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SIGTYP 2022 Shared Task

• given:
• parallel word lists from related languages, including cognate classification

COGID Albanian English French German Latin
920 h A r t k œ r h e r ts @ n k o r d
1083 h O r n k O r n h o r n k o r n u:
1150 S k u r t @ r S O r t k u r t k u r ts

Table: Example training data

• reflexes of one (unseen) cognate class with one entry missing

COGID Albanian English French German Latin
353-3 p e S k f I S ? f i S p i s k i

Table: Example test data
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SIGTYP 2022 Shared Task

• task:
• predict the missing entry
• in our case: pS

• more details on https://github.com/sigtyp/ST2022
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https://github.com/sigtyp/ST2022


General approach

• three-step procedure
1 compute multiple sequence

alignment of known words
from test cognate class

Albanian p e S k -
English f I S - -
French ? ? ? ? ?
German f i S - -
Latin p i s k i

Table: MSA for cognate prediction
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General approach

• three-step procedure
1 compute multiple sequence

alignment of known words
from test cognate class

2 infer family tree of the
languages involved via
Bayesian phylogenetic
inference

French Albanian Latin EnglishGerman

Figure: Posterior tree distribution
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General approach

• three-step procedure
1 compute multiple sequence

alignment of known words
from test cognate class

2 infer family tree of the
languages involved via
Bayesian phylogenetic
inference

3 for each column, impute
missing symbol based on tree

Albanian p e S k -
English f I S - -
French p i S k –
German f i S - -
Latin p i s k i

Table: MSA for cognate prediction
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Pairwise sequence alignment

• multiple sequence alignment (MSA) relies on pairwise sequence alignment
• this project: Pair-Hidden Markov Model (pHMM; cf. Durbin et al. 1989)

• HMM with two output tapes
• state M emits one symbol on each tape
• states X (Y) emits only on first (second)

tape
• fitted model defined probability distribution

over pairs of strings
• training via EM (Baum-Welch) algorithm

on all cognate pairs from training set
• Viterbi algorithm outputs pairwise

alignment
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Figure: Pair Hidden Markov Model
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Progressive sequence alignment

• start with a guide tree (using some
heuristics such as mean LDN + UPGMA)

• working bottom-up, at each internal node,
do pairwise alignment of the block
alignments at the daughter node

• complexity is O(n2k3) ⇒ computationally
feasible
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T-Coffee
(Notredame et al., 2000)

1 pairwise alignment for all word pairs,
using Viterbi/pHMM

2 ternary alignments via relation
composition

3 indirect alignment scores between sound
occurrences

4 progressive alignment using those scores
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Phylogenetic inference

• T-Coffee is used to produce MSAs of all cognate sets in the training data
• resulting MSAs are concatenated to one big character matrix

• each column is assumed to result from a continuous time Markov process on a
phylogenetic tree
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Continuous time Markov chains on a tree

• continuous time Markov process (CTMC) with
discrete state space

• characterized by Q-matrix, e.g.

Q = r

 −2 1 1
1 −2 1
1 1 −2


• Here: Jukes-Cantor model (originally developed

for DNA evolution)
• all rates are equal
• global rate r (expected number of mutations per

unit of time) as parameter to be estimated

Markov process
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Continuous time Markov chains on a tree

• (unordered) tree T with branch lengths
• Here:

• inferred from lexical data
• branch lengths represent amount of lexical change

Phylogeny

10 / 15



Continuous time Markov chains on a tree

• phylogenetic CTMC
• independent copies of CTMC on each branch of the

tree
• likelihood of a branch of length t with rate r , states
a and b and top and bottom and n possible states:

P(b|a; t, r) = 1
n

{
1+ (n − 1)e−tr if a = b

1− e−tr else

• likelihood of entire tree is product of branch
likelihoods

• unkown states are marginalized out
• marginal likelihood can be efficiently computed via

dynamic programming (bottom-up recursion
through the tree, cf. Felsenstein, 2004)

Markov process Phylogeny
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Phylogenetic inference

• via Bayesian inference posterior distribution over phylogenies and mutation rates
French

Albanian

Latin

English

German
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Phylogenetic value imputation

VO
OV

• missing value for a certain
feature in a certain language
(typological, symbol in an
alignment, whatever)
• feature value in genetically

related languages is known

• use family tree
• interpolate feature value from

related languages as Maximum A
Posteriori estimate of
phylogenetic CTMC
• posterior distributions from

training set are used as prior
distributions for test set
imputation
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Phylogenetic value imputation

Albanian p e S k -
English f I S - -
French
German f i S - -
Latin p i s k i

• gap symbols are treated as normal character states for phylogenetic inference
• for final prediction, gap states are removed
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Phylogenetic value imputation

Albanian p e S k -
English f I S - -
French p i S k –
German f i S - -
Latin p i s k i

• gap symbols are treated as normal character states for phylogenetic inference
• for final prediction, gap states are removed
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Evaluation

• performance is somewhere in the middle among the submitted systems
• possible advantage: system is relatively robust in the face of data sparseness
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