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SIGTYP 2022 Shared Task

® given:

® parallel word lists from related languages, including cognate classification

COGID  Albanian English  French  German Latin
920 hart koer hertsan kord
1083 horn korn horn kornu:

1150 Jkurtar [ort kurt kurts

Table: Example training data
® reflexes of one (unseen) cognate class with one entry missing

COGID  Albanian  English  French  German Latin
353-3 pelk fif ? fif piski

Table: Example test data
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SIGTYP 2022 Shared Task

® task:

® predict the missing entry
® in our case: pf

® more details on https://github.com/sigtyp/ST2022
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https://github.com/sigtyp/ST2022

General approach

Albanian p e [ k -

English f @ [ -
® three-step procedure French ? ? 2?2 ? 2
1 compute multiple sequence German f i [ - -
alignment of known words Latin p i s k i

from test cognate class
Table: MSA for cognate prediction
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® three-step procedure

1 compute multiple sequence
alignment of known words
from test cognate class

2 infer family tree of the
languages involved via
Bayesian phylogenetic
inference

General approach

French  Albanlan  Latin German  English

Figure: Posterior tree distribution
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General approach

® three-step procedure

1 compute multiple sequence Albanian p I k -
alignment of known words English f 1 [ - -
from test cognate class French p i [ k -

2 infer family tree of the Cerman f i _
languages involved via Latin p i s k i
Bayesian phylogenetic
inference Table: MSA for cognate prediction

3 for each column, impute
missing symbol based on tree
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Pairwise sequence alignment

* multiple sequence alignment (MSA) relies on pairwise sequence alignment
® this project: Pair-Hidden Markov Model (pHMM; cf. Durbin et al. 1989)

® HMM with two output tapes

® state M emits one symbol on each tape

® states X (Y) emits only on first (second)
tape

® fitted model defined probability distribution
over pairs of strings

® training via EM (Baum-Welch) algorithm
on all cognate pairs from training set

® Viterbi algorithm outputs pairwise
alignment Figure: Pair Hidden Markov Model

6/15



® start with a guide tree (using some
heuristics such as mean LDN + UPGMA)

® working bottom-up, at each internal node,
do pairwise alignment of the block
alignments at the daughter node

® complexity is O(n?k3) = computationally
feasible

Progressive sequence alignment

unus
uno-

unus

yedan
yEdEn
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(Notredame et al., 2000)

pairwise alignment for all word pairs,
using Viterbi/pHMM

ternary alignments via relation
composition

indirect alignment scores between sound
occurrences

progressive alignment using those scores

T-Coffee
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Phylogenetic inference

e T-Coffee is used to produce MSAs of all cognate sets in the training data
e resulting MSAs are concatenated to one big character matrix

Albanian I k u r t E] r t
English ) D) r t
French k u r t t y .
German k u r ts d u: n er b E] | h au t
Latin . . . . . . . t uroe n e b u | a k u t i

® cach column is assumed to result from a continuous time Markov process on a
phylogenetic tree
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Continuous time Markov chains on a tree

. . . Markov process
® continuous time Markov process (CTMC) with

discrete state space CO
® characterized by Q-matrix, e.g. \‘ O

-2 1 1
Q = r ]. —2 ].
1 1 -2

® Here: Jukes-Cantor model (originally developed
for DNA evolution)
® all rates are equal
® global rate r (expected number of mutations per
unit of time) as parameter to be estimated
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Continuous time Markov chains on a tree

Phylogeny

® (unordered) tree 7 with branch lengths
® Here:

® inferred from lexical data
® branch lengths represent amount of lexical change
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Continuous time Markov chains on a tree

phylogenetic CTMC

independent copies of CTMC on each branch of the
tree

likelihood of a branch of length t with rate r, states \i‘\ O

Markov process Phylogeny

a and b and top and bottom and n possible states:

P(bla; t,r) = -

1[1+(n=1)e"ifa=b
1—e " else

likelihood of entire tree is product of branch
likelihoods

unkown states are marginalized out

marginal likelihood can be efficiently computed via
dynamic programming (bottom-up recursion
through the tree, cf. Felsenstein, 2004)
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Phylogenetic inference

® via Bayesian inference posterior distribution over phylogenies and mutation rates
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. Mordvin (Erzya)
@ rinnish

. Estonian

. Saami (Northern)
. Hungarian
O udmurt

. Komi-Zyrian

O Komi-Permyak
© Mari (Meadow)
O Khanty
Q© Mansi
Q© sekwp
Q@ Nenets

Phylogenetic value imputation

® missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)

o feature value in genetically
related languages is known

12/15



. Mordvin (Erzya)
@ rinnish
. Estonian
. Saami (Northern)

. Hungarian

. Komi-Zyrian

O Komi-Permyak
© Mari (Meadow)
O Khanty
Q© Mansi
Q© sekwp
Q@ Nenets

Phylogenetic value imputation

® missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)

o feature value in genetically
related languages is known

12/15



. Mordvin (Erzya)
@ rinnish
. Estonian

. Saami (Northern)

. Hungarian

. Komi-Zyrian

O Komi-Permyak
© Mari (Meadow)
O Khanty
Q© Mansi
Q© sekwp
Q@ Nenets

Phylogenetic value imputation

® missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)

o feature value in genetically
related languages is known

12/15



. Mordvin (Erzya)

. Finnish

. Saami

. Hungarian
O udmurt
— @ v
L @ Komi-Permyak
O Mari

O Khanty

O Mansi

Q selkup
O Nenets

Phylogenetic value imputation

® missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)

® feature value in genetically
related languages is known
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Phylogenetic value imputation

® missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)

® feature value in genetically
related languages is known

® use family tree

® interpolate feature value from

related languages as Maximum A

Posteriori estimate of
phylogenetic CTMC

® posterior distributions from
training set are used as prior
distributions for test set
imputation
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Phylogenetic value imputation

Albanian p e [ k -
English f 0 [ - -
French

German f i [ - -
Latin p i s k i

® gap symbols are treated as normal character states for phylogenetic inference

e for final prediction, gap states are removed
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Phylogenetic value imputation
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Phylogenetic value imputation

® gap symbols are treated as normal character states for phylogenetic inference

e for final prediction, gap states are removed
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Phylogenetic value imputation

® gap symbols are treated as normal character states for phylogenetic inference

e for final prediction, gap states are removed
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Phylogenetic value imputation

® gap symbols are treated as normal character states for phylogenetic inference

e for final prediction, gap states are removed
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Phylogenetic value imputation

® gap symbols are treated as normal character states for phylogenetic inference

e for final prediction, gap states are removed
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Evaluation

® performance is somewhere in the middle among the submitted systems

® possible advantage: system is relatively robust in the face of data sparseness
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