ParaNames: A Massively Multilingual Entity Name Corpus

Jonne Sälevä and Constantine Lignos Brandeis University

SIGTYP Workshop, NAACL 2022

Introduction & motivation

- → Lists of named entities can be beneficial for many NLP tasks (e.g. NER, MT), especially for lower-resourced languages
- \rightarrow Existing resources like Wikidata have serious data quality issues
- → We address these and release ParaNames, a massively multilingual collection of entity names
 - Over 118 million names / 14 million entities / 400 languages
- → Extended abstract @ SIGTYP 2022 →
- → Full preprint available on Arxiv →

Data extraction & challenges

- → Ingestion: Wikidata JSON dump → MongoDB
 - Store a subset of the fields to save disk space
- → Challenge 1: Script mixing within language codes
 - Many language codes indicate scripts used, but real data does not conform to it
- → Solution: Approximate script identification & filtering
 - PyICU \rightarrow Unicode script properties for each character in a name
 - Create script histogram \rightarrow use argmax as estimate for script
 - Filter out names whose scripts are incorrect given language
 - Information on correct scripts manually collected from Wikipedia

Data extraction & challenges

- → Challenge 2: How to assign types to each name?
 - Often very context-dependent
- → Solution: Use Wikidata knowledge graph & instance-of relation
 - Instance of Q5 (human)? \rightarrow PER
 - Instance of Q82794 (geographic region)? \rightarrow LOC
 - Instance of Q43229 (organization)? \rightarrow ORG
- \rightarrow Transitive, so being instance of a subclass is enough
 - Caveat: for PER, no inheritance allowed to reduce errors
- → Not one-to-one: \sim 2.5% of entities get assigned multiple types.
- \rightarrow We leave these as-is since disambiguation requires context

Brandei

Experiments

- → Sample use case for ParaNames: *canonical name translation*
- \rightarrow Translating entity names from English to 17 languages and vice versa
 - Arabic, Armenian, Georgian, Greek, Hebrew, Japanese, Kazakh, Korean, Latvian, Lithuanian, Persian (Farsi), Russian, Swedish, Tajik, Thai, Vietnamese and Urdu
- → Sample of languages represents variation in geographic location, orthographic systems, language families and typological features
- → Parallel data: 80% train / 10% dev / 10% test, split by Wikidata IDs
- → Prepend a "special token" to each name to indicate language
- → Model: Character-level Transformer, trained for 90,000 updates
- → Evaluation: accuracy, character error rate, mean "fuzziness" in F1 score

Language	Accuracy
Swedish	$88.25\pm.02$
Vietnamese	$80.75\pm.02$
Latvian	$67.86 \pm .02$
Kazakh	$55.38\pm.04$
Tajik	$49.62\pm.05$
Lithuanian	$47.39\pm.03$
Thai	$43.94\pm.05$
Armenian	$39.92 \pm .05$
Georgian	$34.44 \pm .02$
Korean	$33.27\pm.05$
Russian	$32.81 \pm .06$
Urdu	$31.92 \pm .03$
Japanese	$29.00\pm.04$
Persian	$28.68 \pm .05$
Arabic	$25.74 \pm .03$
Greek	$24.70\pm.03$
Hebrew	$15.24\pm.07$
Overall	$42.88\pm.02$

$X \rightarrow English$

- → Best accuracy on Swedish, Vietnamese and Latvian. Sensible as all use Latin script.
- → Latvian accuracy notably lower than Vietnamese → challenges with inflection?
- → Next: Kazakh and Tajik. Both use Cyrillic script → nearly one-to-one with Latin
- → Performance consistently worst on Hebrew
- → Most likely caused by lack of vowels which the model must infer

Language	Accuracy
Swedish	$85.60 \pm .04$
Vietnamese	$48.86\pm.01$
Latvian	$69.28 \pm .07$
Kazakh	$58.69 \pm .09$
Tajik	$54.38 \pm .02$
Lithuanian	$50.76\pm.09$
Thai	$14.80\pm.04$
Armenian	$50.45\pm.05$
Georgian	$51.82 \pm .04$
Korean	$38.63 \pm .05$
Russian	$44.59\pm.04$
Urdu	$14.14 \pm .08$
Japanese	$28.70\pm.01$
Persian	$22.90\pm.05$
Arabic	$41.70\pm.02$
Greek	$29.67\pm.06$
Hebrew	$35.71\pm.03$
Overall	$43.57\pm.02$

English \rightarrow X

- → When translating from English, performance rankings are quite similar to $X \rightarrow En$
- → Highest accuracy: Swedish and Latvian
 - Both Latin script, relatively few diacritics
- ➔ Followed by Kazakh and Tajik
 - Cyrillic script, nearly 1-to-1 with Latin
- → Notable changes in accuracy
 - Hebrew: 134% (no vowels)
 - Arabic: 1 62% (no vowels)
 - Georgian: **1** 50% (phon. orthography)
 - Thai: I 66% (tone and vowel diacritics)
 - ◆ Vietnamese: ↓ 39% (diacritics)

Conclusion

- → We introduce ParaNames, the largest collection of entity names to date, covering approx. 14m entities in over 400 languages
- → Many potential applications. We experiment with canonical name translation as an example use case
- → We release our resource on GitHub under a CC BY 4.0 license, along with the code used to construct it (MIT licensed).
 - Target: quarterly updated releases
- → For more, see <u>www.github.com/bltlab/paranames</u> →
- → Also see our preprint on Arxiv →

8

Thank you!

Jonne Sälevä jonnesaleva@brandeis.edu

