-
parsed texts from a parallel corpus of prosaic
texts. Our results suggest that the combina-
tions of different UD annotation layers, such
as UD Relations, Universal Parts of Speech
and lemma, and the introduction of language-
specific lists of closed-category lemmata has
the two-fold effect of improving the quality of
analysis and unveiling hidden areas of variabil-
ity in word order patterns.

1 Introduction

Most of the work on word order variation using
Universal Dependencies (UD: de Marneffe et al.,
2021) is based on curated dependency treebanks,
with only a few works using dependency corpora
derived from raw texts. Although the accuracy rate
of NLP systems trained on UD models is report-
edly very high (Hajič and Zeman, 2017; Zeman and
Hajič, 2018; Straka et al., 2019; Qi et al., 2020), a
certain level of noise i.e., erroneous annotations is
in fact present when working with automatically
annotated texts (Levshina et al., to appear; Talamo
and Verkerk, to appear); furthermore, different lay-
ers of UD annotations such as Universal Parts of
Speech (UPOS) and UD Relations are not always
used consistently across languages, often result-
ing in the cross-linguistic comparison of different
categories.

We discuss a methodology to tweak the UD an-
notations in order to achieve a better representation
of word order entropy; the methodology is exem-
plified on three categories that are particularly dif-
ficult to analyze with automatic methods and from
a cross-linguistic perspective. Determiners, quanti-
fiers and numerals are often treated in descriptive

grammars as heterogeneous categories; the lexi-
cal category of determiners includes articles and
demonstratives, while the category of quantifiers
often includes elements of other closed categories,
such as pronouns and gradation markers, and some-
times members of open categories, such as adjec-
tives and adverbs; finally, numerals are often not
restricted to cardinal, ordinal and distributive num-
bers, but overlap with quantifiers.

This heterogeneity is reflected by the UD im-
plementation of these categories, both at the Rela-
tion and the UPOS annotation layer. Numerals are
treated as a separate category and represented at the
syntactic level by the nummod UD Relation and at
word category level by the NUM UPOS; by con-
trast, the UD framework conflates articles, demon-
stratives and quantifiers into one UPOS tag (DET)
and into one UD Relation (det), resulting in the
‘Determiners & Quantifiers’ macro-category. At the
language-specific level several individual POS tags
and UD Relation subtypes are used; for instance,
in Slavic languages quantifiers get two specific sub-
types, det:numgov and det:numposs, and
morpho-syntactic features of numerals can be spec-
ified using additional UD Relation subtypes.

Our methodology combines two layers of UD an-
notations, UPOS and UD Relations, with manually-
compiled and language-specific lists of lemmata.
We test the methodology against a parallel corpus
of fiction texts and their translations in 10 Indo-
European languages; given their particular genre,
these texts are quite challenging for parsers that
are mostly trained on non-fiction data such as Wiki
and News. Following previous studies, we employ
here Shannon’s entropy as a metric for word order
variation.

2 Related work

Since its inception in 2015 (Nivre et al., 2015),
UD has been widely used in corpus-based stud-
ies on word order variability. However, as earlier

36



mentioned, corpora used in previous studies are
“dependency corpora of the HamleDT 2.0 and Uni-
versal Dependencies 1.00” (Futrell et al., 2015),
“the Universal Dependencies Treebank version 2.2”
(Naranjo and Becker, 2018), “a selection of 55
treebanks from Universal Dependencies v2.4” (Yu
et al., 2019), “Surface-Syntactic Universal Depen-
dencies (SUD) [treebanks]” (Gerdes et al., 2019)
and the “Universal Dependencies project, release
2.1” (Futrell et al., 2020). UD Treebanks can be
considered de-facto gold standards, as large parts
of them are manually compiled or at least semi-
automatically checked for wrong annotations, al-
lowing scholars to work with high quality of data.
However, as UD Treebanks wildly vary across lan-
guages with respect to size and text genres (Lev-
shina et al., to appear), results from most of the
previous works are biased against these factors.
Exceptions are represented by works using the
LISCA parse assessment algorithm (Dell’Orletta
et al., 2013), whose models have been trained
on UD-parsed Wikipedia corpora (Alzetta et al.,
2018) and tested on the so-called ‘reference cor-
pora’, which consist “of a monolingual corpus of
texts from the news and Wikipedia domains [...]
morpho-syntactically annotated and dependency
parsed by the UDPipe pipeline trained on the Uni-
versal Dependency treebanks, version 2.2” (Alzetta
et al., 2020); automatically annotated texts are also
partially employed in Levshina (2019), who uses
eleven UD-parsed corpora from the Leipzig Cor-
pora Collection for one of her case-studies on word
order entropy. Finally, Talamo and Verkerk (to ap-
pear) is a study on word order variation in the nom-
inal phrase and is entirely based on parallel texts
that are parsed by the UDPipe pipeline trained on
UD treebanks v.~2.5. To the best of our knowl-
edge, Levshina (2019) and Talamo and Verkerk (to
appear) are the only studies on word order varia-
tion combining UD Relations with other annota-
tion layers; although her methodology is not fully
disclosed, Levshina (2019) applies the UPOS an-
notation layer to the head in her first case study,
where word order variability is taken from a syntac-
tic perspective, and the wordform annotation layer
to the dependent in her second case-study, where
word order variability is investigated with respect
to the lexically specific level; Talamo and Verkerk
(to appear) take a step further and operationalize
this methodology by introducing several combina-
tions of UD Relation and UPOS annotation layer

to restrict either the head, the dependent or both,
and introducing language-specific list of lemmata
to match modifiers at the lexical level.

3 Data and Methods

3.1 Corpus

We use the Parallel Corpus of Indo-European Prose
and more (CIEP+: Talamo and Verkerk, to appear),
which features prosaic texts and their translations
in more than 30 languages; we select a sample of
10 Indo-European languages, belonging to the fol-
lowing branches: Balto-Slavic (Lithuanian, Polish),
Celtic (Irish), Germanic (Danish, Dutch and Ger-
man), Greek (Modern Greek), Romance (French,
Portuguese and Spanish). All languages feature 18
books (approximately 120K of sentences for each
language), with the exception of Irish that features
5 books (approximately 13K of sentences).

The corpus has been parsed using Stanford
Stanza1 with pre-trained UD Models2 for the 10
languages. The resulting CoNLL-U files are pro-
cessed with a Python script using the pyconll li-
brary3. The script extracts the occurrences of the
specific UD Relations (see below) and determines
the relative position of head and dependent; for
each occurrence, we collect the following annota-
tion fields for both the head and the dependent: UD
Relations, UPOS tag and lemma.

Scripts and dataset, with the exception of the
parsed corpus containing copyrighted texts, are
available in the Supplementary Material4.

3.2 Tweaking the UD annotations

Working with a dependency grammar, the most im-
portant annotation layer is represented by the UD
Relations, which identifies the head and the depen-
dent within the phrase; for our case study, we deal
with various dependents (Table 1) and one type of
head, the noun. This basic layer of annotation is
then combined with other layers of annotation. By
formulating the categories in Table 1 as compara-
tive concepts (Haspelmath, 2010), we seek to inte-
grate cross-linguistic definitions with the different
layers of annotation (see ‘Comparative Concepts

1Version 1.3.0 https://stanfordnlp.github.
io/stanza/

2Version 2.8 https://stanfordnlp.github.io/
stanza/available_models.html

3https://pyconll.readthedocs.io/en/
stable/

4https://doi.org/10.5281/zenodo.
6580701
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Category UPOS UD Relation
nominal head NOUN, PROPN -
article DET det
demonstrative DET PRON det
quantifier DET ADJ ADV PRON det det:nummod det:numgov
numeral NUM nummod nummod:entity nummod:gov nummod:flat

Table 1: Values used to capture the categories of nominal heads, articles, demonstratives, quantifiers and numerals.
Non-specific values are given in italics.

and Universal Dependencies’ in the Supplementary
Material).

Elaborating on Talamo and Verkerk (to appear),
we propose three combinations, with each combi-
nation building on top of the previous one. The first
combination, rel, uses the specific UD relation
for the dependent, thus corresponding to most of
the approaches taken in previous works; the second
combination, rel+upos, adds the UPOS layers,
using specific UPOS tags for the nominal head, and
specific and non-specific UPOS tags for the depen-
dent; the third combination, rel+pos+lemma,
introduces language-specific list of lemmata for the
dependent.

With ‘specific’ UPOS tags we refer to the values
that are described by the UD Annotation Guide-
lines5 as relevant for the investigated categories;
we additionally add non-specific UPOS tags, which
are based on the consultation of descriptive gram-
mars and on the comparison of UD-parsed texts
across the ten languages of the sample. See Ta-
ble 1 for a detailed list of these values. Finally,
language-specific lists of lemmata are aimed to
capture the three components of the ‘Determiners
& Quantifiers’ macro-category, namely, articles,
demonstratives and quantifiers; we use these lists
of lemmata, which are compiled using descriptive
grammars and with the aid of native speakers, in
intersective queries (positive match) on the lemma
field for articles, demonstratives and quantifiers,
and in non-intersective queries (negative match) on
the lemma field for numerals.

3.3 Metrics
Word order variability is assessed using Shannon’s
entropy:

H(X) = −
n∑

i=1

P (xi) log2 P (xi)

5https://universaldependencies.org/
guidelines.html

where the upper bound of summation, n, is set
to 2, indicating that there are two possible word
order patterns i.e., the modifier is either prenominal
or postnominal, and P represents the probability
of the two order patterns; the resulting value of
entropy is given in bits and ranges from 0 (only
one of the two word order patterns is attested) to 1
(both word order patterns are attested with the same
probability). For instance, we find in the Danish
part of CIEP+ 5089 occurences of postnominal
nummod (and subtypes) and 1392 of prenominal
nummod (and subtypes), with a resulting entropy
of .75.

4 Results

As shown in the left panel of Figure 1, en-
tropy values captured by the second combination,
rel+upos, are significantly lower than values
captured by the rel combination. This is particu-
larly clear for numerals, which display a substantial
drop in entropy in half of the languages; further-
more, in some languages the entropy of numerals is
reduced to near-zero values (German: .02, French
and Irish: .04, Polish: .06). As for determiners &
quantifiers, the introduction of the UPOS layer is
overall less significant; a significant reduction of en-
tropy is observed only for three languages (Greek,
Lithuanian and Spanish). This is partly due to the
low value of entropy already captured by the rel
combination, but it also reflects the biunivocal rela-
tion between the DET UPOS tag det and the UD
Relation and its subtypes; by contrast, the nummod
UD relation and its subtypes are not in biunivocal
relation with the NUM UPOS tag, since, as already
mentioned above, this UD Relation is often used
with quantifiers as well. The third combination,
which adds language-specific lists of lemmata to
the UPOS and UD Relation layers and is plotted in
the right panel of Figure 1, allows us to zoom in
on the entropy of determiners & quantifiers, disen-
tangling the category into articles, demonstratives
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Figure 1: Left: entropy values for the categories of determiners & quantifiers and numerals, as captured by the rel
combination and the rel+upos combination. Right: entropy values for the categories of articles, demonstratives,
quantifiers and numerals, as captured by rel+pos+lemma combination.

and quantifiers; although the entropy of determin-
ers & quantifiers is extremely low for all languages
of the sample, two languages have moderate val-
ues of entropy for demonstratives or quantifiers.
More specifically, Irish has the highest value of
entropy for quantifiers (.71), while Greek the high-
est value for demonstratives (.59). According to
Stenson (2020, 189-192), the position of quanti-
fiers in Irish is lexically determined; most Irish
quantifiers precede the noun, while few follow it;
postnominal quantifiers include the high-frequency
lexeme uilig ‘all’, which explains the high entropy
of Irish quantifiers. As for Greek, the high value
of entropy for demonstratives can be accounted on
a pragmatic and semantic basis, as postnominal
demonstratives have an emphatic reading (Lascara-
tou, 1998, 164). Furthermore, low-to-moderate
values of entropy are observed for quantifiers in
Portuguese (.30) and Spanish (.10) and for demon-
stratives in Portuguese (.15). As for numerals, we
use language-specific lists of quantifiers as nega-
tive matches against the lemma field; this approach
is however of little use, as entropy values captured
by the third combination are the same of the sec-
ond combination. Thanks to the introduction of
language-specific list of lemmata, the third com-
bination is suitable for closed categories such as
articles, demonstratives and quantifiers, while the
second combination is already effective for captur-
ing open categories such as numerals.

5 Conclusion

We have discussed a methodology to extract with
better accuracy word order patterns from CoNLL-
U files obtained from the automatic parsing of raw
texts; the methodology, which exploits different
UD annotation layers and language-specific list of
lemmata, is exemplified on the heterogenous lexi-
cal categories of determiners and numerals, whose
word order patterns are analyzed in a parallel cor-
pus of 10 Indo-European languages. We have
shown that the methodology is able to correct some
of the errors introduced by the automatic parsing
and inconsistent use of UPOS tags and UD Rela-
tions, thus improving the quality of the analysis, as
shown with the category of numerals. Furthermore,
the methodology sheds light on areas of variability,
which were previously hidden by the UD lumping
of articles, demonstratives and quantifiers into a
unitary category. Given the very high frequency of
articles, whose variability is close to zero, this uni-
tary category displays very low values of entropy
across languages; once this unitary category is split
into its three components, some languages show
moderate-to-high levels of entropy with respect to
demonstratives (Greek) and quantifiers (Irish and
Portuguese).
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Abstract

This paper introduces a database for crosslin-
guistic modal semantics. The purpose of this
database is to (1) enable ongoing consolidation
of modal semantic typological knowledge into
a repository according to uniform data stan-
dards and to (2) provide data for investigations
in crosslinguistic modal semantic theory and
experiments explaining such theories. We de-
scribe the kind of semantic variation that the
database aims to record, the format of the data,
and a current snapshot of the database, empha-
sizing access and contribution to the database
in light of the goals above. We release the
database at https://clmbr.shane.st/
modal-typology.

1 Introduction

Modals—expressions used to talk about situations
other than the actual one—are ubiquitous in natural
language and have been the focus of intense study
in the semantics thereof (Kratzer, 1981; Portner,
2009; Matthewson, 2019). An increasingly large
body of work has gathered data on the crosslinguis-
tic variation in this domain, i.e. the ways in which
languages agree and differ in their mechanisms
for expressing modality (Rullmann et al., 2008a;
Vander Klok, 2013b; Cable, 2017, i.a.).

This paper introduces and describes a Modal Ty-
pology Database: a repository that consolidates
much of this crosslinguistic knowledge in a for-
mat that is uniform and easy both to consume and
to produce. Such a resource can play several en-
abling roles in semantic typology research. For
example, it can enable the verification of robust
semantic universals (Nauze, 2008; Vander Klok,
2013b; Steinert-Threlkeld et al., 2022) and pos-
sibly trigger the formulation of new ones. Simi-
larly, these data and their format can be used in
comparison to artificial languages to attempt to
explain what pressures have shaped semantic ty-
pology in the domain of modality, as has been

done in several other domains (Kemp and Regier,
2012; Zaslavsky et al., 2018; Steinert-Threlkeld
and Szymanik, 2019, 2020; Steinert-Threlkeld,
2021; Denić et al., 2022; Mollica et al., 2021; Ue-
gaki, 2022, i.a.).

After describing some of what is known about
the variation in modals (Section 2), we describe a
data schema for representing particular axes of vari-
ation (namely: force and flavor) in modals cross-
linguistically in a relatively theory-netural manner
(Section 3.1). We then (Section 4) describe how to
access this data, which we make available in two
distinct formats: a ‘basic’ format, and one that con-
forms to the Cross-Linguistic Data Formats (CLDF;
Forkel et al. 2018) schema. We illustrate how to
use these data to verify a semantic universal in
Section 4.3, before explaining how researchers can
contribute their own data (Section 5) and provid-
ing a snapshot of what data the database currently
has (Section 6). We provide a discussion around
future directions in Section 7 before summarizing
the present work in Section 8.

2 Modal Typology

Modals are expressions that are used to talk about
alternative ways the world could be, over and above
the way the world actually is. Languages utilize
various syntactic forms to express modality. For
example, English uses auxiliary verbs like may and
must as modals, in addition to adjectives like possi-
ble; Javanese makes use of auxiliaries, a main verb,
and several adverbs (Vander Klok, 2013a). Since at
least Kratzer (1981), the semantics of modals have
been explicated in terms of two axes of variation:
force and flavor. These axes can be illustrated with
the examples listed in table 1.

The must examples exhibit strong (i.e. universal)
force, but differ in flavor. For example, (1) in the
table 1 can be glossed as saying: all of the worlds
compatible with my evidence are worlds in which
it is raining. The universal quantification represents
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Context Expression Axes Values

(1) A friend walks in and shakes off a wet
umbrella. You say:

It must be raining. strong epistemic

(2) You are reading the specifications of
a homework assignment. It partially
reads:

You must upload your
homework as a PDF.

strong deontic

(3) A friend is leaving and grabs an um-
brella on the way out, saying:

It may be raining weak epistemic

(4) A mother offers a treat to a child for
finishing an assignment, saying:

You may have a cookie weak deontic

Table 1: Examples of force and flavors in English.

the force, and the domain of worlds (those com-
patible with my evidence) the flavor, in this case
epistemic. (2) exhibits universal force with deontic
flavor, roughly saying that all the worlds in which
you follow the rules are ones in which you upload
a PDF. The examples with may in (3) and (4) ex-
hibit weak (i.e. possibility) force: their meaning
says that some world satisfies the prejacent. (3)
and (4) again differ in flavor, with the former being
epistemic and the latter being deontic. In addi-
tion to epistemic and deontic flavors, many others
have been identified: bouletic (worlds in which
desire are fulfilled), teleological (worlds in which
goals are satisfied), et cetera. Similarly, there are
arguably more forces than just weak and strong:
for instance, there are weak necessity modals (e.g.
should, ought) which intuitively express univer-
sal quantification over a smaller domain of worlds
(von Fintel and Iatridou, 2008). See Matthewson
2019 and references therein for further discussion
of these two axes. The examples above show that
English modals lexically specify modal force (each
modal has a fixed quantificational force) but exhibit
variability across flavors (the modals can express
more than one flavor). We note that such variabil-
ity does not require that all modals in English can
express multiple flavors: for instance, might ar-
guably can only be used epistemically. Kratzerian
semantics for modals capture this by hard-coding
quantificational force into the meaning of a modal
but relying on context to determine the flavor.1

Not all languages are like English: some exhibit
so-called variable force modals, which specify fla-
vor but not force. This has been found at least in

1Typical implementations determine the flavor as the prod-
uct of two parameters: a modal base and an ordering source.
We set aside this distinction for present purposes and focus
only on flavor.

St’át’icmets (Rullmann et al., 2008a), Nez Perce
(Deal, 2011), Old English (Yanovich, 2016), and
Pintupi-Luritja (Gray, 2021). We illustrate the phe-
nomenon with elicited examples of St’át’icmets
k’a:2

(5) [Context: You have a headache that won’t
go away, so you go to the doctor. All
the tests show negative. There is nothing
wrong, so it must just be tension.]

nilh
FOC

k’a
INFER

lh(el)-(t)-en-s-wá(7)-(a)
from-DET-1SG.POSS-NOM-IMPF-DET
ptinus-em-sút
think-MID-OOC

‘It must be from my worrying.’

(6) [Context: His car isn’t there.]

plan
already

k’a
INFER

qwatsáts
leave

‘Maybe he’s already gone.’

Example (5) shows k’a being used with strong
force and epistemic flavor. Example (6) shows
k’a being used with weak force and epistemic fla-
vor. Further analysis in Rullmann et al. (2008a)
shows that k’a can only be used with epistemic
flavor, so it is an example with lexically specified
flavor but variable force. Finally, some languages
have modals which exhibit variability along both
the force and flavor axes. Bochnak (2015b,a) has
argued that the modal verb -eP in Washo can be
used in both possibility and necessity contexts with

2These are examples (5c) and and (5e) from Rullmann
et al. 2008a, p. 321. See their footnote 5 on p. 320 for the
abbreviations.
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a range of modal flavors. Similarly, Močnik and
Abramovitz (2019) demonstrate that the Koryak
attitude verb iv@k can be used to express both ne-
cessity and possibility. For the doxastic flavor, this
means that iv@k can be used to mean roughly ‘be-
lieve’ (necessity) as well as ‘allow for the possi-
bility that’ (possibility). They also argue that the
expression can be used to express both doxastic
and assertive flavors, thus demonstrating variability
on both axes.3

3 Representing Modal Semantics in a
Database

A database for cross-linguistic modal semantics
should be theory-neutral while still capturing the
basic parameters of variation and facts upon which
linguists agree. A natural way to proceed is to
simply record the flavors and forces a particular
modal can be used to express. We elaborate on this
analysis in the following subsections.

3.1 General Framework

We assume that force and flavor are fundamentally
properties of contexts of use. This reflects current
practice in semantic fieldwork as applied to modal-
ity (Matthewson, 2004; Bochnak and Matthew-
son, 2020; Vander Klok, 2021).4 For example, the
modal questionnaire of Vander Klok 2021 consists
exactly of discourse contexts designed to isolate
a single force-flavor pair. These contexts can be
used at least for elicitation, translation, and accept-
ability tasks. Specifically, we will say that a modal
M can express a force-flavor pair just in case a
bare positive sentence of the form Mp is judged
felicitous in a context with that pair.5 For example,
English must can express the pair (universal, deon-
tic) because there is a reading for that pair under the
context in 1 in table 1. Here we identify a modal
as the set of (force, flavor) pairs that it can express.
We intend this level of modeling to apply to the
expression of modality by diverse syntactic means
(as mentioned in the Introduction), and not to be

3There are also apparently bouletic uses of iv@k, but
Močnik and Abramovitz (2019) argues that this flavor does
not come from iv@k alone but from interaction with material
in the embedded clause.

4In addition to the particular studies already mentioned,
see Matthewson 2013; Cable 2017 for more examples of the
application of these methods.

5We intend ‘judged felicitous’ to also include the case
where such sentences are produced naturally in elicitation
tasks, as well as when such sentences are found in naturally-
occuring contexts which have a clear force-flavor pair.

specific to any one syntactic category. A language
is (generously) identified as a list of modals.

We adopt this level of generality because it
avoids commitment on the exact formal seman-
tics of these expressions, which is often still being
debated. For example, we can say that a variable
force modal is one that can express more than one
pair with the same force. This is useful because
there are two broad approaches to the semantics
of such variable force modals: they actually en-
code existential quantification but lack a universal
scalemate (Deal, 2011) or they encode universal
quantification but rely on some mechanism of do-
main restriction (Rullmann et al., 2008a; Bochnak,
2015a; Močnik and Abramovitz, 2019). On such
analyses, the underlying semantics contains one
specific quantifier; in the present setting, they will
still be considered variable force since bare positive
sentences are used in contexts with multiple forces.

This approach to encoding the semantics of
modals allows straightforward evalutation of uni-
versals, such as proposed by Nauze (2008), Van-
der Klok (2013b), and Steinert-Threlkeld et al.
(2022) which are testable hypotheses and potential
targets of explanation. All of these modal semantic
universals are formulated constraints on the kinds
of sets of (force, flavor) pairs found in any human
language. For example, Steinert-Threlkeld et al.
(2022) propose the INDEPENDENCE OF FORCE

AND FLAVOR (IFF) universal: All modals in natu-
ral language satisfy the independence of force and
flavor property: if a modal can express the pairs
(fo1, f l1) and (fo2, f l2), then it can also express
(fo1, f l2) and (fo2, f l1). A database that catalogs
which force-flavor pairs are expressed by various
modals cross-linguistically can thus be used to em-
pirically verify whether this universal holds unre-
strictedly or at least very robustly. In Section 4.3
we show how our database can be used in exactly
this way.

