MULTILINGUALISM ENCOURAGES RECURSION A TRANSFER STUDY WITH MBERT

Andrea de Varda Roberto Zamparelli

Massively Multilingual Models

Massively Multilingual Models (MMMs) are neural networks that can perform a NLP task in multiple languages, relying on a shared set of parameters.

• Transformer-based (XLM, mBERT)

• Zero-shot cross-lingual transfer

1 Train in N languages $\{L_i\}_{i=1...N}$

Apply to L_{N+1}

• Derived from monolingual models

< 回 > < 三 > < 三 > <

Massively Multilingual Models

Massively Multilingual Models (MMMs) are neural networks that can perform a NLP task in multiple languages, relying on a shared set of parameters.

- Transformer-based (XLM, mBERT)
- Zero-shot cross-lingual transfer
 - **1** Train in N languages $\{L_i\}_{i=1...N}$
 - 2 Apply to L_{N+1}
- Derived from monolingual models

A (1) < A (1) < A (1) </p>

Massively Multilingual Models

Massively Multilingual Models (MMMs) are neural networks that can perform a NLP task in multiple languages, relying on a shared set of parameters.

- Transformer-based (XLM, mBERT)
- Zero-shot cross-lingual transfer
 - **1** Train in N languages $\{L_i\}_{i=1...N}$
 - 2 Apply to L_{N+1}
- Derived from monolingual models

A (1) < A (1) < A (1) </p>

BERT

BERT is a 12-layer language representation model designed to produce deep, bidirectional representations from unlabeled text relying on both left and right context across layers.

• Masked language modeling objective (~ cloze procedure)

[Image adapted from https://towardsdatascience.com]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Multilingual BERT

BERT is a 12-layer language representation model designed to produce deep, bidirectional representations from unlabeled text relying on both left and right context across layers.

• Masked language modeling objective (~ cloze procedure)

de Varda & Zamparelli

A D N A B N A B N A B N

(日) (四) (日) (日) (日)

イロト イポト イヨト イヨト

de Varda & Zamparelli

э

イロト イボト イヨト イヨト

Research question

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Zipf's Law

The words' frequency of occurrence is inversely related to their frequency rank.

•
$$Freq(w) \propto \frac{C}{rank(w)}$$

Not language-specific:

- Mathematical formulas (Greiner-Petter et al., 2020)
- Musical notation (Zanette, 2006)
- Social sciences (Pustet, 2004)

通 ト イ ヨ ト イ ヨ ト

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language \Leftrightarrow recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language ⇔ recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

- Biology-driven cross-linguistic universal
- Narrow faculty of language \Leftrightarrow recursion (Hauser et al., 2002)
 - Uniquely human component of natural languages
- Allows languages to be generative and productive
- Recursive rules can be reapplied to their own output

Transfer learning to uncover relational structures

Transfer learning has been proposed as a tool for analyzing the encoding of grammatical structures in neural language models (Papadimitriou and Jurafsky, 2020).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Adaptation of BERT's native MLM functionality.

- MLM: 15% of the tokens are masked
- $\bullet \rightarrow$ all the tokens are masked iteratively in evaluation mode
 - Comprehensive sentence-wise metric

t1	[MASK] should buy a car	[P1]
t2	John [MASK] buy a car	[P1, P2]
t3	John should [MASK] a car	[P1, P2, P3]
t4	John should buy [MASK] car	[P1, P2, P3, P4]
+	John should hur o [MACK]	

Figure: Unfolding of the iterative token-level cloze task for every timestep *t* in a sample sequence.

イロト 不得下 イヨト イヨト

Adaptation of BERT's native MLM functionality.

- MLM: 15% of the tokens are masked
- \bullet \rightarrow all the tokens are masked iteratively in evaluation mode
 - Comprehensive sentence-wise metric

t_1	[MASK] should buy a car	[P1]
t2	John [MASK] buy a car	[P1, P2]
t3	John should [MASK] a car	[P1, P2, P3]
t4	John should buy [MASK] car	[P1, P2, P3, P4]
t ₅	John should buy a [MASK]	[P1. P2. P3. P4. P5]

Figure: Unfolding of the iterative token-level cloze task for every timestep *t* in a sample sequence.

イロン イヨン イヨン

Adaptation of BERT's native MLM functionality.

- MLM: 15% of the tokens are masked
- \bullet \rightarrow all the tokens are masked iteratively in evaluation mode
 - Comprehensive sentence-wise metric

t_1 [MASK] should buy a car	[P1]
t_2 John [MASK] buy a car	[P1, P2]
t ₃ John should [MASK] a car	[P1, P2, P3]
t_4 John should buy [MASK] car	[P1, P2, P3, P4]
t_5 John should buy a [MASK]	[P1. P2. P3. P4. P5]

Figure: Unfolding of the iterative token-level cloze task for every timestep *t* in a sample sequence.

