Bayesian Phylogenetic Cognate Prediction

Gerhard Jäger

Tübingen University

2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics

SIGTYP 2022: The 4th Workshop on Research in Computational Typology and Multilingual NLP

Shared Task: Prediction of Cognate Reflexes

July 14, 2022

SIGTYP 2022 Shared Task

• given:

• parallel word lists from related languages, including cognate classification

COGID	Albanian	English	French	German	Latin
920		hart	k œ r	hertsən	kord
1083		hɔrn	korn	horn	kornu:
1150	∫kurtər	∫⊃rt	kurt	k u r ts	

Table: Example training data

• reflexes of one (unseen) cognate class with one entry missing

COGID	Albanian	English	French	German	Latin			
353-3	pe∫k	fı∫	?	fi∫	piski			
Table: Example test data								

SIGTYP 2022 Shared Task

- task:
 - predict the missing entry
 - in our case: p∫
- more details on https://github.com/sigtyp/ST2022

General approach

- three-step procedure
 - compute multiple sequence alignment of known words from test cognate class

Albanian	р	е	ſ	k	-
English	f	I	ſ	-	-
French	?	?	?	?	?
German	f	i	ſ	-	-
Latin	р	i	s	k	i

Table: MSA for cognate prediction

General approach

- three-step procedure
 - compute multiple sequence alignment of known words from test cognate class
 - 2 infer family tree of the languages involved via
 Bayesian phylogenetic inference

Figure: Posterior tree distribution

General approach

- three-step procedure
 - compute multiple sequence alignment of known words from test cognate class
 - 2 infer family tree of the languages involved via
 Bayesian phylogenetic inference
 - 3 for each column, impute missing symbol based on tree

Albanian	р	е	ſ	k	-
English	f	I	ſ	-	-
French	р	i	ſ	k	-
German	f	i	ſ	-	-
Latin	р	i	s	k	i

Table: MSA for cognate prediction

Pairwise sequence alignment

- multiple sequence alignment (MSA) relies on pairwise sequence alignment
- this project: Pair-Hidden Markov Model (pHMM; cf. Durbin et al. 1989)
- HMM with two output tapes
- $\bullet\,$ state M emits one symbol on each tape
- states X (Y) emits only on first (second) tape
- fitted model defined probability distribution over pairs of strings
- training via EM (Baum-Welch) algorithm on all cognate pairs from training set
- Viterbi algorithm outputs pairwise alignment

Figure: Pair Hidden Markov Model

Progressive sequence alignment

- start with a guide tree (using some heuristics such as mean LDN + UPGMA)
- working bottom-up, at each internal node, do pairwise alignment of the block alignments at the daughter node
- complexity is $\mathcal{O}(n^2k^3) \Rightarrow$ computationally feasible

T-Coffee

(Notredame et al., 2000)

- pairwise alignment for all word pairs, using Viterbi/pHMM
- 2 ternary alignments via relation composition
- 3 indirect alignment scores between sound occurrences
- 4 progressive alignment using those scores

Phylogenetic inference

- T-Coffee is used to produce MSAs of all cognate sets in the training data
- resulting MSAs are concatenated to one big character matrix

Albanian	ſ	k	u	r	t	Ð	r	t											
English	ſ	С	-	r	t	-	-												
French	k	u	-	r	t	-	-	t	у …										
German	k	u	-	r	ts	-	-	d	u:	n	e:	b	Ð	1	-	h	au	t	-
Latin								t	u:	n	е	b	u	1	а	k	u	t	i

• each column is assumed to result from a *continuous time Markov process* on a phylogenetic tree

Continuous time Markov chains on a tree

- continuous time Markov process (CTMC) with discrete state space
- characterized by Q-matrix, e.g.

$$Q = r \left(\begin{array}{rrr} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{array} \right)$$

- Here: Jukes-Cantor model (originally developed for DNA evolution)
 - all rates are equal
 - global rate r (expected number of mutations per unit of time) as parameter to be estimated

Markov process

Continuous time Markov chains on a tree

Phylogeny

- (unordered) tree ${\mathcal T}$ with branch lengths
- Here:
 - inferred from lexical data
 - branch lengths represent amount of lexical change

Continuous time Markov chains on a tree

- phylogenetic CTMC
- independent copies of CTMC on each branch of the tree
- likelihood of a branch of length *t* with rate *r*, states *a* and *b* and top and bottom and *n* possible states:

$$P(b|a; t, r) = rac{1}{n} egin{cases} 1 + (n-1)e^{-tr} & ext{if } a = b \ 1 - e^{-tr} & ext{else} \end{cases}$$

- likelihood of entire tree is product of branch likelihoods
- unkown states are marginalized out
- marginal likelihood can be efficiently computed via dynamic programming (bottom-up recursion through the tree, cf. Felsenstein, 2004)

Phylogenetic inference

-rench Albanian Latin German Fnalish

• via Bayesian inference *posterior distribution over phylogenies* and *mutation rates*

- missing value for a certain feature in a certain language (typological, symbol in an alignment, whatever)
- feature value in genetically related languages is known

- missing value for a certain feature in a certain language (typological, symbol in an alignment, whatever)
- feature value in genetically related languages is known

- missing value for a certain feature in a certain language (typological, symbol in an alignment, whatever)
- feature value in genetically related languages is known

- missing value for a certain feature in a certain language (typological, symbol in an alignment, whatever)
- feature value in genetically related languages is known
- use family tree

- missing value for a certain feature in a certain language (typological, symbol in an alignment, whatever)
- feature value in genetically related languages is known
- use family tree
- interpolate feature value from related languages as *Maximum A Posteriori* estimate of phylogenetic CTMC
- posterior distributions from training set are used as prior distributions for test set imputation

Albanian	р	е	ſ	k	-	
English	f	Т	ſ	-	-	
French						
German	f	i	ſ	-	-	
Latin	р	i	s	k	i	

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Albanian	р	е	ſ	k	-
English	f	Т	ſ	-	-
French	р				
German	f	i	ſ	-	-
Latin	р	i	S	k	i

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Albanian	р	е	ſ	k	-
English	f	Т	ſ	-	-
French	р	i			
German	f	i	ſ	-	-
Latin	р	i	S	k	i

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Albanian	р	е	ſ	k	-
English	f	Т	ſ	-	-
French	р	i	ſ		
German	f	i	ſ	-	-
Latin	р	i	S	k	i

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Albanian	р	е	ſ	k	-
English	f	Т	ſ	-	-
French	р	i	ſ	k	
German	f	i	ſ	-	-
Latin	р	i	s	k	i

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Albanian	р	е	ſ	k	-
English	f	Т	ſ	-	-
French	р	i	ſ	k	_
German	f	i	ſ	-	-
Latin	р	i	s	k	i

- gap symbols are treated as normal character states for phylogenetic inference
- for final prediction, gap states are removed

Evaluation

- performance is somewhere in the middle among the submitted systems
- possible advantage: system is relatively robust in the face of data sparseness

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. *Biological Sequence Analysis*. Cambridge University Press, Cambridge, UK, 1989.

Joseph Felsenstein. Inferring Phylogenies. Sinauer Inc. Publishers, Sunderland, 2004. Cédric Notredame, Desmond G. Higgins, and Jaap Heringa. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of molecular biology, 302(1):205–217, 2000.