3.2 Concrete Schema

We can implement the above framework accord-
ing to the principles of tidy data (Wickham, 2014).
Such tabular data has the following properties: ev-
ery column is a variable, every row an observation,
and every cell a value. According to the frame-
work just described, a basic observation in cross-
linguistic modal semantics says that a particular
modal expression can or cannot express a particu-
lar (force, flavor) pair.
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Our basic data schema, accordingly, will be a
table with four columns (we also record metadata
about the language of an expression, in a way de-
tailed in the next section):

1. expression: the name of the particular expres-
sion

2. force

3. flavor

4. can_express: a binary variable, with 1 mean-
ing that the expression can express the pair of
values in the force and flavor columns, and a
0 meaning that it cannot.6

with each row being one observation. For example,
we can represent the fact that English may can
only be used to express weak epistemic and weak
deontic combinations as follows:

expression force flavor can_express

may weak epistemic 1
may weak deontic 1
may strong epistemic 0
may strong deontic 0

Table 2: Example of our basic data format for English
may.

A note about possible values of force and flavor:
while these are generally thought to be shared cross-
linguistically, our data format does not commit to a
pre-specified ontology of either. In particular, in or-
der to capture the fact that certain languages make
different / finer distinctions than others, we aim to
be as liberal as possible in recording featural diver-
sity. The consequences of balancing these goals are
that during data collection the list of modal forces
or flavors might not be completely exhaustive and
disjoint. Later on, features can be collapsed or re-
named as necessary, as the database grows, or as
particular analysis needs require. For example, the
English possibility modal can expresses deontic
and circumstantial flavors, and so may be consid-
ered a “root” modal, but we aim for precision by

6We also will sometimes use a ‘?’ in this column to indi-
cate that it is unclear. As an example, in Tlingit (Cable, 2017),
there are some cases where the author writes that it is implau-
sible that an expression can express a particular force-flavor
pair, but that there has not been concrete negative evidence to
support that judgment. We record cases such as those with a
‘?’.

recording deontic and circumstantial flavors rather
than a higher-level grouping. Similarly, it is pos-
sible that when recording data from a descriptive
grammar, one will find a unique or nonstandard
name for a possible flavor. One can record that fla-
vor as given in that grammar, and in a later analysis
step, attempt to map that flavor value onto ones that
are used in other resources.

On the force side, we are primarily intended
in capturing weak, strong, and weak necessity
modals, setting aside for the time being the full
range of possibilities of graded modality, includ-
ing probabilistic expressions (Kratzer, 1981; Port-
ner, 2009; Klecha, 2014; Lassiter, 2017). At the
present state of theorizing, there is not enough
concensus about their typology. That being said,
on some approaches to graded modality, the
database as currently structured could be easily
modified or extended to include some aspects of
them: if graded modals are genuinely scalar terms
(Klecha, 2014; Lassiter, 2017; Bowler and Gluck-
man, 2021), then features from the semantics of
gradable expressions such as scale-type and the
minimum/maximum/relative distinction could be
recorded (Kennedy and McNally, 2005; Kennedy,
2007).

4 Accessing the Database

The database may be found at https://clmbr.
shane.st/modal-typology. This landing
page—which will contain more information in the
future—will point the reader to a repository con-
taining the data. It is made publicly available in two
formats. First, we have a ‘raw’ format: this is ori-
ented around individual languages and is designed
to make it easy for linguists to contribute new data.
We describe this format in the next subsection (4.1)
and how to contribute in Section 5. Secondly, we
have a script to convert the raw format into a Cross-
Linguistic Data Formats (CLDF; Forkel et al. 2018)
format, which has several benefits of its own that
are described in more detail in Section 4.2. We
then demonstrate one of these benefits, by showing
how to verify the IFF universal using the data in
the database (in either format) in Section 4.3.

4.1 Basic Format

The basic format, found in the basic-format/
sub-directory, contains information both at the
language-level and then aggregated across lan-
guages. We explain these types of data in turn.
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To see the data for one language, we will look
at Tlingit. The data for this language comes from
the fieldwork reported in Cable 2017. To access it,
go to the sub-folder named Tlingit. There, you
will find two files:

1. metadata.yml: this contains information
about the language and the source(s) from
which the modals data was compiled. In par-
ticular:

• Glotto code: this is an ID for the lan-
guage from Glottlog7 (Hammarström
et al., 2021)

• Reference: a citation for the source
• Reference_key: a BibTeX key to a

shared bib file (described below)
• URL: a URL to find the reference
• Reference_type: the type of source that

the reference is
We note that this will be especially use-
ful in distinguishing languages where the
information derives from targeted seman-
tic fieldwork (as in the present case of
Tlingit) and from descriptive grammars.
The latter tends to lack explicitly nega-
tive evidence, upon which some analy-
ses may depend, and so those languages
may need to be excluded.At present, the
values for this field that exist in our
database are ‘paper_journal’ and ‘refer-
ence_grammar’.

• Complete_language: whether the refer-
ence purports to describe the complete
modal system of the language or not.
Many sources only provide data for
some, but not all, modals. Such
expression-level data is still very useful,
but researchers may wish to exclude in-
complete languages from analyses at the
language level.

2. modals.csv: this is a comma-separated-
value (CSV) file, containing the core data in
the format described in the previous section

Popping back out to the main
basic-format/ directory, there are sev-
eral aggregated data files that are generated
automatically from the language-specific data:

7See https://glottolog.org

• all_observations.csv: this effec-
tively concatenates modals.csv from each
language, while also adding columns identify-
ing which language the relevant modal in the
observation comes from.

• all_metadata.csv: this aggregates the
metadata from each language and puts it into
one CSV table.

• all_modals.csv: this presents a new
view of the aggregated data at the level of in-
didivudal modals. In particular, each row cor-
responds to one expression in one language.
In this table, there are columns for each (force,
flavor) pair, with the corresponding value from
the can_express column from the relevant
modals.csv file in that cell. This allows re-
searchers to see the set of force-flavor pairs
that each modal expresses in one place, and
may assist analyses that depend on that set.
Note: If a particular (force, flavor) pair was
not annotated for a given modal in a given lan-
guage, there will be an “NA” as the value in
that column in this file. This should be viewed
as a distinct value from either 1, 0, or ?.

All of these files are generated by running the
R script combine_data.R, which also exists in
this directory. There are three more files present in
this directory: one for forces, one for flavors, and a
BibTeX file containing all of the reference material.
We will mention these in more detail in Section 5,
when explaining how to contribute to the database.

4.2 CLDF Format
While the raw format described above is the easiest
for human consumption and for contribution by
field linguists (see 5), we have also implemented a
script that converts the raw data into a database in
the Cross-linguistic Dataset Format (CLDF; Forkel
et al. 2018). This dataset format—which under-
lies resources such as the World Atlas of Language
Structures (WALS; Dryer and Haspelmath 2013)
and Glottolog (Hammarström et al., 2021)—was
designed to make the myriad cross-linguistic data
being collected “FAIR”: Findable, Accessible, In-
teroperable, and Reusable. While the raw dataset
formats are also based on a set of tables in CSV
format, it comes with tools (e.g. the Python li-
brary pycldf8) for converting those into other for-
mats such as an SQLite database, which can enable

8https://github.com/cldf/pycldf
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researchers to asked detailed questions in a full-
powered query language.

Similarly, data in CLDF format can be consumed
by the tools from the Cross-Linguistic Linked Data
project9, which can be used for instance to develop
interactive web applications to interact with the
data. Such an application could for example, pro-
vide a graphical interface for research to explore
which (force, flavor) pairs are most frequently ex-
pressed across the recorded languages, which sets
of pairs tend to be expressed by the same mor-
phemes, which languages satisfy certain semantic
universals (as they are proposed), and so on. Com-
pared to reading each cited descriptive resource for
a given language, these data tools could provide
quick initial answers to questions about modal ty-
pology that may otherwise take significant time to
explore at the same level of detail.

While we refer the reader to the aforementioned
reference and their webpage10 for more informa-
tion and motivation about this format, we here
outline some of its properties in order to high-
light novel changes that were necessary for our
database. CLDF defines specifications for two
types of dataset at the highest level: Wordlist
and StructureDataset. A Wordlist is intended to
capture lexicon-level information, associating con-
cepts with lexical items in a language (often linking
to external resources for the available concepts).
The World Loanword Database (WOLD; Haspel-
math and Tadmor 2009) is a paradigm example. A
StructureDataset primarily captures grammatical
features at the language level: a basic entry says
that a particular language has a paritcular value for
a particular parameter. The World Atlas of Lan-
guage Structures (WALS; Dryer and Haspelmath
2013) is a paradigm example.

Our data, however, can be seen as a mix of these
two types of data: we are recording feature values
(e.g. can_express), but at the lexical level, not the
language level. We have implemented this in the
following way: in addition to language-level param-
eter and value tables (which record which modals
exist in which languages), we have also added unit
parameter and unit value tables, which record the
exact observations about which modals can express
which force-flavor pairs as recorded in the basic-
format. We refer the reader to the README.md
file in the cldf-format subdirectory for more

9https://clld.org/
10https://cldf.clld.org/

information on the exact tables in this dataset. We
also note that CLDF was designed with extensbi-
ility in mind; it is possible that this dataset format
will get added to the standard in the future if more
datasets are released with the use of it.11

The CLDF Format of the data is automatically
generated from the basic format by running the
script ./build.sh in the root directory. This
script moves basic format data to the appropriate
locations and then executes a CLDFBench (Forkel
and List, 2020) script for converting raw data into
the relevant CLDF tables. We, the maintainers of
the dataset, will run this script whenever a new
contribution to the basic format is made, so that
the CLDF format stays up-to-date. Future work
will explore implementing this via continuous inte-
gration, so that the CLDF format is automatically
built whenever the basic format is updated, without
human intervention.

4.3 Case Study: Verifying the IFF Universal

We here provide a small proof-of-concept of the
kind of cross-linguistic semantic research that can
be benefited from and enabled by the kind of
database that we are releasing here. In particular,
we show how to query the data to check whether
the IFF universal described in Section 3.1 holds. As
more data gets added to the database, we can easily
and continuously search for counterexamples to
this proposed universal. We provide examples of
doing this in both data formats.

4.3.1 Basic Format
Running the file iff.py in the basic-format
directory performs a simple check of
all_observations.csv for expressions
that do not satisfy IFF as stated, and outputs
the language, expression, and its corresponding
observations for inspection. At the time of writing,
there are no counterexamples to the universal in
our database.

4.3.2 CLDF Format
One other advantage of the CLDF format and
toolkit is that it enables researchers to define
custom commands that can be run on the command-
line to either manipulate the data or verify certain
properties thereof. We have illustrated this
functionality by implementing a small command

11See discussion here about this dataset format: https://
github.com/cldf/cldf/issues/117. We are grate-
ful to Robert Forkel for his assistance here.
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that checks whether the data supports the IFF
Universal described above in Section 3.1. In
particular, running cldfbench modals.iff
from the cldf-format/ directory will execute
a Python script for verifying whether every
modal in the database satisfies the IFF univer-
sal. (The actual implementation can be found in
cldf-format/modalscommands/iff.py.)

5 Contributing to the Database

We have designed the database—and the basic
format in particular—to be structured in a way
that makes it easy for linguists to contribute new
data from languages that they are studying. As
the primary data resides in a GitHub repository,
contributing relies heavily on the mechanism of
forking and submitting a pull request; for more
information on those specific mechanics, we re-
fer to their documentation.12 The basic process
for contributing data from a new language goes as
follows (with further details provided in the file
CONTRIBUTING.md in the repository):

1. Fork the GitHub repository and edit or cre-
ate a new folder for your language in the
basic-format directory of the repository.

2. Add a metadata.yml file with the informa-
tion as described in Section 4.1. You can start
by copying an existing such file if desired.

3. Edit basic-format/sources.bib
with the BibTeX information of the descrip-
tive source of your data. Note that the key
used in this entry should exactly match the
value for ‘Reference_key’ in the metadata
file.

4. Add a modals.csv file to your folder,
with the corresponding observations.
Columns should be: expression, force, flavor,
can_express, notes.

5. Optional: run the combine_data.R script to
combine this new data with the existing aggre-
gate data files. (If a contributor does not want
to do this step, we are happy to do this upon
merging the new data into the main reposi-
tory.)

12In particular, the “Working with forks” and “Cre-
ating a pull request from a fork” sub-pages of https:
//docs.github.com/en/pull-requests/
collaborating-with-pull-requests.

6. Submit a pull request to the main repository
from your fork.

We will use the pull request interface to note any
minor formatting issues and have any necessary
discussions of the new data. After that quick pro-
cess, we will merge your new data into the main
database, and run the relevant scripts to join it with
the rest of the data, including in the CLDF format
version.

6 Snapshot

At the time of writing, we have added data from
17 languages to the database. Some information
about these languages, including the reference (and
its type) that we used to gather this data, may be
found in Table 3. Five of the 17 languages have
data coming from detailed semantic fieldwork (the
ones with ‘paper_journal’ as their type), with the
rest of the data coming from descriptive grammars.
There are at present 435 unique observations in our
aggregate data file all_observations.csv,
each one corresponding to one judgment that a par-
ticular modal in a language can or cannot express a
particular force-flavor pair.

7 Discussion

Most langauges (12 out of 17) in Table 3 are gath-
ered from descriptive sources, i.e. reference gram-
mars that provide general descriptions of the lan-
guages. While these languages add diversity to
our typology database, the data often lack nega-
tive judgements for the relation between expression
forms and force-flavor pairs. In other words, it is
very often difficult to tell whether an expression
cannot express a force-flavor pair (i.e. to categorize
any expression form and force-flavor pair with a
can_express value being 0) from a reference gram-
mar. Researchers conducting analyses with lan-
guages with data from reference grammars should
beware of this lack of negative data when proceed-
ing. The data stemming from controlled semantic
fieldwork tends to provide more negative and more
complete data.

While those data tend to come from under-
studied languages, the methodologies used could
be deployed to generate more conistent data for
many ‘high-resource’ languages by eliciting data
through crowdsourcing, which has been shown
to produce high-quality semantic typology data
(Beekhuizen and Stevenson, 2015). The question-
naire of Vander Klok 2021 provides a template for
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Language Glotto.code Reference.key Reference.type Complete.language

Donmari doma1258 (Matras, 2012) reference-grammar True
Gitksan gitx1241 (Matthewson, 2013) paper-journal True
Goemai goem1240 (Hellwig, 2011) reference-grammar True
Hinuq hinu1240 (Forker, 2013) reference-grammar True
Hup hupd1244 (Epps, 2005) reference-grammar True
Jamul-Tipay kumi1248 (Miller, 2001) reference-grammar True
Javanese-Paciran java1254 (Vander Klok, 2013a) paper-journal True
Kwaza kwaz1243 (Voort, 2004) reference-grammar True
Lillooet-Salish lill1248 (Rullmann et al., 2008b) paper-journal True
Logoori logo1258 (Gluckman and Bowler, 2020) paper-journal True
Mani bull1247 (Childs, 2011) reference-grammar True
Mian mian1256 (Fedden, 2011) reference-grammar True
Nuosu sich1238 (Gerner et al., 2013) reference-grammar True
Qiang nort2722 (LaPolla and Huang, 2003) reference-grammar True
Tlingit tlin1245 (Cable, 2017) paper-journal True
Tundra-Nenets nene1249 (Nikolaeva, 2014) reference-grammar True
Vaeakau-Taumako pile1238 (Næss, 2011) reference-grammar True

Table 3: Snapshot of current metadata in the Modal Typology Database. Note: we have replaced the ‘Refer-
ence.key’ column with actual references using those keys.

the desired crowdsourcing elicitation process. The
questionnaire establishes discourse contexts to re-
treive modal expressions for various force-flavor
pairs. It underspecifies the form of targeted tasks to
preserve its adaptablity. Future work could investi-
gate applicable crowdsourcing procedures and how
to adapt the questionnaire to elicit the expected
form of data. This should enable the production
of more complete data with negative examples for
many languages.

8 Conclusion

This paper introduced the Modal Typology
Database, a public repository for typological data
on the semantics of modals across langauges. It
is intended to be a living database for consolidat-
ing cross-linguistic knowledge about modal se-
mantic variation and evaluating and explaining
modal semantic universals, among other possible
uses. As an example, a recent efficient commu-
nication analysis of modal typology by Imel and
Steinert-Threlkeld (2022) compared artificial lan-
guages based on how many modals therein satisfy
particular universals; this analysis could be sup-
plemented with the data presented here to directly
compare natural and artificial languages. We have
presented a simple model for expressing parame-
ters of variation of the semantics of modals in a
theory-neutral manner and outlined how the data
are structured as well as how anyone (theoretical

linguists, fieldworkers, etc.) may contribute new
data. We encourage others to both consume and
produce these data, and to reach out to discuss any
issues that arise therein.

In addition to expanding the core database with
more data and encouraging other uses thereof, fu-
ture work will focus on building visualization and
other tools for interacting with the data in a more
user-friendly way. (The CLDF format of the data
may be especially well-suited to these goals.) The
data schema may also be extended to include more
information about the syntactic forms of the expres-
sion of modality (possibly using elements of the
CLDF schema for forms), in addition to the phe-
nomena of gradable modals and other expressions
that often partially contribute modality as well (e.g.
tense, evidentiality).
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Abstract
This study describes the structure and the re-
sults of the SIGTYP 2022 shared task on the
prediction of cognate reflexes from multilin-
gual wordlists. We asked participants to submit
systems that would predict words in individ-
ual languages with the help of cognate words
from related languages. Training and surprise
data were based on standardized multilingual
wordlists from several language families. Four
teams submitted a total of eight systems, in-
cluding both neural and non-neural systems,
as well as systems adjusted to the task and sys-
tems using more general settings. While all sys-
tems showed a rather promising performance,
reflecting the overwhelming regularity of sound
change, the best performance throughout was
achieved by a system based on convolutional
networks originally designed for image restora-
tion.

1 Introduction

In historical-comparative linguistics, scholars typi-
cally assemble words from related languages into
cognate sets. In contrast to the notion of cog-
nacy in language teaching and synchronic NLP
applications, cognate sets are understood as sets
of words that share a common origin regardless of
their meaning in historical-comparative linguistics
and that should not contain borrowed words. The
individual members of a cognate set are typically
called cognate reflexes or simply reflexes (Trask,
2000, 278). Cognate reflexes typically show regular
sound correspondences. This means that one can
define a mapping across the individual phoneme
systems of the individual languages. Thus, English
t typically corresponds to a German ts (compare
ten vs. zehn), and English d corresponds to Ger-
man t (compare dove vs. Taube). The mappings
often depend on certain contextual conditions and
may differ, depending on the position in which they
occur in a word. With the help of regular sound
correspondences, linguists can often predict fairly

well how the cognate counterpart of a word in one
language might sound in another language. How-
ever, prediction by linguists rarely takes only one
language pair into account. The more reflexes a
cognate set has in different languages, the easier it
is to predict reflexes in individual languages.

1.1 The Reflex Prediction Task

In its simplest form, the data we need for the task
of reflex prediction is a table in which each column
represents a different language and each row a dif-
ferent cognate set. We also assume that word forms
(or “reflexes” of a cognate set) are represented in
standardized phonetic transcriptions (such as the
International Phonetic Alphabet). Whenever a re-
flex in a specific language is missing, this reflex
can in theory be predicted with the help of the re-
maining reflexes. As an example, consider Table
2, showing reflexes of cognate sets in German, En-
glish, and Dutch. Since the reflex for the BELLY
cognate sets is missing in English, we could try
and predict it from known correspondences to Ger-
man and Dutch. The correct prediction would be
bouk. This form has been still preserved for some
time in English in the meaning of “torso”, going
back to Old English būk “belly” (Pfeifer, 1993),
although it has nowadays come out of use. When
provided with more data of this kind, one can build
a model that would be able to predict an English
form given a German and a Dutch form, as well
as a German form, given a Dutch and an English
form, and so on. Note that not all cognate sets in
real-life data will have reflexes for all words. Thus,
we know about English bouk from dialect records,
but without dialects or written sources from Mid-
dle English, we could only rely on prediction itself
in order to guess how the word would sound if it
would have been retained.

Since predictions for words that have been com-
pletely lost cannot be evaluated directly, we will
base our task on the prediction of artificially ex-
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Training Data
Dataset Source Version Family Languages Words Cognates
*abrahammonpa Abraham (2005) v3.0 Tshanglic 8 2063 403
*allenbai Allen (2007) v4.0 Bai 9 5773 969
*backstromnorthernpakistan Backstrom and Radloff (1992) v1.0 Sino-Tibetan 7 1426 248
*castrosui Castro and Pan (2015) v3.0.1 Sui 16 10139 1048
davletshinaztecan Davletshin (2012) v1.0 Uto-Aztecan 9 771 118
felekesemitic Feleke (2021) v1.0 Afro-Asiatic 19 2583 340
*hantganbangime Hantgan and List (2018) v1.0 Dogon 16 4405 971
hattorijaponic Hattori (1973) v1.0 Japonic 10 1802 278
listsamplesize List (2014) v1.0 Indo-European 4 1320 512
mannburmish Mann (1998) v1.2 Sino-Tibetan 7 2501 576

Surprise Data
Dataset Source Version Family Languages Words Cognates
bantubvd Greenhill and Gray (2015) v4.0 Atlantic-Congo 10 1218 388
beidazihui Běijı̄ng Dàxué (1962) v1.1 Sino-Tibetan 19 9750 518
birchallchapacuran Birchall et al. (2016) v1.1.0 Chapacuran 10 939 187
bodtkhobwa Bodt and List (2022) v3.1.0 Western Kho-Bwa 8 5214 915
*bremerberta Bremer (2016) v1.1 Berta 4 600 204
*deepadungpalaung Deepadung et al. (2015) v1.1 Palaung 16 1911 196
hillburmish Gong and Hill (2020) v0.2 Sino-Tibetan 9 2202 467
kesslersignificance Kessler (2001) v1.0 Indo-European 5 565 212
luangthongkumkaren Luangthongkum (2019) v0.2 Sino-Tibetan 8 2363 379
*wangbai Wang and Wang (2004) v1.0 Sino-Tibetan 10 4356 658

Table 1: Training and surprise data data used in our study. Datasets with identifiers preceded by an asterisk are
those in which we automatically searched for cognates. The remaining datasets all provided expert cognates, which
we used for the shared task. All datasets are archived with Zenodo, and the supplementary material provides a direct
reference to their Zenodo DOI and their GitHub repository URLs.

cluded word forms. Thus, we first take a dataset
with cognates in a few related languages, and then
artificially delete some of the words in the datasets,
using varying proportions. When training a model
to predict the missing word forms, we can then
compare the predicted words directly with the
words we have deleted automatically (List, 2019a).

A special case of the reflex prediction task, su-
pervised phonological reconstruction, focuses on
the prediction of words in ancestral languages, thus
mimicking the process of phonological reconstruc-
tion as one of the key aspects of the traditional
comparative method (Weiss, 2015). While we pre-
dict reflexes in any language in the generic reflex
prediction task, in automated phonological recon-
struction we predict one specific reflex of a cognate
set, viz. the form in the ancestral language. Apart
from the restriction in scope, however, the two tasks
do not differ much, and most methods which solve
the one task could also be used to solve the other.

Cognate Set German English Dutch
ASH a S E æS A s
BITE b ai s @ n b ai t b Ei t @
BELLY b au x - b œi k

Table 2: Exemplary cognate reflexes in German, En-
glish, and Dutch.