イロン イヨン イヨン

Adaptation of BERT's native MLM functionality.

- MLM: 15% of the tokens are masked
- \bullet \rightarrow all the tokens are masked iteratively in evaluation mode
 - Comprehensive sentence-wise metric

t1	[MASK] should buy a car	[P1]
t2	John [MASK] buy a car	[P1, P2]
t3	John should [MASK] a car	[P1, P2, P3]
t4	John should buy [MASK] car	[P1, P2, P3, P4]

 \downarrow ι_5 John should buy a [MASK] [P1, P2, P3, P4, P5]

Figure: Unfolding of the iterative token-level cloze task for every timestep *t* in a sample sequence.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Adaptation of BERT's native MLM functionality.

- MLM: 15% of the tokens are masked
- \bullet \rightarrow all the tokens are masked iteratively in evaluation mode
 - Comprehensive sentence-wise metric

t1	[MASK] should buy a car	[P1]
t2	John [MASK] buy a car	[P1, P2]
t3	John should [MASK] a car	[P1, P2, P3]
t4	John should buy [MASK] car	[P1, P2, P3, P4]
t_5	John should buy a [MASK]	[P1, P2, P3, P4, P5]

Figure: Unfolding of the iterative token-level cloze task for every timestep t in a sample sequence.

ヘロト ヘヨト ヘヨト

Experiment

We evaluated the predictive behaviour of BERT and mBERT on a set of four artificial corpora (1,000 sequences each) with increasing structural complexity.

э

イロト イヨト イヨト ・

Nested brackets

Sequences of nested matching symbols.

- Probabilistic Context-Free Grammar (PCFG)
 - Nested dependencies
 - Pairing arcs never cross

★ ∃ ► ★

Flat Brackets

Non-nested dependency pairing.

- Random shuffling
 - Dependencies do not necessarily nest
 - Pairing arcs may cross
- Same tokens, same length

- E > - E >

Zipfian and random corpora

Zipfian corpus

Tokens sampled from a Zipfian distribution.

Random corpus

Tokens sampled from a uniform distribution.

Hierarchy of structuredness

NESTED BRACKETS > FLAT BRACKETS > ZIPFIAN > RANDOM

Corpus	Zipf	Pairing	Nesting
Nested brackets	\checkmark	\checkmark	\checkmark
Flat brackets	\checkmark	\checkmark	
Zipf's corpus	\checkmark		
Random corpus			

Table: Featural summary of the structural and mathematical properties of the four corpora.

Results

mBERT

NESTED BRACKETS > FLAT BRACKETS > ZIPFIAN > RANDOM

BERT

FLAT BRACKETS > NESTED BRACKETS > ZIPFIAN > RANDOM

BERT		mBERT	
Mean	SD	Mean	SD
0.0121	0.0137	0.0094	0.0135
0.0253	0.0457	0.0250	0.0525
0.6784	0.1780	0.6353	0.1558
0.6576	0.1677	0.6417	0.1536
	BE Mean 0.0121 0.0253 0.6784 0.6576	BERT Mean SD 0.0121 0.0137 0.0253 0.0457 0.6784 0.1780 0.6576 0.1677	BERT mBE Mean SD Mean 0.0121 0.0137 0.0094 0.0253 0.0457 0.0250 0.6784 0.1780 0.6353 0.6576 0.1677 0.6417

iviodei	M	od	lel
---------	---	----	-----

Table: Results of the transfer.

3

イロト イヨト イヨト ・

Discussion

2

(日)

Conclusion

Analysis of MMMs' generalizations by quantifying their alignment to different cornerstones in quantitative and theoretical linguistics.

mBERT

- Zipfian distribution of tokens
- Head-dependency type structures
- Hierarchy and recursion

BERT

- Zipfian distribution of tokens
- Head-dependency type structures

< □ > < □ > < □ > < □ > < □ > < □ >

• Hierarchy and recursion

Deep learning and theoretical linguistics

Some of the representations learnt by multilingual deep learning models are not very distant from the ones that were discovered by theoretical linguists, highlighting the importance of a deeper cross-disciplinary integration between these two fields.

Limitations & future directions

- "Behavioural" results chould be complemented studying the model's inner workings
- Repetition is not a natural way to mark constituent boundaries
- Test on natural language

ABC BCA BAC BAC BCA ABC ≠ The fox that chased the dog fell

THANK YOU FOR YOUR ATTENTION!

э

イロト イポト イヨト イヨト