1.2 Background on Reflex Prediction

Quite a few studies on cognate reflex prediction
have been published during the past years. Bein-
born et al. (2013) uses character-based machine
translation approaches to predict cognate candi-
dates in a bilingual setting. Bodt and List (2022)
use a method for cognate reflex prediction orig-
inally tested by List (2019a) to predict cognate
reflexes in so far unobserved data, which was
later verified in fieldwork. The method by List
(2019a) uses automatically identified sound corre-
spondence patterns and phonetic alignment anal-
yses in order to predict for a given set of cognate
words how reflexes in languages missing in the cog-
nate set would sound. Meloni et al. (2021) make
use of an encoder-decoder model in order to recon-
struct Latin words from cognate sets in Romance
languages. Fourrier et al. (2021) model cognate
reflex prediction as a low-resource machine trans-
lation task, building several translation models for
Romance languages and using these to evaluate
word prediction accuracy. Dekker and Zuidema
(2021) use recurrent neural networks for cognate
reflex prediction and illustrate how word prediction
can be used to solve additional tasks in computa-
tional historical linguistics, such as phylogenetic
reconstruction or sound correspondence detection.
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List et al. (2022a) build on the framework for sound
correspondence pattern detection by List (2019a)
in order to propose a new framework for supervised
phonological reconstruction and cognate reflex pre-
diction which they expand by enriching phonetic
alignment analyses in such a way that contextual
information can be taken account.

1.3 Difficulties of Reflex Prediction

For traditional as well as modern approaches to
reflex prediction, there are a couple of challenges
that algorithmic solutions need to account for. The
first challenge consists in the prediction of sounds
which have no corresponding counterpart in the
source languages from which one predicts a word
in the target language. As an example, consider
Dutch tand [t A n d] “tooth” and English tooth [t U:
T]. It is easy to see that the [t] in Dutch corresponds
to a [t] in English, such as [a:] corresponds to [U:]
and [T] corresponds to [d]. However, the [n] in
Dutch has no counterpart in English, since English
[n] was lost when followed by a [T]. Since there
is no one-to-one sound match between the sound
in English and the sound in Dutch, the prediction
has to be based on the conditioning context, which
is notoriously difficult to handle in computational
approaches.

A further difficulty consists in the sparsity and
the patchiness of the data. Data are sparse with
respect to the number of cognate sets which we can
use to train computers or humans. Even for well-
established language groups, etymological dictio-
naries, which list more than 1000 reconstructed
items are quite rare. Apart from being sparse, data
are also patchy. Only a very small amount of the
proto-forms listed in etymological dictionaries is
reflected in the majority of the branches, and an
even smaller amount has survived without notable
irregularities in the sound changes or the morphol-
ogy of the word forms. Thus, even if one works
with datasets consisting of large numbers of related
words, there will always be situations in which
important reflexes are missing and at times only
one witness may be left that we can use for the
prediction of the cognate reflex in question.

2 Materials and Methods

2.1 Materials

Data for the shared task were taken from
the Lexibank repository, which offers wordlists
from 100 standardized datasets (List et al.

2022a, https://github.com/lexibank/
lexibank-analysed). In this repository, a
large collection of datasets with cognate sets pro-
vided by experts and phonetic transcriptions added
by the Lexibank team are provided. An even larger
number of datasets has only standardized phonetic
transcriptions but no cognate judgments. Since cog-
nate detection methods work well by now, we can
determine the cognates specifically for shallower
language families with quite some confidence; this
enabled us to assemble a larger amount of datasets
from different language families and either use
cognate sets provided by experts or inferring cog-
nates ourselves, using state-of-the-art methods for
automated cognate detection implemented in the
LingPy software library (List and Forkel, 2021).

For each the training and the surprise phase, 10
datasets were selected. Following the Lexibank
workflow for the curation of lexical wordlists, all
datasets were curated on GitHub and additionally
archived with Zenodo. Standardization of the data
included mapping the language names to Glot-
tolog (Hammarström et al., 2021), linking the con-
cept elicitation glosses to the Concepticon refer-
ence catalog (https://concepticon.clld.
org, List et al. 2022c), and adding standardized
phonetic transcriptions, following the B(road)IPA
system of the Cross-Linguistic Transcription Sys-
tems reference catalog (https://clts.clld.
org, Anderson et al. 2018), with the help of orthog-
raphy profiles (Moran and Cysouw, 2018). Since
only a smaller number of the datasets came along
with suitable cognate judgments needed for the
cognate reflex prediction task, cognates were auto-
matically inferred with standard settings, using a
variant of the LexStat algorithm for automatic cog-
nate detection (List, 2012a) that searches for partial
rather than full-word cognates (List et al., 2016).
Searching for partial cognates is justified, since
both the identification of regular sound correspon-
dences and the prediction of cognate reflexes can
only be carried out on material that is entirely cog-
nate (Schweikhard and List, 2020). Since full-word
cognates may often contain non-cognate material,
the prediction of full cognates would unnecessar-
ily exacerbate the reflex prediction task, adding a
random component that cannot be handled algo-
rithmically in a principled way. In all cases, we
excluded all singleton cognate sets (cognate sets
that occur only in one language), since these cannot
be used in our prediction experiments. Table 1 lists
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all datasets for the test and training phase along
with some basic statistics.

The datasets were used as the basis for the data
used for test and training during our shared task.
For this purpose, each dataset was split into five
training and test partitions in which the data re-
tained for testing was varied, starting from a pro-
portion of 10% retained for testing (proportion 0.1),
followed by 20% (proportion 0.2), 30% (proportion
0.3), 40% (proportion 0.4), and finally 50% (pro-
portion 0.5). The training data was not modified
further and used as primary input for the training
phase of all systems. The test data, however, was
artificially constructed from the test partition. We
first iterated over all cognate sets and then created
individual test sets from each cognate set iterating
over all words in a cognate set and deleting each
word in a row. For a cognate set of n words, this
would result in n test cases, in which each word
in each language would have to be predicted one
time.

2.2 Methods

2.2.1 Evaluation

Among the most commonly used evaluation mea-
sures for the word prediction task is the edit dis-
tance, which computes the number of operations
needed in order to convert the predicted word into
the attested word (Levenshtein, 1965). In its pri-
mary form, the edit distance is an integer. In order
to normalize the measure, correcting for a bias
resulting from the length of the compared strings,
scholars have proposed to divide the distance by the
length of the largest string (Holman et al., 2008), or
by the mean length of both strings being compared
(Nerbonne et al., 1999). A further possibility closer
to notions of distance in bioinformatics, which we
used in our shared task, is to divide the edit dis-
tance by the length of the alignment of both strings.
The normalized edit distance then corresponds to
the normalized Hamming distance between two
aligned sequences (Hamming, 1950), or – when
subtracting from 1 – to the notion of percentage
identity in evolutionary biology (Raghava and Bar-
ton, 2006). It is, however, important to note that ac-
tual differences in these normalization procedures
are usually small.

The edit distance, both normalized and unnor-
malized, has been employed in many word predic-
tion and phonological reconstruction experiments
as the basic evaluation measure for the prediction

accuracy (Meloni et al., 2021; Bouchard-Côté et al.,
2013). Its clearest shortcoming lies in the fact that
it only accounts for surface differences between
prediction and attested words (also called ‘pheno-
typic differences’ by Lass 1997), while structural
aspects (called ‘genotypic differences’ by Lass
1997) are ignored. Thus, if a method mistakenly
maps a certain sound x to a certain sound y in all
cases in which the x occurs, the edit distance will
treat each occurrence of the error independently
and may therefore provide drastically lowered re-
sults. It would, therefore, be good to account for
the relative regularity of the co-occurrence of x
and y. List (2019b) proposes to compute B-Cubed
F-scores (Amigó et al., 2009) from the aligned pre-
dicted and attested words. B-cubed F-scores only
check for the regularity of occurrences. This re-
sults in scores of 1 (indicating complete identity)
for sequence pairs like abbc compared with 1223.
Indeed, both sequences are structurally completely
identical since a simple mapping between the sym-
bols in both sequences can convert one string into
the other and vice versa. If a method has systematic
errors but otherwise does a good job in prediction,
B-Cubed F-Scores penalize results less strongly
than edit distance. As a final evaluation score, we
followed Fourrier et al. (2021) in providing BLEU
scores (Papineni et al., 2002). These scores are
usually used to investigate how well an automated
translation corresponds to the translated target test.
BLEU scores and B-Cubed F-Scores range from 0
to 1, with 1 indicating perfect agreement, the nor-
malized edit distance ranges between 1 (maximal
difference) and 0 (string identity).

2.2.2 Baselines
Our baselines were taken from the reflex prediction
framework by List et al. (2022b). This framework
consists of four major stages. In stage (1), cognate
sets are aligned with the help of standard meth-
ods for multiple phonetic alignment analyses (List,
2012b). In stage (2), alignments are trimmed by
merging all columns in the alignment in which the
attested languages all show a gap with their preced-
ing column. As a result, a word like Latin cenāre
[k e: n a: r E] would be rendered as [k e: n a: r.E],
when being aligned with Spanish cenar [T e n a R],
since the final [E] in Latin corresponds to a gap in
Spanish and could therefore not be predicted (see
List et al. 2022b for details on this procedure). In
stage (3), alignments are enriched by coding for
potentially conditioning context, which is added
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to the alignments in the form of additional rows.
In stage (4), the individual alignment columns are
converted to a matrix from which a classifier can
be trained. During prediction, cognate sets fed to
the algorithm are again being aligned and enriched,
but the trimming procedure is not needed, since it
only relates to the target language that one wants
to predict.

cognate sets aligned words

trained classifier

trimmed 
alignments

enriched
alignments

(1)  align  words (2)  trim   alignment

(3)  code  context (4)  train  classifier

Figure 1: Major steps of the reflex prediction framework
underlying the baseline.

Based on this general framework, we created two
baselines, one primary baseline that uses the corre-
spondence pattern recognition (CORPAR) method
by List (2019a) as a classifier, and one extended
baseline which predicts words with the help of a
support vector machine (SVM, see List et al. 2022b
for details on both systems). From previous stud-
ies on supervised phonological reconstruction we
know that the SVM variant of the framework out-
performs the CORPAR classifier clearly, although
differences are not extremely high (ibid.).

2.2.3 Implementation
We created specific software package that allows
to (1) automatically download the data in the par-
ticular versions of the individual CLDF datasets
which we used, (2) create the test and training data,
(3) apply the baseline methods to the data, and
(4) carry out the evaluation. The software package
is written in Python and can be accessed both using
the commandline and from within Python scripts.
It is curated on GitHub and archived with Zenodo
(see Section Supplementary Material for details).
Different versions were created in order to first re-
lease the training data (version 1.1), followed by
the release of the surprise data (version 1.2), and
finally followed by the release of the official results
of the evaluation (version 1.4, providing extended
evaluations in contrast to the version 1.3 planned
earlier).

Major dependencies of the software package are
LingPy (List and Forkel, 2021), used for the com-

putation of the edit distance and of phonetic align-
ments, Lingrex (List and Forkel, 2022), providing
access to the baseline method for cognate reflex
prediction, Scikit-learn (Pedregosa et al., 2011),
providing access to support vector machines, and
Matplotlib (Hunter, 2007), used for plotting.

3 Systems

Four teams submitted their systems for our shared
task. Since these systems are described in individ-
ual papers (Kirov et al., 2022; Jäger, 2022; Tresoldi,
2022; Celano, 2022), we will only briefly present
their main features here.

Team CrossLingference, represented by Ger-
hard Jäger (University Tübingen), provided a work-
flow Jäger 2022, implemented in the JULIA pro-
gramming language, that makes specifically use
of Bayesian phylogenetic inference. In contrast
to the remaining systems submitted to our shared
task, Jäger’s approach takes phylogenetic informa-
tion into account, extending an earlier workflow for
phonological reconstruction (Jäger, 2019).

Team Mockingbird, represented by Christo
Kirov, Richard Sproat, and Alexander Gutkin
(Google Research), provided two models for the
prediction of cognate reflexes. The first model, the
NEIGHBOR TRANSFORMER MODEL, was origi-
nally designed to find problems in the readings of
Japanese place names spelled in kanji (Jones et al.,
2022), and is based on the popular transformer ar-
chitecture (Vaswani et al., 2017), which was specif-
ically adjusted for the task. Since the training data
would be too small for the transformer model, the
authors augmented it with new instances generated
by randomly sampling subsets of a corresponding
cognate set. In addition to that, they also enriched
each set with synthetic instances using n-gram lan-
guage modelling. The second model, the IMAGE
INPAINTING MODEL, compares the cognate reflex
prediction task to the task of restoring corrupted
parts of a 2D image, in which dimensions corre-
spond to languages and cognate phonemic repre-
sentations. The restoration is achieved with the
help of convolutional neural networks (Liu et al.,
2018). For this model, no data augmentation steps
were undertaken. The authors provide four model
configurations of the neighbor model, with the first
three (N1-A, N1-B, and N1-C) differing in the
number of training steps and not being publicly
released, while the last one (N2), which was only
applied to the 0.1 proportion of the data, being pub-
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licly released. For the image inpainting model, one
configuration was provided (I1).
Team Leipzig, represented by Giuseppe G. A.
Celano (University Leipzig), provided a TRANS-
FORMER-based architecture with character and
position embeddings for the prediction of cognate
reflexes (Vaswani et al., 2017), in which language
information was one-hot encoded and the model
was trained on individual reflex pairs on each lan-
guage independently. In order to predict a word
from several reflexes in different languages, the
system first predicts individual target tensors of
probabilities for each attested reflex and then aver-
ages them to produce the prediction.
Team CEoT, represented by Tiago Tresoldi (Up-
psala University), provided a workflow that pre-
dicts cognate reflexes based on phonetic alignments
(Tresoldi, 2022), which is quite similar to the ex-
tended baselines of our shared task (List et al.,
2022b). In contrast to our baseline approaches,
their system EXTALIGN-RF skips the trimming
procedure (stage 2), varies the techniques for align-
ment enrichment by taking preceding and following
context into account (stage 3), and uses a random
forests classifier rather than a support vector ma-
chine.

While all teams tried hard to provide results for
all of their systems, some results could not be com-
puted in time, to be included in the shared task.
All teams were asked to share their data in such a
way that users can easily replicate the results and
also apply their methods to new data. Unfortu-
nately, there was no time for the team organizing
the shared task to individually check all systems
with respect to replicability and transparency. The
team checked, however, that all systems were prop-
erly archived with repositories offering long-term
storage of data, such as Zenodo, and we communi-
cated the importance of replication with all authors.

4 Results

Given that we measure system performance with
four evaluation measures (edit distance, normal-
ized edit distance, B-Cubed F-Scores, and BLEU
scores adjusted for word prediction), one might ex-
pect that systems perform differently with respect
to different evaluation measures. As can be seen
from the results in Table 3, however, the results are
rather clearly favoring the system I1 by the team
Mockingbird as the winner in almost all propor-
tions. The only case where the Mockingbird I1

Proportion in Test: 0.1
System ED NED B-Cubes BLEU
Baseline 1.2095 0.3119 0.7231 0.5716
Baseline-SVM 1.0189 0.2625 0.7626 0.6387
CEoT-Extalign-RF 1.0377 0.2763 0.7475 0.6243
CrossLingference-Julia 1.4804 0.3929 0.7251 0.4793
Leipzig-Transformer 1.3901 0.3687 0.6489 0.5114
Mockingbird-I1 0.9201 0.2431 0.7673 0.6633
Mockingbird-N1-A 1.0223 0.2568 0.7604 0.6479
Mockingbird-N1-B 1.0437 0.2625 0.7572 0.6398
Mockingbird-N1-C 1.1263 0.2867 0.7302 0.6115
Mockingbird-N2 1.2095 0.3135 0.7054 0.5744

Proportion in Test: 0.2
System ED NED B-Cubes BLEU
Baseline 1.3253 0.3361 0.6680 0.5412
Baseline-SVM 1.1723 0.2928 0.7067 0.5985
CEoT-Extalign-RF 1.2208 0.3175 0.6798 0.5709
CrossLingference-Julia 1.4954 0.3912 0.6882 0.4760
Leipzig-Transformer 1.5787 0.4046 0.5683 0.4646
Mockingbird-I1 1.0413 0.2648 0.7120 0.6326
Mockingbird-N1-A 1.1512 0.2825 0.7011 0.6138
Mockingbird-N1-B 1.1726 0.2901 0.6910 0.6054
Mockingbird-N1-C 1.2196 0.3051 0.6669 0.5841

Proportion in Test: 0.3
System ED NED B-Cubes BLEU
Baseline 1.4354 0.3556 0.6372 0.5195
Baseline-SVM 1.3713 0.3310 0.6565 0.5554
CEoT-Extalign-RF 1.4038 0.3525 0.6331 0.5286
CrossLingference-Julia 1.6116 0.4130 0.6508 0.4503
Leipzig-Transformer 1.7746 0.4467 0.5129 0.4207
Mockingbird-I1 1.1762 0.2899 0.6717 0.6059
Mockingbird-N1-A 1.2565 0.3119 0.6557 0.5779
Mockingbird-N1-B 1.2712 0.3103 0.6531 0.5792
Mockingbird-N1-C 1.3009 0.3215 0.6343 0.5636

Proportion in Test: 0.4
System ED NED B-Cubes BLEU
Baseline 1.6821 0.4011 0.6001 0.4717
Baseline-SVM 1.6159 0.3891 0.5990 0.4903
CEoT-Extalign-RF 1.5695 0.3960 0.5805 0.4773
CrossLingference-Julia 1.6059 0.4112 0.6411 0.4473
Leipzig-Transformer 1.9221 0.4800 0.4736 0.3893
Mockingbird-I1 1.2725 0.3162 0.6428 0.5724
Mockingbird-N1-A 1.4542 0.3521 0.6294 0.5293
Mockingbird-N1-B 1.3618 0.3349 0.6212 0.5466
Mockingbird-N1-C 1.4353 0.3547 0.5999 0.5228

Proportion in Test: 0.5
System ED NED B-Cubes BLEU
Baseline 1.8889 0.4445 0.5617 0.4265
Baseline-SVM 1.9330 0.4619 0.5371 0.4204
CEoT-Extalign-RF 1.8434 0.4576 0.5194 0.4128
CrossLingference-Julia 1.6794 0.4274 0.6193 0.4296
Leipzig-Transformer 2.1036 0.5257 0.4306 0.3438
Mockingbird-I1 1.4170 0.3518 0.6050 0.5337
Mockingbird-N1-A 1.5527 0.3800 0.5959 0.4934
Mockingbird-N1-B 1.5066 0.3734 0.5864 0.4989
Mockingbird-N1-C 1.5818 0.3950 0.5610 0.4749

Table 3: Results for the varying proportions and our four
evaluation measures, edit distance (ED), normalized
edit distance (NED), B-Cubed F-scores (B-Cubes) and
BLEU Scores (BLEU) on the surprise data. Cells shaded
in gray highlight the best score obtained for a given
proportion, bold font marks the second best score.

system does not show the best performance is the
test with 50% of the words being retained for test-
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System Rank NED B-Cubes BLEU Aggregated
Mockingbird-I1 1 1 1.2 1 1.1 ± 0.3
Mockingbird-N1-A 2 2.6 3 2.6 2.7 ± 0.4
Mockingbird-N1-B 3 2.4 4 2.4 2.9 ± 0.9
Baseline-SVM 4 5.2 4 5 4.7 ± 1.9
Mockingbird-N1-C 5 4.6 6.6 4.6 5.3 ± 1.3
CEoT-Extalign-RF 6 6 7 6.2 6.4 ± 1.1
CrossLingference-Julia 7 7.6 4 7.6 6.4 ± 2.5
Baseline 8 6.8 6.2 6.8 6.6 ± 0.8
Leipzig-Transformer 9 8.8 9 8.8 8.9 ± 0.4

Table 4: Overview of the average ranks of all nine sys-
tems for the different dataset proportions along with
aggregated ranks.

ing (proportion 0.5), where the JULIA system by
the CrossLingference team shows the best perfor-
mance with respect to the B-Cubed F-Scores. Since
B-Cubed F-Scores emphasize the systematicity of
the prediction quality rather than the accuracy in
individual cases, we can see that the JULIA system
copes better with systematic aspects of the word
prediction tasks in those cases, where the data for
the training of the system is limited. That the differ-
ent scoring systems show at least some degree of
independence can also be seen in Figure 2, which
shows results for the 10% partition, where the JU-
LIA system performs worst with respect to edit
distances and BLEU scores, while showing a better
performance than N2, TRANSFORMER, and the
baseline in B-Cubed F-Scores.

While the SVM baseline shows a surprisingly
good performance on the lowest proportion of data
excluded and retained for testing (proportion 0.1), it
looses ground with more data excluded for testing.
Here, the N1-A and N1-B systems, again from the
Mockingbird team, show the best performance.

Table 4 provides the aggregated ranks for the
normalized edit distance, the B-Cubed F-Scores,
and the BLEU scores for all systems obtained for
all splits of the data. The classical edit distance
was excluded in this overview, since it correlates
highly with the normalized edit distance and would
therefore artificially increase the overall ranks of
systems performing well in this regard. Further-
more, the N2 system by the Mockingbird team was
excluded in this analysis, since results could only
be provided for the smallest proportion of words re-
tained for testing (proportion 0.1). For each of the
five splits of the data and for each of the methods,
we ranked the systems according to their perfor-
mance and later calculated the average of all ranks
for each system on each of the three evaluation
methods. The aggregated ranks, in which all three
evaluation measures are ranked equally, allow us

to rank the overall performance of all systems. It
shows the overall superiority of the I1 system of
the Mockingbird team, followed by the teams’ N1-
A and N1-B methods. The SVM baseline and
the N1-C method by team Mockingbird follow on
places four and five. At the end of these ranks are
the EXTALIGN-RF system by team CeOT, the JU-
LIA system by Team CrossLingference, followed
by the simple baseline and the TRANSFORMER
approach of team Leipzig.

Overall, all systems do quite a good job at re-
covering unknown words from their cognate sets,
specifically in those cases, where only a small part
of the test data was retained for the evaluation pro-
cess. Judging from our practical experience and
independently published results on word predic-
tion experiments (List et al., 2022b; Bodt and List,
2022), B-Cubed F-Scores higher than 0.7 and aver-
age edit distances of about 1 provide a good starting
point for computer-assisted approaches and can al-
ready provide active help in various practical anno-
tation tasks in historical linguistics. Thus, scholars
working on the reconstruction of certain language
families could use predicted proto-forms and later
manually correct them, or field workers could use
automatically predicted words when trying to elicit
specific lexical items to search for cognate words
that might have shifted their meanings.

5 Discussion

It was one of the crucial insights made by historical
linguists in the early 19th century (Grimm, 1822;
Rask, 1818), that sound change proceeds in a sur-
prisingly regular, systematic manner, affecting all
sounds in the lexicon of a language that recur in
similar phonotactic positions. Without the system-
aticity and regularity of sound change, it would not
be possible to predict the pronunciation of words
in one language based on the pronunciation of cog-
nate words in related languages. While it has been
known for a long time to linguists that these kinds
of predictions can be made on the basis of historical
language comparison, the task of cognate reflex pre-
diction has only recently attracted the attention of
scholars working in the field of Natural Language
Processing and computational linguistics.

With our shared task on cognate reflex predic-
tion, we hoped to achieve two major goals. On
the one hand, we wanted to highlight the impor-
tance of classical scholarship for computational
applications in historical linguistics and linguistic
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Figure 2: Results for the surprise dataset of the 0.1 proportion, with 10% of data retained for testing.

typology, showing that quite a few problems which
are up to today exclusively solved manually might
profit from computational treatment. On the other
hand, we wanted to trigger the interest of scholars
with diverse backgrounds in this task, assembling
teams that address the problem with different strate-
gies that might inspire each other and help to lead
to largely improved methods in the future.

With the four teams that participated, we have
seen an interesting and diverse assembly of systems
that all deal with the cognate reflex prediction task.
While two teams made use of state-of-the-art ma-
chine learning methods based on neural networks
(team Mockingbird and team Leipzig), two teams
represented systems based on workflows using clas-
sical approaches in the emerging discipline of com-
putational historical linguistics (team CrossLingfer-
ence and team CEoT), using phonetic alignments,
and – in the case of team CrossLingference – even
Bayesian methods for phylogenetic reconstruction.
From the overall performance of the systems in
our shared task, we can see that some of the neural
approaches outperform the more targeted solutions.
Given differences in the performance with respect

to the evaluation methods, which highlight differ-
ent aspects of prediction accuracy, however, we
could also see that targeted methods like the Julia
method by CrossLingference or the extended Base-
line come very close to the best neural systems, and
even outperform them at times.
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Abstract

In Jäger (2019) a computational framework was
defined to start from parallel word lists of re-
lated languages and infer the corresponding
vocabulary of the shared proto-language. The
SIGTYP 2022 Shared Task is closely related.
The main difference is that what is to be recon-
structed is not the proto-form but an unknown
word from an extant language. The system de-
scribed here is a re-implementation of the tools
used in the mentioned paper, adapted to the
current task.

1 Introduction

In Jäger (2019) I presented a pilot study of a com-
putational historical linguistics workflow. Starting
from parallel word lists (taken from Wichmann
et al. 2016) of 29 Romance languages and dialects,
covering 40 core concepts, it produced reconstruc-
tions of the Proto-Romance words for the same
concepts.

The intermediate steps of this workflow are

1. for each concept, cluster the corresponding
sound strings into cognate classes,

2. infer a posterior distribution of phylogenies
of the covered doculects using Bayesian infer-
ence,

3. apply Bayesian inference to identify the max-
imum a posteriori cognate class at the root
of the tree for each concept (ancestral state
reconstruction, ASR),

4. apply multiple sequence alignment (MSA) to
the words of each cognate class,

5. apply ASR to each alignment column of the
MSAs of the cognate classes identified in step
3; gaps are treated as regular characters, and

6. concatenate the reconstructions and removing
gaps.

The result turned out to be an imperfect but
reasonable approximations of the attested Latin
wordlist.

The SIGTYP 2022 Shared Task on the Prediction
of Cognate Reflexes (https://github.com/
sigtyp/ST2022, List et al. 2022) is very sim-
ilar in nature. The system described here is an
adaptation of Jäger’s (2019) workflow to this task.

2 Data

The authors of the Shared Task made parallel word
lists for 20 language families available. For details
of the provinence of the data and the pre-processing
steps performed, see List et al. (2022). Each dataset
comprises between four and 19 related languages,
and between 500 and ca. 10,000 words. Words are
classified according to cognate classes, which are
based either on expert judgments or are inferred
via automatic cognate detection. No information
about the meanings of the words are available for
training or inference. All words are transcribed in
IPA and tokenized.

The data are arranged in a table with cog-
nate classes as rows and languages as columns.
In Table 1, a small part from the dataset
kesslersignificance (based on Kessler
2001) is shown for illustration.

Each dataset was split into a training set and a
test set. The proportion of test data was varied be-
tween 10%, 20%, 30%, 40% and 50%, leading to
a total of 50 datasets, each consisting of a training
and a test set. For the test data, one word per row
was masked, using each attested word for masking
in turn. The task is to predict the masked words
from the other cognates in the same row.

Table 2 contains an example row from such a
test set. The task is to infer the French word which
is cognate to Albanian piski, English fIS, German
fiS and Latin piski. In a separate file which is only
to be used for evaluation, the correct solution — pS
in this case — is given.
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COGID Albanian English French German Latin
920 h A r t k œ r h e r ts @ n k o r d
1083 h O r n k O r n h o r n k o r n u:
1150 S k u r t @ r S O r t k u r t k u r ts

Table 1: Example training data

COGID Albanian English French German Latin
353-3 p e S k f I S ? f i S p i s k i

Table 2: Example test data

For each of the 50 datasets, a system can be
trained using the complete training set. For predic-
tion, the trained system only “sees” one row of the
test data and has to predict the masked word.

3 Methods

This task differs from the one described in (Jäger,
2019) mainly by the fact that not some ancestral
word form has to be inferred but a word from an ex-
tant language. For the particular inference methods
used, this difference is actually inessential, since
it is based on a time-reversible model of language
change.

The first step of the workflow by Jäger (2019),
identifying cognate classes, has already been per-
formed here. This led to the following workflow:

1. Train a pair-hidden Markov model (pHMM;
see Durbin et al. 1989) for pairwise string
alignment.1

2. Infer a preliminary phylogenetic tree via UP-
GMA (Sokal and Michener, 1958).

3. Perform MSA per cognate class using the T-
Coffee algorithm (Notredame et al., 2000).

4. Join all MSA matrices and use this as char-
acter matrix for Bayesian phylogenetic infer-
ence.2

1In Jäger (2019), pairwise string alignment was performed
using the Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) with parameters trained on the entire ASJP
database (Wichmann et al., 2016). Since the rules of the
Shared Task precludes the use or external data for parameter
training, I opted for a method here were parameters can be
estimated from scratch using only the licit training data.

2In Jäger (2019) phylogenetic inference was performed
using cognate data, but since the Shared Task does not make
information about the meaning of the words available, this
was not possible here.

5. Infer the posterior distribution of the muta-
tion rate of symbols within the columns of the
MSAs.

6. Apply MSA to the non-masked entries in the
test row using the model trained in steps 1 and
2.

7. Find the maximum a-posteriori state for each
MSA column for the masked entry, using the
posterior distributions inferred in steps 4 and
5 as priors. Concatenate the states inferred in
the previous step and remove gap symbols.

Each of these steps will be briefly explained in
the following subsections.

3.1 Training a Pair-Hidden Markov Model
A pair-Hidden Markov Model (pHMM) is a Hidden
Markov model with two parallel output tapes. In
each state, the model may emit a symbol on the
first, the second or on both tapes. The architecture
used here is taken from Durbin et al. (1989) and
schematically displayed in Figure 1.

M

X

Y

end

1-2δ -τ 

τ 

τ 

τ 

δ 

δ 

ϵ

ϵ

1-ϵ-τ

1-ϵ-τ

Figure 1: Pair Hidden Markov Model

The state M is the match state, where the model
simultaneously emits one symbol on each tape. In
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state X only a symbol to the first tape is emitted,
and likewise for state Y and the second tape. When
the model reaches the end state (where no symbol
is emitted), each tape contains a symbol sequence.
The joint probability of this sequence and the simul-
taneous sequence of hidden states is determined by
the product of the transition and emission probabil-
ities used.

Crucially, the sequence of hidden states of one
pass of the model determines a pairwise alignment
of the strings produced. M identifies a match col-
umn, X a column with a gap in the second string,
and Y a gap in the first string. If the parameters
of the model are known, the maximum likelihood
alignment between two strings can be found using
the Viterbi algorithm.3

It is assumed that the alphabet from which the
words are constructed are known in advance. The
parameters of the model are the transition probabil-
ities δ, ϵ and τ , and the emission probabilities for
each state. For state M, this is a probability distri-
bution over pairs of symbols from the alphabet. I
assume the emission probabilites for states X and
Y to be identical; both are a probability distribution
over the alphabet.

Given a training set of pairs of strings, parame-
ters of the model can be estimated using the Baum-
Welch algorithm, an incarnation of the EM algo-
rithm. If values for all parameters of the model are
given, the frequency of all transitions and all emis-
sions for a given set of string pairs are estimated
(expectation step). The conditional relative frequen-
cies for each transition and emission are then used
as new parameter values (maximization step). This
procedure is repeated many times, starting from an
arbitrary initial state.

In the system described here, the pHMM was
initialized with transition probabilities δ = τ =
0.25, ϵ = 0.375. The initial emission probabilities
at the gap states X and Y are uniform distributions.
The emission probabilities in the match state M are

p(a, b) ∝ 1 if a ̸= b

p(a, a) ∝ |alphabet|+ 1

These choices are motivated by the idea that
Viterbi alignment in the initial state should approx-
imate Levenshtein alignment.

3This inference step amounts to a notational variant of the
Needleman-Wunsch algorithm, cf. Needleman and Wunsch
(1970).

For training and MSA, all training strings (and
later test strings) were converted into the ASJP al-
phabet (Brown et al., 2008), which comprises just
41 sound classes, to keep the number of parame-
ters to be estimated manageable.4 The conversion
was performed using the software package LingPy
(List and Forkel, 2021). Training word pairs, i.e.,
all pairs of cognate words from the training set,
were arranged in random order and split into mini-
batches of size 20. An EM step was performed for
each mini-batch. This procedure was repeated for
two epochs over all mini-batches.

3.2 UPGMA Tree

As preparation for multiple sequence alignment, a
guide tree over the languages is required. For this
purpose, the pairwise normalized Levenshtein dis-
tance (i.e., the edit distance divided by the length of
the longer string) was computed between any pair
of cognate words. The distance between two lan-
guages was then computed as the average word dis-
tance between any two cognate words from these
languages.

The resulting pairwise language distances were
used as input for the UPGMA algorithm to infer
a language tree. E.g., for the dataset kesslersignif-
icance with 10% test data, the resulting tree has
the topology ((Latin, (French, Albanian)), (English,
German)).

This topology is evidently not perfect (Albanian
having the wrong location), but the next step, while
requiring a guide tree, is not very sensitive to the
specific tree topology.

3.3 Multiple Sequence Alignment

The alignment method described in Subsection 3.1
above is only capable of performing pairwise se-
quence alignment. Modifying it to multiple strings
would require to increase the number of states, and
concommittantly computation time, exponentially
in the number of sequences. The T-Coffee method
of multiple sequence alignment (Notredame et al.,
2000) represents a compromise combining good
results with computational efficiency.

To compute an MSA for a group of words, first
all pairs of words are aligned pairwise. For this
step, I used Viterbi alignment with the pHMM pa-
rameters described in Subsection 3.1. During the
next step of T-Coffee, all threefold alignments are

4Here and elsewhere, symbols indicating morpheme
boundaries were ignored.
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computed simply by combining two pairwise align-
ments from the previous step. The alignment scores
between any pair of symbol tokens are obtained by
counting all threefold alignments where these sym-
bols occur in the first and last column, weighted
by the Hamming similarity between the entire first
and last row.

Using these scores, progressive alignment (Feng
and Doolittle, 1987) is performed using a guide
tree.

To continue the example mentioned above, the
MSA covering the first row of Table 1 comes out
as in Table 3.

Albanian - - - - - -
English h o r t - -
French k E r - - -
German h e r C I n
Latin k o r d - -

Table 3: Example MSA

3.4 Bayesian Phylogenetic Inference
The MSAs for the training data thus obtained were
used to perform more sophisticated, Bayesian phy-
logenetic inference. For this purpose each symbol
in the MSA is replaced by the corresponding Dol-
gopolsky class (Dolgopolsky, 1986). This conver-
sion was performed using LingPy (List and Forkel,
2021) as well.

For each alignment column, the symbols in this
column are conveived of as states of a continuous
time Markov process. The specific type of Markov
process used is due to Jukes and Cantor (1969).

Let a phylogeny — i.e., a tree with branch
lengths — over the languages in question be given.
It is assumed that the types of symbols within an
alignment colum are the states of a continuous time
Markov process. A complete model is one where
each node is assigned exactly one state. For the leaf
nodes, these are the entries of the MSA column.
Let u and l be the states at the top and at the bottom
of a branch of the phylogenetic tree, and let t be
the length of the branch.

The likelihood of this branch is

P (l|u) =





1
n + n−1

n e−rt if u = l

1
n − 1

ne
−rt else,

where n is the number of distinct symbols occur-
ring in the MSA column. The rate r is a model
paramter and is always positive.

The total likelihood of an assignment of states
to the nodes of the tree is the product of all branch
likelihood, times the likelihood of the state at the
root. For this I assumed a uniform distribution.

The marginal likelhood of the states at the leaves,
given a phylogeny T and rate r is the sum of the
likelihoods of all assignments of states to non-leaf
nodes. The likelihood of a complete character ma-
trix, given a phylogeny and an assignment of a rate
value for each character (i.e., MSA column), is the
product of the likelihoods of the individual char-
acters. When a character state for a language is
unknown — either because it is a gap in the MSA,
or the language does not have a reflex for the corre-
sponding cognate class — the marginal likelihood
is computed as the sum of the likelihoods for all
possible character states.

Given suitable priors for the phylogeny and the
rates, the posterior distribution over trees can be
estimated via Bayesian inference for the collection
of MSAs as data.

This step was carried out using the software Mr-
Bayes (Ronquist and Huelsenbeck, 2003). Rates
were allowed to vary between characters, but are
drawn from a discretized Gamma distribution with
equal mean and variance. The mean of this hyper-
prior distribution is drawn from a standard expo-
nential distribution. A uniform prior distribution
over tree topologies was assumed, paired with a
standard exponential prior distribution over the tree
age and a uniform prior distribution over the branch
lengths.

The posterior tree distribution for the running
example is visualized in Figure 2 (produced with
the software densitree, Bouckaert and Heled 2014).
It can be seen that there is considerable uncertainty
regarding the position of French and Albanian in
the tree, as well as regarding the height of the tree.

3.5 Inferring Mutation Rates

While I used Dolgopolsky sound classes for phylo-
genetic inference, cognate inference has to operate
on IPA characters. For this purpose, I used the
posterior tree distribution from the previous step as
prior distribution. Data are MSAs of IPA strings.
For the running example, this looks as in Table 4.
(Note that the MSA is computed on the basis of
ASJP strings, and ASJP symbols are replaced by
the corresponding IPA symbols afterwards.)

As a further deviation from the previous step,
gaps (indicated by “-”) are treated as normal char-
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French Albanian Latin EnglishGerman

Figure 2: Posterior tree distribution

Albanian . . . . . .
English h A r t - -
French k œ r - - -
German h e r ts @ n
Latin k o r d - -

Table 4: Example MSA with IPA characters

acter states, while missing data (indicated by “.”)
are marginalized out.

For this step I assumed a constant rate over all
characters. Inference was performed using the
Julia package MCPhylo.jl (Wahle 2021; https:
//juliapackages.com/p/mcphylo), lead-
ing to a sample from the posterior distribution over
rates.

3.6 Multiple Sequence Alignment of Test Data

For cognate prediction, the attested entries of the
cognate class in question are aligned using the pro-
cedure and the model described in Subsection 3.3.
If the test data contain symbols not occurring in the
training data, their emission probabilities are set
to the minimal emission probability of any symbol
from the training data, and emission probabilities
are re-normalized in the trained pHMM.

For the running example, the MSA is shown in

Table 5. The entries for French (shown in boldface)

Albanian p e S k -
English f I S - -
French p i S k –
German f i S - -
Latin p i s k i

Table 5: MSA for cognate prediction

are unknown and have to be inferred in the final
step.

3.7 Cognate Prediction

Missing-value imputation is done column-wise. Us-
ing the posterior distribution over trees and rates de-
scribed in Subsections 3.4 and 3.5, for each slot the
posterior probability distribution over the symbols
occurring elsewhere in the column was computed.
This was practically implemented by separately
computing the posterior probabilities for all candi-
date symbols separately and normalizing them.

As prediction, the symbol with the highest pos-
terior probability was chosen. The final cognate
prediction is the result of removing all gap symbols
— piSk in the example.

4 Discussion

Let me close with a brief reflection on what kind of
information this system extracts from the training
set to perform cognate prediction. There are mainly
two patterns the system pays attention to. The first
is the regularity of sound correspondences which
are encapsulated in the emission probabilites of the
trained pHMM, especially its M state. The system
does not pay attention to the specific languages
the words to be aligned come from, so it is un-
aware of language-specific sound correspondences.
Therefore the prediction step does not make use of
specific sound laws in any way.

Second, the system employs phylogenetic infor-
mation. This amounts to a weighing of the impor-
tance of the cognates from other languages when
deciding on the choice of the missing value impu-
tation.

Also, since the missing value imputation is per-
formed column-wise for the alignment matrix, no
syntagmatic information is being used. It is not
checked which candidate predictions are phono-
tactically or morphologically most similar to the
training words from the same languages.
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In future research, it is worth considering to ex-
tend the system towards the usage of language-
specific sound correspondences and syntagmatic
information.

Supplementary Material

The source code and instructions how to
run the system are publicly available at
https://github.com/gerhardJaeger/
gerhardSigtyp2022 (also archived on Zen-
odo under the doi 10.5281/zenodo.6559085). Most
of the workflow was implemented in the Julia
language (https://julialang.org/), a
relatively new language combining the convenient
syntax and interactive functionality of languages
such as Python with execution speed of optimized
code close to C or Java. Essential Julia packages
used are Johannes Wahle’s MCPhylo.jl (which
is based on Brian J. Smith’ Mamba.jl package;
https://mambajl.readthedocs.io/
en/latest/) for phylogenetic Bayesian infer-
ence and my own package SequenceAlignment.jl
(https://github.com/gerhardJaeger/
SequenceAlignment.jl, v0.9.1) for se-
quence alignment.

For conversions between different sound class
systems, the Python package LingPy (List and
Forkel, 2021) was used. Besides MCPhylo.jl, I
used MrBayes (Ronquist and Huelsenbeck, 2003)
for phylogenetic inference. Postprocessing of the
output of MrBayes was done with the R package
ape (Paradis et al., 2004).
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Abstract

The SIGTYP 2022 shared task concerns the
problem of word reflex generation in a tar-
get language, given cognate words from a
subset of related languages. We present two
systems to tackle this problem, covering two
very different modeling approaches. The
first model extends transformer-based encoder-
decoder sequence-to-sequence modeling, by
encoding all available input cognates in paral-
lel, and having the decoder attend to the result-
ing joint representation during inference. The
second approach takes inspiration from the
field of image restoration, where models are
tasked with recovering pixels in an image that
have been masked out. For reflex generation,
the missing reflexes are treated as “masked pix-
els” in an “image” which is a representation of
an entire cognate set across a language fam-
ily. As in the image restoration case, cognate
restoration is performed with a convolutional
network.

1 Introduction

The cognate reflex prediction task can be under-
stood by considering a simple example. English
dream is droom in Dutch and Traum in German.
English stream is stroom in Dutch and Strom in
German (so we can see that there is a bit of vari-
ation in how the cognate forms are realized). But
now consider English tree, which is boom in Dutch
and Baum in German. If there were a cognate in
English, what would it look like? On analogy in
particular with the dream example, one would ex-
pect the form to be beam—which is in fact cog-
nate with the Dutch and German forms, though the
meaning has shifted.

This study describes the two particular ap-
proaches to cognate reflex prediction code-named
Mockingbird.1 Both approaches use popular ma-
1The open-source implementation of both models: https:
//github.com/google-research/google-research/
tree/master/cognate_inpaint_neighbors

chine learning techniques adapted to the cognate
reflex prediction task.

The transformer-based approach popularized
by Vaswani et al. (2017) is a particular instance
of sequence-to-sequence (Seq2Seq) recurrent neu-
ral bipartite encoder-decoder architecture (Cho
et al., 2014; Sutskever et al., 2014) equipped with
multi-head attention mechanism. It has the advan-
tages inherent to Seq2Seq models. In particular
it can represent arbitrarily long-distance contex-
tual dependencies both within and across words.
This rich representational capacity comes at the
cost of high model complexity and need for com-
putational resources (Strubell et al., 2019; Liu
et al., 2019; Brown et al., 2020). Our particu-
lar transformer-based model was originally devel-
oped for place name pronunciation (Jones et al.,
2022), and models cognate sets as a neighborhood
where we are trying to predict the pronunciation of
a target feature given its neighbors.

The image inpainting model (Liu et al., 2018) re-
lies on a simple convolutional neural network, or
CNN (O’Shea and Nash, 2015), which trains fairly
quickly even on CPU. It treats cognate sets as
holistic objects (“images”), with individual convo-
lution filters representing partial joint alignments
between all languages at once. Unlike transform-
ers or RNN-based models, however, convolutional
models with finite kernel sizes cannot capture arbi-
trary amount of context. As an extreme example,
it would be difficult for a convolutional model to
learn that the first character in one language cog-
nate should always be aligned with the last char-
acter in another language’s cognate, especially if
long words are possible.

2 Related Work

The establishment of cognate correspondences
and the prediction of cognate forms has a long and
venerable history that dates at least to the original
work of William Jones that established the Indo-
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European language family (Jones, 1786), and later
the work of the Neo-Grammarians (Paul, 1880).

Prior computational work related to this prob-
lem includes early work by Covington (1996)
and Kondrak (2000) on methods for aligning cog-
nate pairs at the segment level, and more re-
cently work specifically on the prediction of cog-
nate forms (List, 2019a; Meloni et al., 2021).
The work of Meloni et al. (2021) in particular
is most similar to the current proposed methods
in that they use a neural character-level encoder-
decoder sequence-to-sequence model, and demon-
strate that this shows good performance on the
task of proto-form reconstruction for a fairly large
dataset of Romance languages.

3 Neighbors Transformer Model

3.1 General architecture

The “neighbors” transformer model was originally
developed for detecting inconsistencies in the read-
ings of Japanese place names in an industrial-scale
maps database (Jones et al., 2022). Japanese place
names are notoriously difficult to read even for
native speakers, since two different place names
that happen to be written with the same kanji se-
quence may have quite different pronunciations. A
famous example is日本橋, which in Tokyo is read
as Nihonbashi, but where the identically written
name in Osaka is read as Nipponbashi. While the
place names themselves are unlikely to be wrong
in the data, there are many named features in the
data set—buildings, establishments, and so forth—
which are named after the area—e.g. an apartment
building named Mezon (= Maison) Nipponbashi,
where the reading may be in error. The neighbors
model is designed to detect such errors by consid-
ering the reading of features in the area and de-
tecting if there is an apparent inconsistency. In
training the model is provided with the target fea-
ture’s written form and its reading (in hiragana),
and the written forms and readings of features that
are neighbors within a small geographic distance
from the target feature. Since inconsistencies in
such neighborhoods involve the minority of cases,
the model learns that the same spelled name within
a neighborhood usually agrees in terms of the read-
ing. The general architecture of the model as ap-
plied to Japanese place names is shown in Fig-
ure 1.

The cognate reconstruction problem is similar
in spirit to the place name problem just described.

In this case the “neighbor pronunciations” are re-
placed with the cognates in the set, with the “main
feature” being the cognate form to be predicted.
The spellings on the other hand are replaced by a
string representing the name of the language as-
sociated with the target and each of the neighbor-
ing cognates. This could be simply the language
name itself, but it is better to encode the name as
a unique identifier (e.g. a short sequence of arbi-
trary symbols, such as emoji), so that the model
does not learn spurious associations between the
name of the language and cognate forms.2

The model used here slightly differs from the
version used for geographic names in that the
language identifiers and cognate forms are inter-
leaved and then concatenated together into a sin-
gle one dimensional tensor, interleaved with ids
for each cognate in the set. This allows the model
to better attend to the individual cognate and to
copy the cognate as needed.

For the transformer model, the provided data
sets are far too small for the model to learn any-
thing. We therefore augmented the data in two
ways. First, since one cannot assume that in the
test set one will find cognate forms for all neighbor
languages for a given target language, we also aug-
mented the data by randomly removing neighbors,
thus making new neighborhoods for the same cog-
nate set, which lacked one or more of the neigh-
bor cognate examples. In our experiments we gen-
erated 500 such random subsets for each original
neighborhood, of which about half were randomly
copies of the original neighborhood.

Second, in addition to the actual provided cog-
nate groups, we synthesized similar cognates for
each of the “neighbor” languages and the target.
Two methods were used, the first being a sim-
ple pair unigram model and the second a bigram
model that we will briefly mention in Section 5.
For the unigram model, a Levenshtein-distance
alignment was computed between each pair of cog-
nates for all language pairs, and correspondences
between IPA symbols were counted. These uni-
gram counts were then used to randomly generate
new pairs of “cognates”. We generated ten random
neighborhoods of this kind for each real or sub-
set neighborhood as described above. For exam-
ple, for the English set in the LISTSAMPLESIZE

2For example, in the Northern Pakistan set, there are num-
ber of variants of Balti in the set, and we wish to avoid the
model learning to depend on the string Balti in making its
predictions. See Table 4 in Appendix A for an example.
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Figure 1: The transformer neighbors model, showing how the main feature and neighbor features are encoded.
Colors for the embeddings reflect the shared embedding structure for the Transformer model. Example shown is
メゾン日本橋 mezon nipponbashi, and some neighboring features 日本橋 nipponbashi, 日本橋西 nipponbashi
nishi and日本橋東 nipponbashi higashi.

data set, the original approximately 300 neighbor-
hoods was expanded into about 4.2 million neigh-
borhoods.

3.2 Model Details
The neighbors model is implemented using
Lingvo (Shen et al., 2019), which is a frame-
work for building neural networks in Tensor-
Flow (Abadi et al., 2016), particularly sequence
models. The core architecture of our transformer
model derives from the Lingvo implementation of
the neural machine translation system by Chen
et al. (2018).3

We use the compact transformer configuration
because the amount of data available for this task
even after data augmentation is small. In our con-
figuration, the encoders and decoders in Figure 1
use multi-head attention mechanism with two at-
tention heads (Vaswani et al., 2017). There are
three transformer layers, and the dimension of the
feed-forward layer as well as the embedding di-
mension are set to 32. Dropout is applied during
training with probability of 0.1 to residual layers,
attention weights, and each feed-forward layer of
the Transformer. Finally, we employ label smooth-
ing to the decoder outputs, where the probability
for correct class labels is reduced by the uncer-
tainty factor ϵ = 0.2 and for all other cases in-
3https://github.com/tensorflow/lingvo/tree/
master/lingvo/tasks/mt

creased by ϵ/K, where K is the size of the vocab-
ulary (Szegedy et al., 2016).

For training, we optimize sparse categorical
cross-entropy loss using Adam procedure with ini-
tial learning rate α = 0.001 and the parameters
β1 = 0.9, β2 = 0.98 and ϵ = 10−9 (Kingma
and Ba, 2015). We optimize the word error error
(WER) between the sequences of ground truth and
the predicted phonemes. The batch size is set to
32 examples. No development set was set aside
from the training data because we did not perform
any parameter tuning. The latest and not neces-
sarily best (according to the test set) checkpoints
were chosen after the training ran for a specified
number of steps. We employ beam search with the
beam width of 8 during inference.

3.3 Open-Source Implementation Notes

The code publicly released for the shared task is
mostly identical to our internal version used to pro-
duce the shared task results, but with some notable
differences. First, in the open-source verson we
do not encode the language names using unique
emojis. Second, we used the development ver-
sions of TensorFlow and Lingvo integrated with
XManager,4 a platform for managing distributed
machine learning experiments, for our internal ex-
periments. This implies that our main results may

4https://github.com/deepmind/xmanager
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Figure 2: (Top) Cognate set input represented as an
“image”. The individual pixel coordinates (x, y) cor-
respond to (l, p), where li is a language and pj is a
phoneme. The pronunciations in this example are taken
from FELEKESEMITIC cognate set for cognate ID 638.
Short cognates are marked with padding. One or more
cognates may be masked out entirely. (Bottom) Equiva-
lent output image. Missing cognate “pixels” have been
restored.

not be exactly reproducible with the open-source
system, something that we discuss further in Sec-
tion 5.

4 Cognate Reconstruction as Image
Inpainting

The neighborhood model presented above casts
the reflex generation task as a straightforward ex-
tension of Seq2Seq modeling. Here, we take a dif-
ferent tack, noting that if we treat the entire set
of cognates as a unit (an “image”), then the task
of generating unknown cognates is analogous to
recovering missing/masked/corrupted parts of that
image. In the field of image reconstruction, this
is sometimes referred to as image inpainting (Qin
et al., 2021; Jam et al., 2021; Peng et al., 2021).
One of the popular state-of-the art methods em-
ploys convolutional neural networks (CNNs) to re-
cover missing pixel values. In this work we ap-
ply one such architecture by Liu et al. (2018) from
NVIDIA to cognate generation. As we see below,
cognate set “images” contain relatively few “pix-
els”, so we can get away with small networks with
a single pair or convolution and deconvolution lay-
ers that are fast to train and evaluate, even on CPU.
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Figure 3: Simplified inpainting CNN architecture.

4.1 Model Details

The model’s input and output structure are shown
in Figure 2. Input cognates are book-ended with
start and end symbols, padded to a fixed length (20
in all our experiments), and stacked to form a grid.
Crucially some cognates may be masked out when
forming an input image, resulting in rows of noth-
ing but padding. Each symbol is embedded, result-
ing in a data structure with n embedding dimen-
sions per symbol, corresponding to the “channels”
in an image5. Optionally, this image may be scaled
by a constant factor equivalent to the total number
of languages divided by the number of languages
present. This ensures constant total “brightness”
no matter how many cognates are masked out.

The image is then processed by a 2D convolu-
tion layer, with kernel height fixed to the num-
ber of languages in the cognate set, and kernel
width determined by a hyperparameter. Convolu-
tion is followed by dropout and a nonlinearity, af-
ter which a deconvolution layer recovers logits at
each pixel position for the available character set.
The logits, in turn, can be used to predict the most
likely character at each position, or to calculate a
sparse categorical cross-entropy loss during train-
ing, given a target symbol. The simplified diagram
of the model is shown in Figure 3.

The convolution operation for a given kernel
with weights W is shown below, and mirrors that
used in NVIDIA’s paper (Liu et al., 2018). Here
X is the set of input pixels, which are multiplied
pointwise with a binary mask M , where missing
cognate positions are set to 0. The result is scaled

5If the input was a standard RGB image, these would be val-
ues for red, green, and blue color intensity. Here, embedding
dimensions don’t necessarily correspond to any real-world
scale.
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by a factor equivalent to the sum of what the mask
would look like if all languages were present (all
values set to 1) divided by the sum of actual binary
mask:

x′ =

{
W T (X ⊙M) sum(1)

sum(M) , if sum(M) ≥ 1

0, otherwise

4.2 Training Regime
As one goal of the image inpainting approach was
to keep it as simple as possible, no synthetic data
augmentation was used during training — just the
base training data made available for the SIGTYP
shared task.

For each language family, the available train-
ing data was further broken down by a random
80%/20% split into a base cognate training set, and
a development set used for tuning. For the develop-
ment set, each group of cognates was broken down
into multiple dev samples by setting each available
cognate as the reconstruction target in turn (replac-
ing it with ‘?’). As the overall datasets available
are small, each dev set held out in this way will
only cover a few cognate groups, introducing sig-
nificant model bias when used for parameter tun-
ing. To counteract this, we generate ten different
train/dev splits at random, which were used for en-
sembling as described below.

Given a train/dev split, actual training pro-
ceeded as follows. For S training steps per epoch,
a random cognate group was drawn from the avail-
able training set, and a random subset of the cog-
nates present was masked out (at least one cognate
always remained present so the model would have
some information to work with). This masked
sample was fed as an image to the inpainting
model, whose task was to recover the entire cog-
nate group. For backpropagation, cross-entropy
loss was calculated only for rows of the image
where a cognate was present in the original cog-
nate group — all other positions contributed zero
loss since there was no target information avail-
able.

For each training step, parameter updates were
performed using the Adam procedure (Kingma
and Ba, 2015) with default TensorFlow parame-
ters. Training was run for a total of 150 epochs
consisting of 500 steps each. After each epoch, the
exact-match word error rate (WER) was calculated
for each sample in the dev set for each language,
and a macro average across of the per-language
WER values was taken. Checkpoints were saved

Name Type Alias

Mockingbird-I1 Inpainting I1
Mockingbird-N1-A Neighbors N1-A
Mockingbird-N1-B Neighbors N1-B
Mockingbird-N1-C Neighbors N1-C
Mockingbird-N2 Neighbors N2

Table 1: Five system configurations submitted to the
shared task. The third column contains a shorthand of
the full configuration name that we use in this paper.

only in cases where macro-WER performance on
the dev set improved.

For each train/dev split, a separate model
was prepared with its own set of tuned hyper-
parameters. Hyperparameter tuning was done
using Google’s Vizier smart grid search proce-
dure (Golovin et al., 2017),6 which optimized
macro-WER on the dev set for 100 total Vizier tri-
als, with at most 10 trials running in parallel at any
one time. The list of tunable model hyperparame-
ters is provided in Appendix B.

4.3 Open-Source Implementation Notes

The core CNN model implementation in Ten-
sorflow (Abadi et al., 2016) has been released
as is and can be used for training and infer-
ence. We are not releasing the scaffolding re-
quired for integration with Vizier hyperparame-
ter tuning because our internal implementation
is quite different from the publicly available ver-
sion. However, the tuned set of hyperparame-
ters (residing in hparams.json) for each model
have been released together with the results.
These hyperparameters can be used to train mod-
els that should perform similarly to those de-
scribed here.7 It is also possible to implement
an alternative smart grid search procedure using
Keras Tuner (Shawki et al., 2021)8 or any other
framework for hyper-parameter optimization and
neural architecture search that supports Tensor-
flow (Menghani, 2021).

5 Results and Discussion

The SIGTYP 2022 Shared Task was evaluated
over 20 language-family specific datasets taken
from the LexiBank repository (List et al., 2021).
6https://cloud.google.com/ai-platform/optimizer/
docs/overview

7Trained model checkpoints are also available upon request
— they were not included in the results package due to file
size considerations.

8https://keras.io/keras_tuner/
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Each dataset consisted of a series of cognate
groups presented in CLDF (Forkel et al., 2018) for-
mat, with each cognate form stored as an IPA pho-
netic transcription. 10 datasets were provided for
system development, and 10 “surprise” language
families were held aside for final evaluation. Fur-
thermore, each dataset was provided in five spar-
sity conditions (dropping 10%, 20%, 30%, 40%,
and 50% of the available cognate forms). For
brevity, we only discuss the 10% (“dense”) and
50% (“sparse”) conditions in this paper.9

We submitted five system configurations,
shown in Table 1, to the shared task.10 The
first configuration i1 is the inpainting CNN
approach described in Section 4, while the rest
of configurations are the Neighbors Transformer
models introduced in Section 3.

There are four Neighbors Transformer configu-
rations. The first three configurations (N1-A, N1-B
and N1-C) correspond to the models built using
our internal pipeline. The only difference between
these configurations is the number of training
steps: 25,000 (N1-A), 35,000 (N1-B), and 100,000
(N1-C). For these configurations we mapped the
language names to unique emojis during training
and inference.

The final Transformer configuration N2 corre-
sponds to the model trained using the released
open-source pipeline. The training regime has
some notable differences with the other Trans-
former configurations. First, as noted above, no
language name-to-emoji mapping was performed.
Second, when generating each random example
{(pt, lt), (pn, ln)} consisting of target t and neigh-
bor n pronunciation/language pairs, the neigh-
bor pronunciation pn is randomly generated us-
ing a first-order Markov chain trained from all
the bigrams constructed from the pronunciations
available for language ln, as opposed to uni-
grams used by the N1 systems. Also, the target
pronunciation pt is generated from pn by sam-
pling from the distribution obtained using sound
class-based pairwise alignment algorithm imple-
mentation from (List and Forkel, 2021) described
in (List et al., 2018). Finally, the stopping criterion
for the training process was rather ad-hoc: train-
ing for each language group was stopped after eye-
balling the training set loss. Unlike the rest of the

9Please see https://github.com/sigtyp/ST2022/tree/
main/results for all the available results.

10https://github.com/sigtyp/ST2022/tree/main/
systems

submitted systems, the N2 configuration was only
trained in the 10% (“dense”) sparsity condition.

For the inpainting model, results were produced
via a majority ensemble. For each language
family, ten models were trained using the proce-
dure described above corresponding to ten random
80%/20% train/dev splits of the available training
data. Predictions for each test sample were ob-
tained from each of the models, and the most com-
mon prediction across the set was retained.

Model results were evaluated according to four
metrics selected by the shared task organizers. The
first two are raw and normalized (divided by the
number of characters in the target form) Leven-
shtein edit distances (Levenshtein, 1966) between
the predicted and expected test cognate forms. For
these metrics, lower is better as it indicates a closer
match. The third metric, B-Cubed F-Scores, is
designed to avoid overly penalizing systematic er-
rors a system might make, discounting errors that
occur across multiple trials (List, 2019b). The
metric derives from the B-Cubed measure (Amigó
et al., 2009) frequently used in historical linguis-
tics to evaluate automatic cognate detection tech-
niques (Hauer and Kondrak, 2011). For this met-
ric, higher is better. Finally, standard BLEU scores
(Papineni et al., 2002) as used when evaluating ma-
chine translation (again, higher is better) were in-
cluded.

Tables 2 and 3 summarize the evaluation in the
dense and sparse data conditions. Overall, both
the Inpainting and Neighbor N1 models match or
improve upon the baseline method provided by
the Shared Task organizers. The Inpainting model
shows an overall advantage – its simplicity might
mitigate against overfitting in such small datasets,
but this isn’t universal across all language fami-
lies, and wanes as the task becomes more diffi-
cult moving from the dense to the sparse condi-
tion. In particular, the Neighbor models are very
effective in the FELEKESEMITIC language family
in the sparse data condition, while the Inpainting
model behaves at baseline level. This could be due
to the unique morphology of Semitic languages,
and the ability of the N1 models to use contextual
cues that the simpler model architectures aren’t
able to represent, but which compensate for data
sparsity to an extent. The condition may also ben-
efit more than most from the data augmentation
strategy used in training the Neighbor models.

In terms of overall results on the “surprise”
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BL I1 N1-A N1-B N1-C N2

dev total 1.34 0.28 0.72 0.61 1.05 0.23 0.74 0.68 1.25 0.27 0.72 0.63 1.31 0.28 0.70 0.61 1.29 0.28 0.69 0.62 1.37 0.29 0.68 0.60

davletshinaztecan 2.07 0.33 0.64 0.52 1.87 0.30 0.66 0.56 2.04 0.33 0.63 0.53 2.20 0.36 0.62 0.49 1.94 0.32 0.64 0.56 2.28 0.38 0.59 0.45
felekesemitic 1.46 0.27 0.69 0.59 1.29 0.24 0.72 0.65 1.68 0.31 0.64 0.55 1.76 0.33 0.63 0.52 1.92 0.36 0.60 0.48 1.88 0.36 0.59 0.49
hantganbangime 1.31 0.33 0.62 0.54 1.12 0.29 0.64 0.58 1.28 0.33 0.61 0.54 1.32 0.34 0.60 0.53 1.47 0.37 0.56 0.49 1.57 0.38 0.54 0.47
hattorijaponic 0.91 0.19 0.80 0.73 0.71 0.16 0.83 0.78 0.94 0.20 0.80 0.72 0.92 0.20 0.78 0.74 0.88 0.19 0.79 0.75 1.12 0.21 0.75 0.72
listsamplesize 3.34 0.62 0.41 0.22 2.35 0.46 0.50 0.40 2.80 0.54 0.50 0.33 2.79 0.55 0.49 0.32 2.54 0.52 0.49 0.34 2.59 0.50 0.48 0.37
backstromnorthernpakistan 0.89 0.18 0.86 0.72 0.60 0.12 0.87 0.80 0.83 0.17 0.82 0.72 0.83 0.18 0.83 0.72 0.81 0.17 0.82 0.73 0.79 0.16 0.83 0.76
mannburmish 1.98 0.52 0.51 0.32 1.55 0.42 0.57 0.43 1.74 0.47 0.53 0.39 1.89 0.50 0.52 0.36 1.93 0.50 0.52 0.35 1.95 0.52 0.51 0.31
castrosui 0.16 0.04 0.95 0.94 0.14 0.03 0.95 0.95 0.16 0.04 0.95 0.94 0.15 0.03 0.95 0.95 0.20 0.05 0.93 0.92 0.29 0.07 0.91 0.89
allenbai 0.72 0.23 0.77 0.68 0.55 0.18 0.80 0.75 0.58 0.19 0.79 0.74 0.64 0.21 0.78 0.71 0.70 0.23 0.73 0.69 0.67 0.22 0.77 0.70
abrahammonpa 0.55 0.12 0.90 0.81 0.34 0.06 0.91 0.90 0.47 0.09 0.87 0.86 0.55 0.11 0.84 0.83 0.51 0.09 0.86 0.85 0.53 0.10 0.86 0.84

surprise total 1.21 0.31 0.72 0.57 0.92 0.24 0.77 0.66 1.02 0.26 0.76 0.65 1.04 0.26 0.76 0.64 1.13 0.29 0.73 0.61 1.21 0.31 0.71 0.57

beidazihui 1.10 0.30 0.73 0.58 0.50 0.14 0.84 0.80 0.48 0.13 0.86 0.81 0.40 0.11 0.87 0.84 0.45 0.12 0.86 0.83 1.13 0.29 0.70 0.60
hillburmish 1.18 0.32 0.66 0.57 1.06 0.29 0.68 0.61 1.13 0.30 0.66 0.60 1.13 0.30 0.66 0.60 1.37 0.37 0.62 0.53 1.50 0.39 0.59 0.48
bodtkhobwa 0.49 0.20 0.76 0.72 0.39 0.16 0.80 0.78 0.25 0.11 0.88 0.85 0.26 0.11 0.87 0.85 0.42 0.18 0.77 0.77 0.68 0.28 0.67 0.62
bantubvd 1.12 0.26 0.79 0.62 0.89 0.22 0.80 0.68 1.01 0.25 0.82 0.63 1.03 0.26 0.82 0.62 0.98 0.25 0.81 0.63 1.10 0.27 0.77 0.60
bremerberta 1.72 0.32 0.71 0.51 1.16 0.21 0.77 0.66 1.35 0.25 0.74 0.61 1.35 0.25 0.74 0.61 1.47 0.27 0.71 0.58 1.26 0.23 0.75 0.66
deepadungpalaung 1.07 0.42 0.76 0.44 0.55 0.22 0.89 0.70 0.73 0.27 0.85 0.63 0.88 0.32 0.82 0.57 0.92 0.34 0.80 0.54 0.86 0.31 0.83 0.58
luangthongkumkaren 0.38 0.10 0.91 0.84 0.36 0.09 0.90 0.86 0.26 0.07 0.92 0.89 0.29 0.08 0.91 0.88 0.33 0.09 0.89 0.87 0.35 0.10 0.90 0.85
birchallchapacuran 1.63 0.31 0.65 0.54 1.57 0.30 0.65 0.56 2.04 0.37 0.57 0.47 2.01 0.36 0.58 0.48 2.01 0.37 0.58 0.48 2.01 0.39 0.57 0.45
wangbai 0.62 0.18 0.80 0.73 0.49 0.14 0.83 0.79 0.48 0.14 0.83 0.80 0.53 0.16 0.81 0.77 0.61 0.18 0.78 0.74 0.62 0.18 0.80 0.74
kesslersignificance 2.77 0.70 0.47 0.17 2.23 0.67 0.51 0.20 2.49 0.67 0.49 0.18 2.55 0.68 0.50 0.18 2.69 0.69 0.47 0.17 2.60 0.71 0.47 0.16

Table 2: Results by model for the 0.10 data condition (BL=Baseline, I1=Inpainting, N*=Neighborhood model),
averaged by language group. The four values per entry cover the four metrics used in the shared task (black=edit
distance, olive=normalized edit distance, red=B-Cubed F-Score, blue=BLEU).

BL I1 N1-A N1-B N1-C

dev total 1.75 0.37 0.60 0.50 1.40 0.31 0.63 0.58 1.60 0.34 0.59 0.54 1.61 0.34 0.58 0.53 1.63 0.35 0.57 0.52

davletshinaztecan 2.09 0.36 0.59 0.48 1.69 0.30 0.63 0.56 2.29 0.38 0.54 0.46 2.44 0.40 0.51 0.44 2.21 0.37 0.54 0.48
felekesemitic 2.90 0.53 0.45 0.28 2.85 0.53 0.41 0.31 2.33 0.41 0.49 0.42 2.27 0.41 0.49 0.42 2.19 0.40 0.50 0.44
hantganbangime 1.98 0.48 0.44 0.36 1.38 0.36 0.53 0.50 1.65 0.42 0.48 0.43 1.65 0.42 0.47 0.43 1.86 0.47 0.44 0.37
hattorijaponic 1.50 0.30 0.65 0.58 1.33 0.27 0.69 0.63 1.66 0.32 0.60 0.57 1.57 0.31 0.61 0.59 1.50 0.30 0.63 0.60
listsamplesize 3.68 0.69 0.37 0.17 2.43 0.51 0.42 0.35 2.72 0.53 0.41 0.31 2.71 0.54 0.41 0.30 2.81 0.54 0.40 0.30
backstromnorthernpakistan 0.97 0.22 0.77 0.66 0.73 0.17 0.79 0.74 1.00 0.21 0.72 0.67 1.03 0.22 0.71 0.65 0.93 0.21 0.73 0.68
mannburmish 2.33 0.60 0.36 0.25 2.02 0.55 0.39 0.30 2.41 0.62 0.34 0.24 2.32 0.62 0.34 0.25 2.38 0.62 0.33 0.25
castrosui 0.39 0.10 0.88 0.84 0.29 0.07 0.90 0.88 0.32 0.08 0.89 0.87 0.34 0.08 0.88 0.87 0.41 0.10 0.85 0.84
allenbai 0.76 0.25 0.71 0.66 0.64 0.21 0.75 0.71 0.78 0.25 0.68 0.65 0.84 0.27 0.66 0.64 0.99 0.32 0.59 0.57
abrahammonpa 0.94 0.18 0.76 0.72 0.66 0.12 0.80 0.80 0.87 0.16 0.74 0.74 0.95 0.18 0.72 0.72 1.03 0.20 0.70 0.70

surprise total 1.89 0.44 0.56 0.43 1.42 0.35 0.61 0.53 1.55 0.38 0.60 0.49 1.51 0.37 0.59 0.50 1.58 0.40 0.56 0.47

bremerberta 2.49 0.46 0.53 0.35 1.58 0.30 0.62 0.56 1.99 0.38 0.56 0.46 1.85 0.35 0.58 0.49 2.05 0.39 0.55 0.44
wangbai 1.02 0.29 0.66 0.58 0.97 0.28 0.66 0.60 1.05 0.31 0.63 0.58 1.06 0.31 0.62 0.57 1.15 0.34 0.59 0.54
luangthongkumkaren 0.66 0.17 0.81 0.73 0.55 0.15 0.80 0.78 0.56 0.15 0.80 0.77 0.62 0.17 0.78 0.75 0.77 0.21 0.73 0.69
hillburmish 2.10 0.54 0.47 0.34 1.64 0.44 0.51 0.45 2.66 0.68 0.44 0.17 1.87 0.49 0.48 0.38 1.80 0.47 0.46 0.39
birchallchapacuran 3.17 0.47 0.48 0.32 2.81 0.47 0.44 0.35 2.80 0.47 0.44 0.34 2.80 0.47 0.45 0.33 2.83 0.48 0.44 0.33
bantubvd 1.99 0.45 0.56 0.39 1.53 0.36 0.61 0.50 1.29 0.31 0.69 0.55 1.43 0.34 0.65 0.51 1.45 0.35 0.64 0.50
kesslersignificance 4.06 0.89 0.29 0.04 2.85 0.73 0.30 0.15 2.77 0.67 0.34 0.17 2.81 0.68 0.34 0.16 2.95 0.71 0.33 0.14
bodtkhobwa 0.63 0.27 0.66 0.65 0.53 0.22 0.70 0.71 0.56 0.23 0.68 0.69 0.66 0.27 0.63 0.64 0.77 0.32 0.57 0.59
beidazihui 1.15 0.32 0.67 0.56 0.48 0.13 0.80 0.80 0.45 0.13 0.82 0.82 0.48 0.13 0.80 0.81 0.57 0.16 0.77 0.77
deepadungpalaung 1.63 0.58 0.50 0.30 1.23 0.44 0.60 0.43 1.39 0.48 0.57 0.39 1.49 0.52 0.54 0.36 1.47 0.52 0.53 0.35

Table 3: Results by model for the 0.50 data condition (BL=Baseline, I1=Inpainting, N*=Neighborhood model),
averaged by language group. The four values per entry cover the four metrics used in the shared task (black=edit
distance, olive=normalized edit distance, red=B-Cubed F-Scores, blue=BLEU).
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sets, the worst performing configuration is the N2
model. It performs significantly worse than the
N1 Neighbor and the Inpainting configurations us-
ing the edit distance-based metrics and decidely
worse than the Inpainting method using B-Cubed
F-Scores and BLEU. We hypothesize the existence
of two confounding factors that may be affecting
the model’s performance. First, we trained it us-
ing significantly smaller (compared to N1 systems)
amounts of augmented data. In addition, stop-
ping the training process after a random number of
steps may have resulted in under-training. Analy-
sis of N2 model’s results on individual language
groups displays the uneven performance of this
model. On the BREMERBERTA and DEEPADUNG-
PALAUNG sets, the model strongly outperforms
the baseline and improves upon one of the N1 con-
figurations, while at the same time being signifi-
cantly worse than the baseline on the HILLBUR-
MISH set.

6 Conclusions

We presented two approaches to the problem of
cognate reflex prediction, one based on the trans-
former Seq2Seq architecture, and one based on
convolutional networks. Both approaches stem
from natural, intuitive interpretations of the prob-
lem. The “neighbors” transformer approach treats
the problem as one of reconstructing the phonetic
form of a cognate by considering all the other cog-
nates in the set, on analogy to the problem of re-
constructing the reading of a geographical feature
on the basis of the pronunciation of names of geo-
graphic neighbors. The inpainting approach treats
the problem as being similar to filling in missing
pixels in an image on the basis of the surrounding
context pixels. We submitted 5 system variants (1
convolutional model and 4 transformer models) to
the SIGTYP 2022 Shared Task, where they per-
formed well relative to the provided baseline and
other submissions.

Supplementary Material

The implementation of the Inpainting CNN and
the Neighbors transformer models described
in this work is available in Google Research
repository on GitHub (https://github.com/
google-research/google-research/tree/
59f02a3cb447f381a7450c89f37dda042819216e/
cognate_inpaint_neighbors). The results for
these systems are curated on GitHub (https:

//github.com/sigtyp/ST2022) along with the
results of the other systems submitted to the
shared task, and have been archived with Zenodo
(https://doi.org/10.5281/zenodo.6538626).
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A Language Name Emoji Mapping

The mapping between names of the Northern Pak-
istan languages as encoded in the shared task data
for the BACKSTROMNORTHERNPAKISTAN lan-
guage group and the emojis is shown in Table 4.
The mapping takes place during the generation of
the training data. The inverse mapping is applied
during decoding at the inference stage to map the
emojis back to language names.

B Tuning the Inpainting Model

For the cognate inpainting model there are six tun-
able hyperparameters:
• The symbol embedding dimension.
• The width w of the 2D convolution kernel
(h,w), where h is the number of languages and
w corresponds window of characters processed
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between rectified linear units (ReLU) (Nair and
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Abstract

This paper presents the transformer model built
to participate in the SIGTYP 2022 Shared Task
on the Prediction of Cognate Reflexes. It con-
sists of an encoder-decoder architecture with
multi-head attention mechanism. Its output is
concatenated with the one hot encoding of the
language label of an input character sequence
to predict a target character sequence. The re-
sults show that the transformer outperforms the
baseline rule-based system only partially.

1 Introduction

The SIGTYP 2022 Shared Task on the Prediction of
Cognate Reflexes investigates1 the research ques-
tion of to what extend machine learning can be
employed to predict cognate reflexes, i.e., word
forms assumed to derive from a common attested
or reconstructed word form.

Such words prototypically present phonological
features that are in part common to different lan-
guages and in part specific to each given language:
consistent comparison between different words al-
lows detection of structural similarities and recur-
rent change patterns, which can be explained by
positing the existence of sets of cognate reflexes,
i.e., sets of words belonging to different languages
but deriving from a common form that has over
time undergone consistent—and therefore to a large
extent predictable—phonological/structural change
according to the rules of each given language.

The study of cognate reflexes, which is at the
heart of modern historical-comparative linguistics,
was first applied successfully to the Indo-European
languages, which have been argued, with ample
and compelling evidence, to derive from a com-
mon ancestor, the Proto-Indo-European (e.g. see
Lehmann, 1952). In this respect, the comparative
method has even allowed reconstruction of parallel

1The code is made available at https://github.
com/sigtyp/ST2022

grammars, with description of detailed phonologi-
cal and morphosyntactic correspondences between
languages (e.g., see Sihler, 1995 for Ancient Greek
and Latin).

The cognate-related computational research has
been characterized by various tasks and approaches.
Some are rule-based: for example, Dinu and
Ciobanu (2014) automatically identify cognates by
linking word etymologies; List (2019a) proposes
an algorithm to align cognate sound segments. Oth-
ers employ machine learning methods: for exam-
ple, Meloni et al. (2021) build an encoder-decoder-
with-attention model to predict the Latin root word
common to romance language cognates. Similarly,
Dekker and Zuidema (2020) investigate the use of
neural networks for prediction of cognates from
Slavic and Germanic subfamilies.

In the SIGTYP 2022 Shared Task, participants
are requested to predict a cognate reflex form from
other cognate reflex forms. The present article re-
ports on the model I have build for the challenge.
In Section 2, the dataset is described, while, in Sec-
tion 3, the method employed to tackle the task is
detailed. Section 4 contains the results, and Sec-
tion 5 their discussion. Section 6 provides some
concluding remarks.

2 Dataset

The initial dataset provided for training consisted
of cognate reflexes from 10 language families (see
List et al. 2022 for a description of the language
database). The data for each language family in
turn consists of 5 tsv training files containing cog-
nate reflexes for a variable number of languages:
the 5 files contain training data with different per-
centages of missing data, ranging from 10% to
50%.

This data structure has been designed to test
model reliability on progressively sparser data,
with the file containing 50% missing data being the
most challenging. The 5 training files are matched
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BelejeGonfoye Fadashi Maiyu Undulu
g o r a k o r a ? g o r a f a
n d u n d u n d u ?

? b o S a b O S a b o: S a

Table 1: Example of entries from a test file of
bremerberta.

by 5 test files presenting the exact same structure
as the training files plus question marks in those
table cells whose values are requested to be pre-
dicted. Solutions and baseline results for each of
the 5 test files are also provided. Table 1 shows a
few example rows from a test file of the language
family labeled as bremerberta (Bremer, 2016),
where question marks indicate the cognate reflexes
to predict.

It is important to note that the initial training data
are only provided in order for the participant to fa-
miliarize with data structure: indeed, the test data,
which only are required to be submitted for the chal-
lenge, contain different languages (also called ‘sur-
prise languages’), whose model parameters need
to be calculated singularly and independently. The
test data also consists of 10 language families. In
what follows, I present my work concerning the
surprise languages2 only.

3 Method

3.1 Modeling Strategy and Data Vectorization
The surprise data comes from 10 language families.
The data for each language family is organized
in separate folders containing 5 training files with
different percentage of missing data (from 10% to
50%). Remarkably, the training files with different
percentages have overlapping data, and therefore
have to be kept separate in the training phase.

Each file corresponds to a table, where columns
represent languages and rows examples of cognate
reflexes. The data is highly sparse, in that single
rows can show more than one empty cell. More-
over, the test files, as shown in Table 1, require
prediction of cognate reflexes not only for one but
all languages, with some rows having a given lan-
guage as their target variable and other rows other
languages.

To tackle these issues, I have build as many mod-
els as the number of languages contained in each
training file. The number of models created for

2This data coincides with that in the data-surprise
folder at https://github.com/sigtyp/ST2022.

predictor language target (Undulu)
m u l h i Maiyu m u l h i
m u l h i Fadashi m u l h i
b o N o S Fadashi b o N k o S

m b @ m a BelejeGonfoye m b u m a

Table 2: Examples of remodelling of training data of
bremerberta

each language family can therefore be calculated
thus:

languages · train_files = models

For example, 45 models are trained for the lan-
guage family labeled as hillburmish because
it consists of 9 languages, and 5 training files with
different percentages of missing data are available.

The original tabular data of each training file has
been reorganized as to create new tabular structures:
each language is considered as a target variable in
turn, with the other languages’ data being used as
predictors. To address the issue of sparsity, each
new data point is modeled as to only represent one
single (predictor) cognate reflex plus its language
label.

Table 2 shows how data are remodeled to predict,
for example, cognate reflexes of the Undulu lan-
guage. The rows contain cognate reflexes that may
be on one single row in the original data (this holds
true for the first two rows). Each cognate reflex
is considered—with regard to the target variable—
separately. The language column refers to the lan-
guages of the cognate reflexes used as predictors.
It is to be noted that this modeling strategy allows
ignoring the missing data in the original files: if a
cognate reflex for a given language is missing, it is
simply ignored.

Cognate reflexes have been vectorized as charac-
ter embeddings, while one hot encoding has been
employed for language labels. The term ‘character’
is here used to refer to all space-separated values
provided in the original data (most of which, but
not all, correspond to one Unicode character).

3.2 A Transformer Architecture

Transformers have increasingly become popular to
solve a variety of NLP tasks, especially through
fine-tuning of a pretrained model (e.g, see Wolf
et al., 2020).

Transformers are characterized by an encoder-
decoder architecture with attention mechanism
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Figure 1: The transformer architecture

(Vaswani et al., 2017). In the present task, the
encoder is meant to transform an input sequence
of characters into a new context-aware sequence
via a multi-head attention layer. The decoder can
then predict each character of a target sequence
relying on the entire context-aware input sequence
and all the target sequence steps preceding the (tar-
get) sequence step to predict: this is possible be-
cause the target sequence used as an input is made
context-aware via a multi-head attention layer with
masking, which prevents the use of sequence steps
from the future.3

In the implementation proposed (see Figure 1)4,
the input to the encoder is represented by char-
acter embeddings added to character position em-
beddings: these latter are meant to vectorize the
position of each character within the character se-
quence (indeed, no recurrent neural network will
be used to keep track of character order).

The heart of the encoder coincides with a multi-
head attention layer outputting a context-aware rep-
resentation of the input embeddings that accounts
for how strongly each character is associated with
the others within the character sequence. Remark-
ably, attention mechanism is character order inde-
pendent. Since query, key, and value of the

3At training time, the target character sequence and the
target character sequence used as input differ in that the former
is offset by one step.

4The architecture is the one implemented at
https://github.com/keras-team/keras-io/
blob/master/examples/nlp/neural_machine_
translation_with_transformer.py, adapted for
the present SIGTYP 2022 Shared Task to account for the
presence of language labels as predictors. The code is
available at https://github.com/sigtyp/ST2022/
tree/main/systems/PRECOR_transformer.

encoder’s multi-head attention layer are all input
character embeddings, the layer instantiates self-
attention.

The decoder component has a more complex
architecture, which consists of two main layers:

• A multi-head attention layer whose input is a
target sequence masked as to avoid that predic-
tion of a target sequence step takes advantage
from future steps

• A multi-head attention layer aimed to merge
the encoder output, used as key and value,
with the output of the masked multi-head at-
tention layer used as query.

The output of the decoder is passed to a dropout
layer, and the output of it is then concatenated with
the one-hot encoding computed for the language of
the input character sequence. Finally, a softmax
function is meant to output the probabilities for
each target character.

The new remodeling of data described in Section
3.1 also requires a strategy to deal with multiple
cognate reflexes ‘at once’ at inference time: since
test files contain more than one cognate reflex for
a given target cognate reflex (i.e., there are many
cognate reflexes as predictors on a single row), the
probabilities returned for each predictor cognate re-
flex are summed and then averaged (by the number
of predictor cognate reflexes) to produce one single
target tensor of probabilities (see Figure 2). At in-
ference time, the string for the target cognate reflex
used as an input first consists only of a dollar sign,
which conventionally represents the beginning of a
target character sequence: recursively, after a char-
acter is predicted, it is added to the target character
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sequence used as an input, so that it can also be
used for prediction of the following character, until
a hash sign, which conventionally signals the end
of a cognate reflex, is reached.

4 Results

Results are shown in Table 3. The scores given
for each language family are averages over all the
scores for each language within a given language
family. They have been calculated using the func-
tion compare_wordsmade available by the SIG-
TYP 2022 Shared Task organizers. Three main
metrics have been employed: the Levenshtein dis-
tance (Levenshtein, 1965), the B-Cubed F-scores
(List, 2019b), and the BLEU scores (Papineni et al.,
2002). In Table 3, each score of the transformer is
provided together with the corresponding one of
the baseline rule-based system (this latter being in
parentheses). Highlighted are the best scores for
each language family. More details on the metrics
of the SIGTYP 2022 Shared Task and the baseline
scores are given in List et al. (2022).

5 Discussion

The presence of 5 different training sets for each
language family and the need of building a model
for each language within a language family (see
Section 3) resulted in the training of as high a num-
ber of models as 495. Since training of different
algorithms and, especially, hyperparameter opti-
mization for each model would have required a
high computation load, I focused on a transformer
architecture with fixed hyperparameters for all lan-
guages.5

The Levenshtein distance shows that the trans-
former always performs better than the rule-
based system relative to the language fam-
ily kesslersignificance. The trans-
former’s performances for beidazihui and
bremerberta are better relative to the datasets
with proportions 0.1, 0.2, and 0.3 and the datasets
with proportions 0.1 and 0.5, respectively.

The major challenge posed by the SIGTYP 2022
Shared Task seems to be data scarsity and sparsity,
which affects data representativeness. The trans-
former’s model tended to overfit the training data.
A dropout layer and early stopping were employed,
but more regularization and hyperparameter tuning

5Details can be found at https://github.com/
sigtyp/ST2022/tree/main/systems/PRECOR_
transformer.

Proportion 0.1
Language family ED B-Cubed FS BLEU

bantubvd 1.37 (1.13) 0.67 (0.78) 0.52 (0.61)
beidazihui 1.04 (1.10) 0.67 (0.73) 0.59 (0.58)

birchallchapacuran 2.42 (1.63) 0.51 (0.65) 0.36 (0.53)
bodtkhobwa 0.56 (0.49) 0.73 (0.76) 0.69 (0.72)
bremerberta 1.39 (1.72) 0.71 (0.72) 0.63 (0.50)

deepadungpalaung 1.26 (1.07) 0.74 (0.76) 0.39 (0.44)
hillburmish 1.66 (1.21) 0.53 (0.65) 0.42 (0.56)

kesslersignificance 2.49 (2.77) 0.45 (0.49) 0.15 (0.16)
luangthongkumkaren 0.87 (0.38) 0.76 (0.91) 0.65 (0.84)

wangbai 0.81 (0.62) 0.73 (0.80) 0.65 (0.73)
Proportion 0.2

Language family ED B-Cubed FS BLEU
bantubvd 1.70 (1.38) 0.58 (0.69) 0.45 (0.53)
beidazihui 1.03 (1.14) 0.64 (0.68) 0.59 (0.57)

birchallchapacuran 2.90 (2.02) 0.44 (0.58) 0.29 (0.45)
bodtkhobwa 0.62 (0.45) 0.67 (0.75) 0.66 (0.75)
bremerberta 1.68 (1.68) 0.61 (0.67) 0.53 (0.51)

deepadungpalaung 1.51 (1.30) 0.58 (0.67) 0.33 (0.39)
hillburmish 1.76 (1.23) 0.49 (0.63) 0.39 (0.55)

kesslersignificance 2.56 (2.93) 0.38 (0.40) 0.14 (0.14)
luangthongkumkaren 1.01 (0.47) 0.68 (0.87) 0.59 (0.80)

wangbai 1.00 (0.76) 0.64 (0.75) 0.60 (0.68)
Proportion 0.3

Language family ED B-Cubed FS BLEU
bantubvd 2.18 (1.55) 0.47 (0.66) 0.34 (0.51)
beidazihui 1.09 (1.12) 0.60 (0.67) 0.56 (0.57)

birchallchapacuran 3.19 (2.36) 0.39 (0.54) 0.26 (0.41)
bodtkhobwa 0.67 (0.48) 0.64 (0.73) 0.63 (0.72)
bremerberta 1.97 (1.84) 0.55 (0.63) 0.46 (0.49)

deepadungpalaung 1.63 (1.35) 0.50 (0.60) 0.30 (0.38)
hillburmish 2.00 (1.40) 0.44 (0.58) 0.33 (0.49)

kesslersignificance 2.78 (3.10) 0.33 (0.35) 0.13 (0.11)
luangthongkumkaren 1.13 (0.45) 0.66 (0.87) 0.56 (0.81)

wangbai 1.10 (0.81) 0.60 (0.72) 0.56 (0.66)
Proportion 0.4

Language family ED B-Cubed FS BLEU
bantubvd 2.16 (1.64) 0.45 (0.63) 0.34 (0.49)
beidazihui 1.12 (1.11) 0.59 (0.67) 0.55 (0.57)

birchallchapacuran 3.51 (2.82) 0.37 (0.50) 0.24 (0.36)
bodtkhobwa 0.71 (0.59) 0.62 (0.69) 0.60 (0.66)
bremerberta 2.32 (2.32) 0.48 (0.57) 0.40 (0.39)

deepadungpalaung 1.84 (1.51) 0.43 (0.54) 0.24 (0.32)
hillburmish 2.17 (1.58) 0.41 (0.54) 0.30 (0.45)

kesslersignificance 2.89 (3.91) 0.28 (0.30) 0.13 (0.05)
luangthongkumkaren 1.23 (0.53) 0.61 (0.85) 0.53 (0.78)

wangbai 1.29 (0.90) 0.55 (0.70) 0.49 (0.62)
Proportion 0.5

Language family ED B-Cubed FS BLEU
bantubvd 2.36 (2.00) 0.41 (0.57) 0.29 (0.39)
beidazihui 1.18 (1.15) 0.56 (0.66) 0.53 (0.56)

birchallchapacuran 3.72 (3.17) 0.34 (0.47) 0.21 (0.31)
bodtkhobwa 0.81 (0.62) 0.58 (0.66) 0.55 (0.65)
bremerberta 2.50 (2.53) 0.44 (0.53) 0.36 (0.34)

deepadungpalaung 2.04 (1.62) 0.36 (0.49) 0.19 (0.30)
hillburmish 2.42 (2.13) 0.37 (0.46) 0.25 (0.33)

kesslersignificance 3.00 (4.06) 0.27 (0.28) 0.11 (0.05)
luangthongkumkaren 1.47 (0.66) 0.55 (0.81) 0.46 (0.73)

wangbai 1.54 (1.02) 0.49 (0.66) 0.42 (0.58)

Table 3: Results for the transformer and the baseline
rule-based system (in parentheses).

would probably lead to better results. Due to the
high variance, I consider the results of the trans-
former and the baseline model very similar.
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Figure 2: Example of calculation of final probabilities at inference time (fictitious numbers). The inputs are
represented by cognate reflexes of one single row in the file test-0.10.tsv of bremerberta.

6 Conclusions

The paper presented the transformer model built for
the SIGTYP 2022 Shared Task. Despite the trans-
former’s complex architecture, which can model
input characters in context and even rely on past tar-
get sequence steps, its performance was not overall
superior to that of the baseline rule-based system.
This may be due to data scarsity and sparsity. For
this reason and in light of the considerable compu-
tational overhead that may be required at inference
time, in that target sequence decoding may involve
thousands of dictionary lookups—which can only
be executed on CPU—one might prefer to test sim-
pler model architectures.

Supplementary Material

The code described in this paper has been
archived at https://github.com/sigtyp/
ST2022/releases/tag/v1.4 and https:
//doi.org/10.5281/zenodo.6586772.
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Abstract

This work describes an implementation of the
“extended alignment” model for cognate reflex
prediction submitted to the “SIGTYP 2022
Shared Task on the Prediction of Cognate Re-
flexes”. Similarly to List et al. (2022a), the
technique involves an automatic extension of
sequence alignments with multilayered vec-
tors that encode informational tiers on both
site-specific traits, such as sound classes and
distinctive features, as well as contextual and
suprasegmental ones, conveyed by cross-site
referrals and replication. The method allows to
generalize the problem of cognate reflex pre-
diction as a classification problem, with models
trained using a parallel corpus of cognate sets.
A model using random forests is trained and
evaluated on the shared task for reflex predic-
tion, and the experimental results are presented
and discussed along with some differences to
other implementations.

1 Introduction

The Special Interest Group of Linguistic Typol-
ogy (SIGTYP) organized in 2022 the “SIGTYP
2022 Shared Task on the Prediction of Cognate Re-
flexes” (List et al., 2022b), providing the commu-
nity with cognate-coded wordlists from which vary-
ing amounts of cognate sets were withheld. Par-
ticipants were asked to submit models capable of
predicting the missing words and morphemes from
the non-withheld members. This work describes
the submission named ceot-extalign-rf.

Reflex prediction is particularly interesting to
computational historical linguistics, since most ap-
proaches to reconstruction are rooted in compar-
ative methods operating on cognate sets (Jäger,
2019; Greenhill et al., 2020; List et al., 2018), i.e.,
sets of words that are assumed to derive from a
common proto-word. We can therefore define a
cognate as a member of a set of words (a “cog-
nate set”) that share an etymological origin via
vertical descent. Such a definition highlights how

the defining property of a cognate set is the regu-
lar sound correspondences between the words in-
volved, even when they are not judged as “similarly
sounding” by human evaluators. Homologies don’t
imply homogenies, as processes like word borrow-
ing and chance resemblance can lead to similarities,
while true cognates can be very dissimilar, as in
the often cited example of English “two” and Ar-
menian “erku”, both from a reconstructed form
*dwóh1 (Kroonen, 2013).

The task can be seen as a form of zero-shot learn-
ing (Xian et al., 2018), where a model must learn
to predict the “reflexes” of a potentially unknown
ancestral word form, with no examples of the rele-
vant cognate set provided during the training phase.
When considering the landscape of machine learn-
ing methods available and the approaches so far
proposed (Dinu and Ciobanu, 2014; Bodt and List,
2022; Meloni et al., 2021; Beinborn et al., 2013;
Dekker and Zuidema, 2021; Fourrier et al., 2021;
List et al., 2022a), including other submissions to
this challenge (Jäger, 2022; Celano, 2022; Kirov
et al., 2022), it is possible to identify two main
strategies for the task. The first one treats the prob-
lem as one of classification, potentially refining
sequence results with probabilities from a char-
acter model, while the second employs sequence
transformation methods, especially those akin to
seq2seq approaches (Sutskever et al., 2014), mak-
ing the task one analogous to that of “translation”.
This submission is of the first kind, with results pro-
vided by random forests (Kam et al., 1995; Hastie
et al., 2009), but attention should focus on the pro-
posed method of data transformation.

The method is based on “multitiered” proposals,
originally based on an idea by J.-M. List, which
have been described and implemented in other
works (Tresoldi et al., 2018; List, 2019b; Bodt and
List, 2022; Chacon and List, 2016), including for
the baseline for the shared task at hand (List et al.,
2022b). It is an approach for modeling historical
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linguistic relationships developed to solve prob-
lems that are not addressed by pure-correspondence
approaches, such as those involving cross-site gen-
eralization and the need to capture contextual and
suprasegmental information. By considering how
discrete representations of phonological sequences
can be an unsuitable provision, as the latter are
abstract representations of both discrete and con-
tinuous multidimensional phonological domains,
the technique extends base alignments with multi-
layered vectors, encoding additional and derived
features. Here, such an informational extension
is knowingly and intentionally similar to the an-
alytical frameworks of Firthian (Mitchell, 1975)
and autosegmental phonology (Goldsmith, 1990),
where sequence representation is given by more
than a single string of segments.

This work first summarizes the extended align-
ment technique, with a focus on how it can be used
to predict cognate reflexes. Then, it describes the
experimental setting used for the submission, and
how the extended alignment method can apply to
the task at hand. It concludes with a discussion on
the results and future work.

2 Materials and Methods

2.1 Materials
Data for the experiment comprised 20 standardized
datasets derived from the Lexibank project (List
et al., forthcoming), each encompassing a single
linguistic family and providing good geographic
and typological variation. The datasets were split
into five partitions each, with different ratios of
words kept for training and evaluation, and were
provided by the task’s organizers. They provided
a more comprehensive description of the data and
the way they prepared it in List et al. (2022b).

The submission also extensively uses the
phonological information provided by the mipa
and tresoldi models of the maniphono library
(Tresoldi, 2021), which were incorporated into
the code in order to simplify installation require-
ments. The information provided by these models
is adapted from the data of CLTS (Anderson et al.,
2018; List et al., 2021), with additional mappings
and structures partly described in Tresoldi (2020).

2.2 Methods
2.2.1 Multitiered Extension
It is important to distinguish between the method
for representing phonological data and the actual

model for reflex prediction. The first, building upon
the theoretical discussions also shown in List et al.
(2022a), is the most promising element because of
its innovative treatment of alignment sites: instead
of just being linear components of a sequence under
an alignment set, they are treated as independent
records in a database. Such a database is turned into
a two-dimensional matrix, from which observed
and predicted features are extracted and used by
common classification models. The method thus
facilitates the usage of established algorithms for
machine learning, allowing to reframe tasks from
historical linguistics as more common tasks of clas-
sification, regression, or transformation by using
conventional methods and well-researched imple-
mentations.

Let’s consider the example given in the chal-
lenge’s call, reproduced in Table 1, with three cog-
nate sets, identified by comparable concepts, in-
volving German, English, and Dutch.

Cognate Set German English Dutch
ASH a S E æS A s
BITE b ai s @ n b ai t b Ei t @
BELLY b au x ? b œi k

Table 1: Exemplary cognate reflexes in German, En-
glish, and Dutch. Adapted from List et al. (2022b).

The first step in producing an alignment enriched
with new tiers is to perform multiple sequence
alignment (List, 2012), which in this case yields
three independent alignment sets, as shown in Ta-
bles 2, 3, and 4. This is a step common to most
classification methods for reflex prediction.

Language #1 #2 #3
German a S E
English æ S -
Dutch A s -

Table 2: Alignment for cognate set ASH for German,
English, and Dutch reflexes.

Language #1 #2 #3 #4 #5
German b ai s @ n
English b ai t - -
Dutch b Ei t @ -

Table 3: Alignment for cognate set BITE for German,
English, and Dutch reflexes.
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Language #1 #2 #3
German b au x
English ? ? ?
Dutch b œi k

Table 4: Alignment for cognate set BELLY for German,
English, and Dutch reflexes.

Even without extensions, by considering each
alignment site an independent observation it is pos-
sible to combine multiple sets into a single data
frame. The operation “transposes” the alignments,
joining them into a single frame as shown in Table
5, following the common steps of this framework
(List, 2019a; Tresoldi et al., 2018; Bodt and List,
2022; List et al., 2022a).

ID So
ur

ce

G
er

m
an

se
gm

en
t

E
ng

lis
h

se
gm

en
t

D
ut

ch
se

gm
en

t

1 ASH.1 a æ A
2 ASH.2 S S s
3 ASH.3 E - -
4 BITE.1 b b b
5 BITE.2 ai ai Ei
6 BITE.3 s t t
7 BITE.4 @ - @
8 BITE.5 n - -
9 BELLY.1 b ? b
10 BELLY.2 au ? œi
11 BELLY.3 x ? k

Table 5: Extended data frame, without any contextual
extension, from the aligned German, English, and Dutch
reflexes for the cognate sets ASH, BITE, and BELLY.
Note that “Source” is only provided here for ease of
exposition, and is not part of actual implementation.

Such an organization of the data is already ap-
propriate for training statistical methods, as each
observation is independent, making it possible to
identify correspondences and fill gaps by imputing
values. For instance, the partial match between the
sites of index 4 and 9 in Table 5 strongly suggests
that we should impute the missing information for
the English segment as /b/, or that site 11 should
be a dorsal consonant. Despite disappointing per-
formance in most cases given by the lack of infor-
mation for a proper zero-shot classification, reflex
prediction would already be possible due to the

comparatively high number of informative features
extracted from a small set of alignments, especially
if the prediction refers to phonological traits in-
stead of atomic segments. For example, if given
a hypothetical partial cognate set with a German
reflex /Saus/ and an English /Sout/, most statistical
methods could already classify the first site in the
alignment as analogous to site 2 (given the /S/ to
/S/ correspondence between German and English),
the second one to site 10 (even though English
/ou/ is not attested in this example), and the third
one to site 6 (given the /s/ to /t/ correspondence),
yielding a hypothetical Dutch form /sœit/.

The data frame can be extended in two ways.
First, it can be enriched with information specific
to each alignment site, allowing machine learning
methods to generalize from observed instances (for
example, learning that a correspondence applies not
just to one sound, but to one or more sets of sounds)
and to restrict the effect of correspondences to cer-
tain word or syllable positions1. In Table 6, such
features are added by extending sites with tiers for
the “sound class” (Dolgopolsky, 1986) under the
SCA model (List, 2012) and the alignment posi-
tion for each segment. In an actual implementa-
tion, more site-specific information would likely
be added, such as tiers derived from distinctive
features (both from commonly used models, like
those derived from Chomsky and Halle 1968, and
from binary models designed for machine learning,
like those provided by maniphono) and indexes
related to the position in the word and in the syl-
lable when counting either left-to-right (“index”)
and right-to-left (“rindex”).

The second type of extensions addresses the fact
that making each alignment site independent loses
contextual information. In Table 7, two contextual
tiers are added for each segment tier, one specify-
ing the previous segment (the segment one position
to the left, thus L1) and one carrying information
on the following sound class (the SCA one posi-
tion to the right, thus R1). There is no limit on the
amount of contextual information with which each
alignment site can be enriched, and, in fact, when
using a complete system of phonological features it
is possible to encode complex phonological infor-
mation such as “the preceding syllable has a nasal
consonant” or “the word ends with a front vowel”.

Depending on the size of the context window, the
1Note that position of the alignment site in the word is

explicitly tested by List et al. (2022a), who report no improve-
ments in performance.
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1 1 a A æ E A A
2 2 S S S S s S
3 3 E E - - - -
4 1 b P b P b P
5 2 ai A ai A Ei E
6 3 s S t T t T
7 4 @ E - - @ E
8 5 n N - - - -
9 1 b P ? ? b P
10 2 au A ? ? œi U
11 3 x G ? ? k K

Table 6: Multitiered representation extended with infor-
mation on the alignment index and the corresponding
SCA sound class, from the aligned German, English,
and Dutch reflexes for sets ASH, BITE, and BELLY.

number, and the type of tiers used for extending the
alignment, the shape of the data frame can increase
to hold hundreds or thousand of features. While the
human inspection of such data will rapidly become
impractical, this property should not be considered
an issue because, at this stage, the representation
is intended for machine consumption. Methods
for extracting information for human consumption
should rely on these enlarged data frames, without
reducing their size beforehand. Nonetheless, before
carrying any kind of statistical analysis, it is recom-
mended to perform common tasks of data prepara-
tion, such as dimensionality reduction and scaling
of the features. Data standardization and normal-
ization can ensure that features extracted from dif-
ferent tiers are placed on a common scale, and
transformation processes such as Principal Compo-
nent Analysis (PCA) (Tipping and Bishop, 1999)
can be improve training times and performance.

The implementation presented in this work dif-
fers from the previous ones due to the greater at-
tention to the principles of autosegmental phonol-
ogy. A general advantage of the approach (out-
lined already in List 2019b), is that it allows to use
the propagation strategy of contextual information
also for suprasegmental features, such as stress and
tone, to all alignment sites where it applies. With
tones, for example, instead of marking the tone as
a segment-like token at the end of the syllable or

as a property of the nucleus alone, it is possible
to expand the alignment with one or more tiers re-
garding the relevant tonality, which will apply to
all the segments that make up the relevant syllable.
Such information is not restricted to the tone itself,
but can be decomposed into properties like “tone
contour” or “starting pitch”. With complex cor-
respondences involving suprasegmental features,
machine learning methods will not need to “look
ahead” for a tone token, as one or more columns
will carry the relevant information in the data frame
record itself. In addition, the representation struc-
ture allows more easily composing results from
different information tiers: instead of establishing
models that only predict segments, as atomic units,
the implementation allows to predict, contempora-
neously or individually, two or more tiers. whose
information can be combined for the final results.
For example, especially with a binary model, it is
possible to predict the manner and place of articu-
lation of a segment independently, aggregating the
results into a phoneme or sound class.

2.2.2 Cognate Prediction
Cognate prediction is performed by training clas-
sifiers on the data frames prepared by the code for
extending alignments. When paying attention to
issues such as scaling of features, missing data, and
the encoding of multistate categorical features (usu-
ally with one- or multi-hot binary encoders), any
machine learning method can be used.

The task will involve two subtasks: the first for
training all the classifiers that are needed, and the
second for generating output in the expected format
once the classifiers have been prepared.

The steps for the first subtask are:

1. Align raw data. This step can be performed
manually or with tools for linguistic align-
ments, such as LingPy (List and Forkel, 2021).

2. Prepare extended data frames. From the
alignment sets, a single data frame is gener-
ated with all the requested additional tiers,
both for in-site and contextual information.

3. Prepare the training data for each language.
The training data comprises a data frame for
input variables X, including all features save
for those related to the language being pre-
dicted, and a vector for the output variable y,
from the appropriate “segment” column. All
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1 1 a A Ø S æ E Ø S A A Ø S
2 2 S S a E S S æ - s S A -
3 3 E E S Ø - - S Ø - - s Ø
4 1 b P Ø A b P Ø A b P Ø E
5 2 ai A b S ai A b T Ei E b T
6 3 s S ai E t T ai - t T Ei E
7 4 @ E s N - - t - @ E t -
8 5 n N @ Ø - - - Ø - - @ Ø
9 1 b P Ø A ? ? Ø ? b P Ø U
10 2 au A b G ? ? ? ? œi U b K
11 3 x G au Ø ? ? ? Ø k K œi Ø

Table 7: Data frame of alignment sites extended with information on the alignment index, the corresponding SCA
sound class, the preceding segment, and the following SCA sound class, from the aligned German, English, and
Dutch reflexes for the cognate sets ASH, BITE, and BELLY. Missing information, such as the segment to the left of
the first site in an alignment, is marked with Ø.

other features related to the language under
study are discarded.

4. Train and save classifiers. This will result
in a collection with one classifier for each
language in the dataset.

Once the classifiers are ready, it is possible to
perform reflex prediction with the following steps:

1. Align raw data. As above.

2. Prepare extended data frames. As above; it
is highly recommended, and depending on the
machine learning method it is necessary, that
the set of tiers added to the alignment is equal
to or a subset of the one used in training.

3. Prepare the X data frame and generate a y
prediction. For most classification methods, y
will yield a probability for different segments.

4. Prepare the output. Build the sequences of
predicted reflexes and organize them in the
expected data structure for evaluation.

3 Implementation and Results

For the shared task, data and classifiers were pre-
pared according to the workflows described in sub-
section 2.2.2.

Due to design decisions aiming at testing the
method more than achieving the best performing
model, only few additional tiers were used for ex-
tending the base alignments. These were the seg-
ments and SCA sound classes pertinent to each
language, with a left and right order of 1 and 2
(i.e., L1, L2, R1, R2), thus increasing four times
the number of phonological tiers. Indexing tiers
related to the position in the alignment, counting
both left-to-right and right-to-left, were also added.
No pruning or preemptive dimensionality reduction
was performed. Random forests (Breiman, 2001;
Kam et al., 1995; Hastie et al., 2009) were trained
using the default implementation in scikit-learn
version 1.1.0 (Pedregosa et al., 2011). Other classi-
fication methods were explored using samples of
the datasets, yielding good performance improve-
ments in the cases of XGBoost (Chen and Guestrin,
2016), LightGBM (Ke et al., 2017), and multi-layer
perceptrons (Hinton, 1990), particularly when per-
forming hyperparameter optimization (Akiba et al.,
2019). The decision to only submit the results us-
ing the random forest method was based on the
time and computational constraints to perform a
full training, as well as in the goal of establishing a
baseline for this implementation of the method.

Comparing with both the baseline and other sub-
mitted methods, the final results suggest much
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room for improvement. Performance was in
general between the Baseline and Baseline-SVM
method, mostly due to gains in prediction offered
by Support Vector Machines (Koutroumbas and
Theodoridis, 2008), for the partitions with most
information, degrading rapidly when the amount of
withheld data was increased, as illustrated by the
global results reported in List et al. (2022b).

The implementation performed particularly
poorly with the datasets bantudvd (Greenhill
and Gray, 2015) (as illustrated by the 0.7053 B-
Cubes for the 10% partition, versus 0.7835 of the
Baseline submission), felekesemitic (Feleke,
2021) (0.6661 B-Cubes for the 10% partition, ver-
sus 0.6925 of the baseline). It performed bet-
ter with datasets beidazihui (Běijı̄ng Dàxué,
1962) (as illustrated by the 0.8356 B-Cubes for
the 10% partition, versus 0.7279 of the baseline),
bodtkhobwa (Bodt and List, 2022) (0.7993 B-
Cubes for the 10% partition, versus 0.7566 of the
baseline), bremerberta (Bremer, 2016) (0.7915
B-Cubes for the 10% partition, versus 0.7187 of
the baseline), deepadungpalaung (Deepadung
et al., 2015) (0.8143 B-Cubes for the 10% parti-
tion, versus 0.7597 of the baseline), wangbai
(Wang and Wang, 2004) (0.8326 B-Cubes for
the 10% partition, versus 0.8048 of the baseline),
hattorijaponic (Hattori, 1973) (0.8127 B-
Cubes for the 10% partition, versus 0.7889 of
the baseline), listsamplesize (List, 2014)
(0.5325 B-Cubes for the 10% partition, versus
0.4048 of the baseline). Full results are available
along with the submission, with performance for
other datasets comparable to the baseline.

4 Discussion

Similarly to the implementation in List et al. 2022a,
the method of extending alignments implemented
here can be conceived as a learned data augmen-
tation strategy, since it is not based on statistical
properties of each dataset (that is, each collection
of alignment sets), but on the contribution from spe-
cialized linguistic knowledge. Such a strategy does
not exclude the use of purely statistical methods,
allowing them to more easily find the correspon-
dences between sets, especially when they convey
phonological traits that are sparse and non sequen-
tial. Once mature, we believe that the strategy will
be beneficial for most machine learning methods,
as it should allow for increased generalization due
to increased complexity of the data sets, incorpo-

rating informational tiers beyond phonological or
sequence properties.

Extended alignments have proven their useful-
ness for tasks like supervised phonological recon-
struction and cognate reflex prediction. There are,
however, many other problems to which they could
also be applied, either by replacing or by comple-
menting existing methods. The probability of corre-
spondence between certain phonemes, for example,
can be used for fine-grained decisions in cases of
doubts in the domain of sequence alignment, using
information which is “local” to the languages un-
der study along with default correspondence score
matrices that are generally computed for global us-
age. Likewise, the method can credibly be used
in the detection of loanwords (Miller et al., 2020),
especially in cases of large exchange of words be-
tween two languages and of “learned loanwords”.
Finally, like the other models proposed for this chal-
lenge, the method can be used to manage linguistic
data, identifying forms that are not predicted by
a model trained on the data itself, which may be
due to either particularly rich individual histories
or different amounts data noise.
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Spatial deictic demonstratives (e.g., “here” and
“from there”) denote spatial relations between
speaker(s) and referent(s) and play a crucial role
in cognition and language processing (Levinson,
2006). Languages vary in the complexity of their
spatial demonstrative systems, both in the granu-
larity of their distal levels (e.g. English has two
distal levels “here” and “there”, with an optional
third distal level "(over) there", whereas Kaba has
four) as well as in the extent of syncretism across
their possible orientations: PLACE, GOAL, and
SOURCE. English has syncretism between the place
and goal demonstratives (“I am there”, “I am going
there”) but distinguishes the source demonstratives
(“I am coming from there” is not the same as “I am
coming there”, see Table 1), whereas Finnish has
unique words for each orientation, at each distal
level (Table 2).

GOAL PLACE SOURCE

D1 (to) here here from here
D2 (to) there there from there
D3 (to over) there (over) there from (over) there

Table 1: English spatial deictic demonstratives (words
in the parenthesis are optional)

Using data from Nintemann et al. (2020), we
explore the variability in complexity and informa-
tivity across spatial demonstrative systems using
spatial deictic lexicons from 223 languages. We
argue from an information-theoretic perspective
(Shannon, 1948) that spatial deictic lexicons fall
on an efficient frontier, balancing informativity and

GOAL PLACE SOURCE

D1 tänne täällä täältä
D2 sinne siellä sieltä
D3 tuonne tuolla tuolta

Table 2: Finnish spatial deictic demonstratives

complexity. Specifically, we adopt the Informa-
tion Bottleneck (IB) family of approaches (e.g.
Tishby et al., 2000; Strouse and Schwab, 2017;
Zaslavsky et al., 2018), where a world state U (dis-
tal levels and orientations for a referent) is men-
tally represented by the speaker as meaning M ,
which is encoded with words W using a language-
specific encoder q(w | m) and then decoded by a
Bayesian listener. To this end, informativity is de-
fined as the mutual information between words and
world states, and complexity is defined as the mu-
tual information between mental representations
of meaning and words. An efficient lexicon opti-
mizes a tradeoff of these two factors (Eq. 1). The
relationship between meaning and world states is
determined by a cost function (Eq. 2) that defines a
penalty for confusing distal levels and orientations.
Broadly, this approach lets us ask: given a prior
and a cost function, if a language has n spatial ad-
verb wordforms, how should those n wordforms
be distributed across m slots in the paradigm? We
predict that attested systems are more efficient than
the logically possible paradigms that are rare or
unattested in world languages.

JIB[q] = I[M : W ]︸ ︷︷ ︸
Complexity

−β · I[W : U ]︸ ︷︷ ︸
Informativity

(1)

p(u | m) ∝ µCrr′+Cθθ′ (2)

We make three main contributions. First, we
find that among all the 21,146 theoretically pos-
sible lexicons, real lexicons lie near the efficient
frontier (Fig. 1) for appropriate choice of cost func-
tion and prior "need probability" over meanings
(Regier et al., 2015), thus adding deictic adverbs to
the growing list of lexical semantic domains whose
form can be explained in terms of information-
theoretic efficiency (e.g. Zaslavsky et al., 2018,
2021; Mollica et al., 2021; Kemp and Regier, 2012;
Zaslavsky et al., 2019; Denić et al., 2021). Second,
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Figure 1: Each colored point represents a real lexicon,
with the horizontal axis denoting the complexity and the
vertical axis denoting the informativity. The gray points
represent simulated lexicons. The real lexicons fall
along an efficient frontier (minimizing Eq. 1 for some
choice of tradeoff parameter β). The points are jittered
to avoid overlap.The parameters here are as follows: µ
= 0.3, CPS =1.3, and CPG = 0.8.

we investigate the minimal properties that the cost
function and prior must have such that actual lexi-
cons lie on the efficient frontier, finding that the key
properties are (1) the cost for confusing GOAL and
SOURCE is higher than that for confusing PLACE

with SOURCE, which is then higher than that for
confusing PLACE and GOAL, and (2) the SOURCE

orientation has the least prior probability. Both of
these properties are plausible for this semantic do-
main and consistent with prior observations in the
cognitive science literature, specifically regarding
asymmetries between the source and goal orien-
tations (Papafragou, 2006, 2010; Nikitina, 2009).
Third, we find that the IB approach does not fully
capture the patterns in human lexicons, as there
are theoretically efficient lexicons that are unat-
tested. We then introduce the notion of systematic-
ity, which means that the pattern of distinctions
should be consistent across distal levels and orien-
tations. We show that real lexicons are systematic
in addition to balancing between informativity and
complexity.

In addition to being explanatory for the typology
of spatial demonstratives, we believe these method-
ological innovations could be fruitfully applied to
information-theoretic analyses in other typological
domains.
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1 Introduction

Several works from cognitive linguistics claim
that systematic metonymy is universal across hu-
man languages (Barcelona et al., 2003; Brdar and
Brdar-Szabó, 2003; Croft, 2002; Gibbs et al., 1994;
Kövecses and Radden, 1998; Lakoff and Johnson,
2008; Panther and Radden, 1999). However, cross-
linguistic surveys on the phenomenon have so far
been limited to a small number of well-studied
languages such as English. An important reason
for this limitation is that current methodologies in
cross-linguistic semantic analysis require serious
involvement of language experts (Brdar-Szabó and
Brdar, 2003a,b, 2012) or native speakers (Kamei
and Wakao, 1992; Slabakova et al., 2013; Srini-
vasan and Rabagliati, 2015) or simply not suitable
for metonymy studies such as the elicitation tech-
niques (Koptjevskaja-Tamm et al., 2015).

On the other hand, the recent trend of exploiting
digitally available lexical resources makes large-
scale semantic studies feasible; e.g., the study of
the emotion domain in 2474 languages (Jackson
et al., 2019). This method is especially suitable
for systematic metonymy as it is lexically encoded.
Therefore, we used a lexico-semantic content of
multilingual lexical databases to build a large-scale
metonymy corpus that covers 26 metonymy pat-
terns and 20 thousand metonymy instances (word
pairs) in 189 languages belonging to 69 genera.
Due to the broad linguistic coverage, our results
considerably strengthen the stance on metonymy as
a universal phenomenon. This new, freely available,
online corpus of metonymy examples categorized
by patterns is also reusable for future studies.

2 Methods

Among the various kinds of resources—databases,
dictionaries, corpora—that were available to us,
multilingual lexical databases were suitable to
semi-automatically build a large multilingual cor-

pus of metonymies. The explicit representation of
words, their meanings, and their domains in mul-
tiple languages, as well as the presence of a cross-
lingual alignment of meanings and domains enable
us to extract metonymy in an efficient, partially
automated manner.

Our database of choice is the Universal Knowl-
edge Core (UKC)1 (Giunchiglia et al., 2017), due
to its wide linguistic, lexical, and conceptual cov-
erage (120 thousand word meanings, 2 million
words in 1127 languages). Metonymy patterns are
straightforward to model through the three-layered
domain–concept–lexicon architecture of the UKC.
The concept layer represents supra-lingual mean-
ings as a hierarchy of concepts based on the stan-
dard lexicographic broader–narrower relationship.
The domain layer of the UKC provides a simple
semantic categorization of concepts into domains
such as Animal. The lexical layer, finally, consists
of a separate lexicon for each language, each one
lexicalizing the supra-lingual concept layer.

Metonymy corpus extraction process consisted
of three steps. First, from the metonymy patterns
mentioned in the literature, we selected a subset
for which the UKC provides data. Second, through
automatic extraction and expert validation, we iden-
tified metonymically related concepts. Third, based
on the definitive set of metonymically related con-
cept pairs, we automatically extracted lexicaliza-
tions for all languages in the database.

3 Results

Table 1 reports the statistics of the metonymy
corpus2 extracted semi-automatically from the
database. Overall, 4,951 concept pairs were anno-
tated as metonymically related, and the correspond-
ing 20,095 metonymy instances were retrieved in
189 languages from the database. These 189 lan-

1http://ukc.datascientia.eu/
2The metonymy corpus is freely accessible as a stand-alone

resource at https://github.com/kbatsuren/UniMet.
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Table 1: Metonymy corpus statistics

Metonymy pattern Illustrative example Met. Met. Langs Families Genera
concepts instances

Substance for Artifact He filled the glass with water. 390 1,775 110 24 46
Fruit for Plant The gardener watered the lemon. 408 3,330 114 24 43
Instrument for Action She combed her hair. 617 2,083 95 24 40
Community for Place He traveled to the country. 87 735 97 22 38
Plant for Food Broccoli is delicious. 318 1,539 80 19 34
Animal for Meat The chicken is tasty. 156 746 85 19 33
Action for Result My thumb has a deep cut. 729 1,559 77 17 32
Object for Action They are well dressed. 546 1,653 79 17 31
Substance for Action I milked cows by hand. 242 942 78 17 31
Emotion for Cause You are my joy. 104 405 64 14 28
State for Causal agent He was a success. 160 645 59 15 27
Food for Action They had breakfasted so early. 51 210 55 13 27
Building for People Church sang a song. 71 384 63 15 26
Possessed for Possessor She married power. 190 713 60 14 26
Agent for Action The sheep will be butchered. 232 655 53 14 26
Product for Content The book is interesting. 46 546 60 14 25
Body part for Person I saw many new faces today. 156 442 61 12 25
Action for Food They provided a drink at the party. 16 90 47 14 22
Animal for Fur She likes to wear mink. 51 271 35 14 20
Container for Contained He drank half of the bottle. 88 461 42 10 19
Event for People Party went crazy. 61 257 39 11 18
Action for Object A lift fell to the bottom of its shaft. 91 153 41 12 17
Action for Agent You may be a help later. 57 207 34 12 17
Time for Action We honeymooned in Bali. 25 108 36 11 17
Food for Event Dinner took longer than usual. 9 132 36 11 17
Action for Time My shift is over this morning. 50 54 21 8 14

Total 4,951 20,095 189 34 69

guages belong to 34 different families (phyla) and
69 genera. They are also geographically stratified
(Figure 1). To the best of our knowledge, these
results provide the widest linguistic coverage so
far on metonymy (the broadest prior study we are
aware of is by Hilpert (2007) that reported 39 phy-
logenetically different languages using eye to refer
to vision).

Figure 1: The presence of metonymy in world’s lan-
guages (the same colors indicate the same family).

Based on the number of genera, the most uni-
versal pattern is SUBSTANCE FOR ARTIFACT for
which we found 110 languages from 46 genera.
FRUIT FOR PLANT and INSTRUMENT FOR ACTION

are also very widely attested patterns for each we
found 43 and 40 genera, respectively. Neverthe-
less, even the least widely covered patterns are
attested across phylogenetically diverse languages
from around the world. For example, the least di-
verse pattern, ACTION FOR TIME, is still attested

in 21 languages from 14 genera and eight families
from Africa, East Asia, the Pacific, Europe, and
the Middle East. This result suggests that diverse
societies use ACTION FOR TIME metonymies.

On the conceptual level, even specific concept
pairs appear to be universal: for instance, 49 lan-
guages from 22 genera use the concept ‘pear’ to
refer to its plant name. The English examples of
COMMUNITY FOR PLACE and INSTRUMENT FOR

ACTION patterns in Table 1 are attested in 69 and
39 other languages from 34 and 22 genera, respec-
tively.

4 Conclusions

Metonymy is regarded by most linguists as a univer-
sal phenomenon. However, the field data backing
up claims of universality has not been large enough
so far to provide conclusive evidence. We intro-
duce a large-scale analysis of metonymy based on
a lexical corpus of over 20 thousand metonymy
instances from 189 languages and 69 genera. No
prior study, to our knowledge, is based on linguis-
tic coverage as broad as ours. Drawing on corpus
analysis, evidence of universality is found at three
levels: systematic metonymy in general, particular
metonymy patterns, and specific metonymy con-
cepts.
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Abstract

This paper describes an ongoing endeavor to
construct Pavia Verbs Database (PaVeDa) – an
open-access typological resource that builds
upon previous work on verb argument structure,
and in particular the Valency Patterns Leipzig
(ValPaL) project (Hartmann et al., 2013). The
PaVeDa database features four major innova-
tions as compared to the ValPaL database: (i) it
includes data from ancient languages enabling
diachronic research; (ii) it expands the language
sample to language families that are not repre-
sented in the ValPaL; (iii) it is linked to external
corpora that are used as sources of usage-based
examples of stored patterns; (iv) it introduces
a new cross-linguistic layer of annotation for
valency patterns which allows for contrastive
data visualization.

1 Introduction

In this paper, we introduce a new typological re-
source, the Pavia Verbs Database (PaVeDa)1 which
is modeled upon the Valency Patterns Leipzig (Val-
PaL)2 database by Hartmann et al. (2013), while
introducing a number of innovations detailed below.

PaVeDa has been designed at the University of
Pavia and is currently being constructed. The final
version of the resource will allow to contrastively
and simultaneously display valency patterns and
alternations for ancient and modern languages.

2 State of the art and current challenges

In the last decades, researchers have observed that
cross-linguistically verb classes show similar pat-
terns as to their valency patterns and possible alter-
nations.

This observation led scholars to study the extent
of possible variation across verb classes emerg-
ing from languages of different genetic and areal
affiliation in order to discover general tendencies.

1https://hodel.unipv.it/paveda
2https://ValPaL.info

Additionally, typologists have striven to design and
build foundational toolkits, data-sets, and other re-
sources useful to ease and systematize research on
verb classes.

The open-access ValPaL database which is the
output of the 2009-2013 project “Valency classes in
the languages of the world” carried out at Leipzig
University represented a ground-breaking tool for
the field. The rationale behind its construction is
fully documented in Malchukov and Comrie (2015).
The ValPaL contains data for 80 verb meanings (and
occasionally additional others) from 36 languages.
Data includes translational equivalents for these
verb meanings together with their associated par-
ticipants called “microroles” (see example (1)a),
the basic valency pattern (see example (1)b) and
the valency alternations (see example (1)c), all
represented through “coding frames”.

(1) Verb meaning: LOAD
a. Italian equivalent: caricare

1. loader
2. loaded thing
3. loading place

b. Basic coding frame:
1 > V.subj[1] > 2 (su+3)

c. Alternations: Locative alternation:
1 > V’.subj[1] > 3 > di+2

Examples of basic (2) and non-basic usages and
alternations (3) of stored verbs are also provided.

(2) I venditori caricano i giornali e i libri sulla
loro macchina.
i venditor-i carica-no i giornal-i e i libr-i
su-lla loro macchin-a
ART.DEF.M.PL seller-M.PL load-
PRS.PL ART.DEF.M.PL newspaper-M.PL
and ART.DEF.M.PL book-M.PL on-
ART.DEF.F.SG their car-F.SG
‘The sellers load the newspapers and the
books into their car.’
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(3) I venditori caricano la loro macchina di
giornali e libri.
i venditor-i carica-no la loro macchin-a di
giornal-i e libr-i
ART.DEF.M.PL seller-M.PL load-
PRS.PL ART.DEF.F.SG their car-F.SG of
newspaper-M.PL and book-M.PL
‘The sellers load newspapers and books
onto their car.’

The ValPaL paved the way both for investigat-
ing transitivity scales and construction alternations
Aldai and Wichmann (2018) while further verbal
databases, such as the BivalTyp database3 and the
MultiVal lexicons4 have also been created. In spite
of these advances, the ValPaL database can be fur-
ther improved, in terms of architecture, languages,
and data coverage.

In the first place, (i) the language sample is
unbalanced from the point of view of representabil-
ity, as several language families are not included.
Moreover, (ii) it does not contain data from ancient
languages: this reflects a more general issues, as no
systematic comparative study on diachronic devel-
opments across languages is available (see Luraghi
and Roma, 2021a, Luraghi and Roma, 2021b). Ad-
ditionally, (iii) the examples stored in the database
are only occasionally extracted from corpora; their
elicitation relies mainly on the native speakers’ in-
tuition of contributors (or elicited from speakers by
contributors) or on reference handbooks and dictio-
naries. Finally, (iv) the current interface does not
support comparative visualization of constructions
and alternations, and comparison is further com-
plicated by the use of language specific labels that
make it virtually impossible to retrieve functionally
similar alternations across languages.

For example, if one searches for the “locative”
type among the “All alternations” variable in the
database, the online query interface returns 28
entries, i.e., all alternations of all 36 languages
available that contain the word “locative” in their
name such as “Locative Alternation” (Standard Ital-
ian, see (1)c and (3) above), “Locative applicative
o-” (Ainu), and “Locative alternation (argument
rearranging)” and “Locative alternation (oblique
to object)” (Balinese); however, it does not return
the Russian “Prefixal Goal-Instrumental alterna-
tion”. As shown in examples (4) and (5) taken

3https://www.bivaltyp.info
4https://typecraft.org/tc2wiki/Multilingual_

Verb_Valence_Lexicon

from Malchukov (2015) and made available on the
ValPaL database, this Russian alternation is func-
tionally similar to the Italian "Locative alternation"
in example (3), although in Russian it is coded on
the verb through prefixation, whereas in Italian it is
not.

(4) Он нагрузил сено на телегу.
On nagruzil seno na telegu.
on na-gruzil seno na teleg-u
he PFV-loaded hay.ACC on cart-ACC
‘He loaded the hay onto the cart.’

(5) Он загрузил телегу сеном.
On zagruzil telegu senom.
on za-gruzil teleg-u sen-om
he PFV-loaded cart-ACC hay-INS
‘He loaded the cart with hay.’

Instead, Ainu “Locative applicative o-” and Ba-
linese “Locative alternation (oblique to object)”
point to a valency increasing alternation usually
called “applicative” (see Peterson, 2007).

Therefore, the results of this simple query seem
both inhomogeneous and incomplete, which is
a byproduct of the alternations being language-
specific and at the same time being included in the
database by separate contributors. Impossible as
collecting these data would otherwise be, we find
the current architecture problematic in different re-
spects: one may not simultaneously visualize how
alternations are encoded cross-linguistically (e.g.,
comparing Italian and Russian data) nor how simi-
lar alternations are encoded in the same language
(e.g., comparing all Balinese locative alternations).

3 PaVeDa: where it stands and the road
ahead

To overcome the issues discussed above, a research
team based at the University of Pavia developed
the PaVeDa database – the output of the PaVeDa
project which received funding in 2021 from the
University of Pavia5. Besides the local team, several
international partners have agreed to take part in
this project, in an attempt to build a more insightful
typological resource that also allows for diachronic
research.

The PaVeDa resource complies to the up-to-
date standards regarding cross-linguistic data for-
mats, as proposed by Forkel et al. (2018) in the
Cross-Linguistic Data Formats initiative (CLDF)6.

5https://hodel.unipv.it/paveda
6https://cldf.clld.org
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Particular attention has been paid to preserving
compatibility with other linguistic resources and
to avoiding multiplying information by referencing
existing data. More specifically, we plan to enhance
the database with the four main features described
below.

(i) Concerning data coverage, we plan to in-
clude languages from families that are currently not
represented on ValPaL (Uralic and Turkic) or are
underrepresented (Afro-Asiatic).

(ii) To allow diachronic research, we also plan
to add ancient Indo-European and Afro-Asiatic
languages. For part of such languages the relevant
data-sets have already been extracted and will soon
be uploaded into the database (Early Latin, Ancient
Greek, Gothic, Old Irish, Old English, and Classical
Armenian, see Giuliani, 2021, Inglese and Zanchi,
2022 forthc., Zanchi and Tarsi, 2021, Roma, 2021)
and they will be made available to the research
community.

(iii) The work we have conducted so far on an-
cient languages has prompted us to redesign our
methodology, as no native speakers are available for
these languages they may only be studied by means
of data retrieved from corpora. In order to assess
which coding frames are basic, we plan to give a
greater weight to the frequencies of attested patterns
and to implement this type of usage-based method-
ology for modern languages as well, linking the data
on constructional patterns to existing corpora and to
other machine-readable resources. This raises fur-
ther challenges: while for some modern languages
reference corpora are indeed available and repre-
sent both the written and the spoken varieties (see
e.g., the Russian National Corpus7), some of the
languages already in the database or that we plan
to include are low-resourced in terms of reference
corpora for either oral varieties or written varieties
and in same cases for both. For example, in the
case of Italian, we will use CORIS8– the reference
corpus for written Italian consisting of a balanced,
representative, and up-to-date reference sample of
165 million tokens. As far as the oral variety of
Italian is concerned, in the absence of a reference
corpus, we will supplement the PaVeDa database
with data from two spoken corpora, KIParla9 and
RadioCast-it10. We will adopt similar strategies
of documentation for all low-resourced languages

7https://ruscorpora.ru/old/en/index.html
8https://corpora.ficlit.unibo.it/TCORIS/
9http://kiparla.it/
10https://site.unibo.it/radiocast/it

included in the PaVeDa database.
(iv) Regarding the database structure, PaVeDa

makes contrastive visualizations possible and at the
same time ensures interoperability with the ValPaL
resource, due to a new layer of annotation that
contains non-language-specific alternations. This
layer enables generalizations over language-specific
patterns, as it is mapped onto the current ValPaL set
of alternations. This solution still allows including
a language-specific level of alternations, which
is crucial to account for the coding aspects and
distributional restrictions of alternations.

Our proposed set of “general” alternations is con-
ceived with the following aims in mind: avoid multi-
plying terminology, be as functional and conceptual
as possible, and maximize language coverage. For
instance, the Italian “Locative alternation”, the Bali-
nese “Locative alternation (argument rearranging)”,
and the Russian “Prefixal Goal-Instrumental alter-
nation” are mapped onto the “Locative alternation
(argument rearranging)”, whereas Ainu “Locative
applicative o-” and Balinese “Locative alternation
(oblique to object)” are mapped onto “Locative al-
ternation (oblique to object)”. “Locative alternation
(oblique to object)” is preferable over “Applicative”,
as the latter usually implies explicit encoding on
the verb. In contrast, the former also accounts for
marginal transitive occurrences of abitare ‘inhabit’
in Italian, shown in example (7) as compared to
the basic coding frame in example (6) in which the
locative microrole is indicated by the preposition in
– both examples are retrieved from Cennamo and
Fabrizio (2013).

(6) 1 > V.subj[1] > LOC 2
Mario abita in campagna.
Mario abit-a in campagn-a
Mario live-PRS.SG in countryside-F.SG
‘Mario lives in the countryside.’

(7) 1 > V.subj[1] > LOC 2
La famiglia abita una villa abbandonata.
la famigli-a abit-a un-a vill-a abbandonat-a
ART.DEF.F.SG family-F.SG live-PRS.SG
ART.INDF-F.SG country_house-F.SG
abandoned-F.SG
‘The family lives in an abandoned country
house’

The database will be made freely available to
the scientific community on an open-source basis
through a dedicated web platform. This will pro-
mote the collaboration and reproducible research in
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linguistics. Last but not least, besides contributing
to the scholar research on verbal constructions, the
contrastive studies promoted by the PaVeDa re-
source will also enable applications with an impact
on first language acquisition and on teaching and
learning typologically diverse languages.
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Abstract

We present ParaNames, a Wikidata-derived
multilingual parallel name resource consisting
of over 118 million names for 13.7 million enti-
ties, spanning over 400 languages. ParaNames
is useful for multilingual language processing,
both for defining name translation tasks and as
supplementary data for other tasks. We demon-
strate an application of ParaNames by training
a multilingual model for canonical name trans-
lation to and from English.

1 Introduction and Related Work

Our goal for ParaNames is to introduce a massively
multilingual entity name resource that provides
names for diverse entities in the largest possible set
of languages and can be kept up to date through a
mostly-automated preprocessing procedure. In this
extended abstract, we summarize our approach to
transforming the Wikidata knowledge graph into a
set of parallel entity names identified with the high-
level types of person, location, and organization.

We do not claim to be the first to harvest the
parallel entity names available from Wikidata or
Wikipedia. There is scattered prior work in this
area, with one of the earliest explorations at scale
being performed by Irvine et al. (2010). Re-
cently, Benites et al. (2020) used Wikipedia as a
data source and automatically extracted potential
transliteration pairs, combining their outputs with
several previously published corpora into an aggre-
gate corpus of 1.6 million names.

2 Constructing the resource

To construct our dataset, we began by extracting all
entity records from Wikidata and ingesting them
into a MongoDB instance. Each entity in Wikidata
is associated with several types of metadata, includ-
ing names for it across languages. Given that we
are working with such a large-scale dataset, there
are important challenges that arise.

Script usage While language codes can identify
a specific script for a language, many Wikidata la-
bels do not conform to the scripts used by each
language. In many cases, this is simply a data qual-
ity issue, such as with Greek where approximately
8.9% of ORG entities are written in Latin script.

However, in other cases, the presence of several
scripts can also reflect real variation in the citation
forms used in the language, as many languages (e.g.
Kazakh) commonly use several scripts. While we
explored automated methods of identifying names
in incorrect scripts, we decided that manually con-
structing a list of allowed scripts for each language
would yield the best results. We used Wikipedia
as an authoritative source to look up which scripts
are used to write each language, and filtered out all
names whose most common Unicode script prop-
erty is not among the allowed ones.

Providing entity types Downstream tasks and
analysis of performance across different entity
types often require that entities have a single high-
level type. Wikidata has a complex type hierarchy,
but we infer simpler entity types for as many enti-
ties as possible. We identified suitable high-level
Wikidata types—Q5 (human) for PER, Q82794
(geographic region) for LOC, and Q43229 (orga-
nization) for ORG—and classified each Wikidata
entity that is an instance of these types as the corre-
sponding named entity type. In total, our resource
includes 8,726,033 PER entities, 3,078,428 LOC
entities and 2,196,035 ORG entities.

3 Experiments

To demonstrate an application of ParaNames, we
train multilingual Transformer-based models that
map entity name from English to one of Arabic,
Armenian, Georgian, Greek, Hebrew, Japanese,
Kazakh, Korean, Latvian, Lithuanian, Persian
(Farsi), Russian, Swedish, Tajik, Thai, Vietnamese,
and Urdu and vice versa. We chose these languages
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Language Accuracy CER F1

Swedish 88.25 ± .02 0.08 ± .00 97.15 ± .01
Vietnamese 80.75 ± .02 0.17 ± .00 94.08 ± .01
Latvian 67.86 ± .02 0.14 ± .00 95.19 ± .01
Kazakh 55.38 ± .04 0.16 ± .00 93.93 ± .01
Tajik 49.62 ± .05 0.20 ± .00 92.77 ± .01
Lithuanian 47.39 ± .03 0.28 ± .00 89.53 ± .01
Thai 43.94 ± .05 0.29 ± .00 89.91 ± .01
Armenian 39.92 ± .05 0.28 ± .00 90.04 ± .01
Georgian 34.44 ± .02 0.29 ± .00 89.29 ± .01
Korean 33.27 ± .05 0.32 ± .00 88.46 ± .01
Russian 32.81 ± .06 0.38 ± .00 84.80 ± .02
Urdu 31.92 ± .03 0.23 ± .00 91.48 ± .01
Japanese 29.00 ± .04 0.33 ± .00 87.79 ± .01
Persian 28.68 ± .05 0.28 ± .00 89.84 ± .02
Arabic 25.74 ± .03 0.32 ± .00 89.23 ± .01
Greek 24.70 ± .03 0.35 ± .00 86.60 ± .01
Hebrew 15.24 ± .07 0.44 ± .00 84.58 ± .02

Overall 42.88 ± .02 0.27 ± .00 90.27 ± .01

Table 1: Canonical name translation performance for
the X → En task, computed on the test set using our
baseline configuration with language special tokens on
the source side.

as they cover a wide geographic distribution, as
well as several different orthographic systems, lan-
guage families and typological features.

To create the parallel data, we extracted all enti-
ties that had names in English and at least one of
the selected languages and split them into train, dev,
and test sets using an 80/10/10 split. We also added
“special tokens” to the beginning of each input to
provide the model with additional information, e.g.
entity type (<PER>), language of non-English la-
bel (<kk>) and/or its script (<Cyrillic>).

We use a single NVIDIA RTX 3090 GPU for
training and decoding, and train our model for up
to 90k updates using Adam.1 We evaluate using
three metrics: accuracy, mean F1-score (Chen et al.,
2018), and character error rate (CER).

As our first experiment, we trained our models
with only a language special token on the source
side. The results in both translation directions
can be seen in Tables 1 and 2. When translating
to English, our model performs best on Swedish,
Vietnamese and Latvian, which is unsurprising as
all use the Latin script. However, Latvian names
tend to be more inflected and generally match En-
glish less often, which explains its lower ranking.
Kazakh and Tajik follow next, which also makes
sense as Cyrillic can be transliterated to Latin script
relatively unambiguously. Model performance is

1Other hyperparameter values are nearly identical to the
best configuration in Moran and Lignos (2020).

Language Accuracy CER F1

Swedish 85.60 ± .04 0.10 ± .00 96.11 ± .02
Vietnamese 48.86 ± .01 0.35 ± .00 82.87 ± .01
Latvian 69.28 ± .07 0.13 ± .00 95.49 ± .01
Kazakh 58.69 ± .09 0.14 ± .00 94.85 ± .02
Tajik 54.38 ± .02 0.18 ± .00 93.82 ± .02
Lithuanian 50.76 ± .09 0.23 ± .00 91.61 ± .03
Thai 14.80 ± .04 0.42 ± .00 83.01 ± .02
Armenian 50.45 ± .05 0.22 ± .00 92.41 ± .01
Georgian 51.82 ± .04 0.22 ± .00 92.56 ± .01
Korean 38.63 ± .05 0.33 ± .00 88.18 ± .01
Russian 44.59 ± .04 0.33 ± .00 89.81 ± .02
Urdu 14.14 ± .08 0.45 ± .00 80.74 ± .03
Japanese 28.70 ± .01 0.42 ± .00 84.42 ± .02
Persian 22.90 ± .05 0.41 ± .00 81.64 ± .05
Arabic 41.70 ± .02 0.28 ± .00 89.40 ± .01
Greek 29.67 ± .06 0.36 ± .00 86.88 ± .01
Hebrew 35.71 ± .03 0.34 ± .00 88.16 ± .01

Overall 43.57 ± .02 0.29 ± .00 88.94 ± .01

Table 2: Canonical name translation performance for
the En → X task, computed on the test set using our
baseline configuration with language special tokens on
the source side.

consistently worst on Hebrew—most likely caused
by the lack of vowels in the Hebrew names, which
the model must infer when translating to English.

When translating from English, the model per-
forms best on languages similar to when translating
to English. Swedish and Latvian have the highest
accuracy, followed by Kazakh, Tajik, and Geor-
gian. For Hebrew, the model performs much better;
a potential explanation for this is the lack of vowel
diacritics. Interestingly, the reverse is true for Thai,
where the model performs less than half as accu-
rately as when translating into English.

We also hypothesized that incorporating other
information could be helpful, and repeated the ex-
periment using a mixture of language, type token,
and script special tokens. Overall, the results within
each language tended to be quite similar regardless
of tokens. The best settings were to use all three
special tokens when translating from English, and
language and type tokens when translating to En-
glish. While small, the differences from baseline
were statistically significant for almost all settings.

4 Conclusion

ParaNames supports the modeling of parallel
names for millions of entities in over 400 languages.
It can enable multifaceted research in names, in-
cluding name translation/transliteration and further
research in named entity recognition and linking,
especially in lower-resourced languages.
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