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Abstract

In spite of increasing attention on less-
resourced languages in Natural Language Pro-
cessing (NLP), equitable access to language
technologies and inclusion of diverse languages
in the development of these technologies re-
mains a problem (Joshi et al., 2020). This dis-
parity in resources and research attention is
pronounced – only a handful of the world’s
approximately 7,000 languages receive the ma-
jority of scholarly attention (Blasi et al., 2022).
Extending the reach of language technologies
to diverse, less-resourced languages is impor-
tant for tackling the challenges of digital equity
and inclusion, and incorporating typological
information into language transfer and multilin-
gual learning is an important strategy for doing
this. Here we introduce the Grambank typolog-
ical database as a resource to support efforts
that leverage typological features to enhance
multilingual NLP.

To date, the cross-linguistic information about
morphology and syntax that has been recruited
for NLP comes primarily from datasets de-
signed for theoretical linguistics research, with
very little consideration of how this data may be
used in computational tasks (Dryer and Haspel-
math, 2013; Michaelis et al., 2013; Bickel and
Nichols, 2002). As a result these existing typo-
logical datasets suffer from several limitations,
including small numbers of adequately anno-
tated languages, excessive missing data per fea-
ture, and lack of transparency in the content
and coding of features (O’Horan et al., 2016).
Grambank is a resource designed and curated

by linguistic typologists to serve both theoreti-
cal linguistic purposes and computational uses.
Its 195 morphosyntactic features cover a sim-
ilar range of grammatical phenomena as prior
typological databases (e.g. word order, gram-
matical relation marking, constructions like in-
terrogatives and negation), but Grambank dif-
fers in its design in ways that facilitate its use
in computational research.

Each of Grambank’s features encodes some
characteristic of the morphology and/or syn-
tax of languages. The content of the feature
set balances the description of a wide range
of structures that are known to vary across lan-
guages with the availability of information for a
maximal set of languages. Feature names take
the form of a question (e.g. ‘Are there prenom-
inal articles?’), and values for a majority of
features are binary (0/‘no’, 1/‘yes’). Six word
order features have multi-state values (e.g. ‘Or-
der A’, ‘Order B’, or ‘Both Order A and Order
B’), which can easily be binarised for analyti-
cal purposes. Binary feature values avoid the
ambiguity of binned or inadequately described
categories, and the representation of Grambank
datapoints in terms of the presence or absence
of linguistic traits allows the dataset to report
all strategies identified in empirical sources for
expressing a particular meaning or function.
This contrasts with prior typological resources
that encode a single ‘dominant’ category per
meaning or function (Dryer and Haspelmath,
2013).

The typological content of Grambank is struc-
tured as a simple list of features, with no hi-



erarchical relationships between features (e.g.
specific characteristics that are only coded if a
certain value is registered for a more general
feature). Care was also taken to avoid strict log-
ical dependencies between features (i.e. situa-
tions where a certain value for Feature A entails
a particular value for Feature B). Functional de-
pendencies may still exist between features for
a variety of reasons, such as communicative
pressures or common processes of language
change. However, the structure of the dataset
eliminates a great deal of the redundancy in
typological data that is problematic for tasks
such as measuring language distances (Ham-
marström and O’Connor, 2013).

To promote transparency (Slingerland et al.,
2020), the Grambank web interface includes
extensive documentation for each feature, in-
cluding step-by-step procedures that outline the
analytical decisions made by annotators in de-
termining feature values, illustrative examples
from languages with different feature values,
and references to relevant theoretical literature.

Grambank is annotated by linguists based on
descriptions (e.g. published grammars) of lan-
guages. It currently includes data for 2,467
languages – around a third of the world’s total
linguistic diversity – from 316 different lan-
guage families around the globe. This sam-
ple covers all continents (Antarctica excepted),
and all 24 linguistically relevant geographic ar-
eas identified in prior research (Nichols et al.,
2013). Whereas NLP research to date features
languages of continental Eurasia almost exclu-
sively, only about 20% of the Grambank sample
is drawn from this region, with the remainder
representing diverse languages from Africa, the
Americas, Australia, Papua New Guinea, and
Oceania. While Grambank is not intended to be
a perfect stratified sample of language families
or macroareas, it provides representation of ar-
eas and languages that are often under-sampled,
including minority languages, endangered lan-
guages, languages from small language fami-
lies, and isolates.

The size of the language sample in Grambank
is similar to WALS (Dryer and Haspelmath,
2013), but Grambank represents a tremendous
leap forward in terms of the overall number
of datapoints available for characterizing indi-
vidual languages, investigating language uni-
versals and tendencies, and examining the full
range of grammatical diversity. Grambank ad-
vances the field by making complete or nearly
complete sets of high quality, easily interpreted
grammatical information available for a large
and diverse set of languages. Missing data has

been repeatedly presented as the most impor-
tant limitation of typological data for use in
multilingual NLP (O’Horan et al., 2016; Ponti
et al., 2019; Bjerva et al., 2020), and this is
where Grambank most clearly exceeds the prior
benchmark. On average a WALS feature is
coded for approximately 400 languages (Dryer
and Haspelmath, 2013). In contrast, Grambank
features are coded for approximately 1,500 lan-
guages on average. This means that a typi-
cal language in WALS is coded for only ap-
proximately 30 features, while it is likely to
be coded in Grambank for approximately 145
features. In sum, approximately 17% of the po-
tential datapoints in WALS have values (Dryer
and Haspelmath, 2013; O’Horan et al., 2016),
while Grambank pushes the total completion
rate above 70%.

Typological data has been shown to be a useful
tool for improving the performance of multi-
lingual methods (Zhang et al., 2012; Ammar
et al., 2016), transfer of technologies from high
resource languages (Naseem et al., 2012), and
a variety of other tasks that enable multilin-
gual NLP and ultimately the development of
inclusive language technologies (Rama and Ko-
lachina, 2012; Östling, 2015; Takamura et al.,
2016). Grambank represents a significant ad-
vance in the typological information that can
be used to support these activities.

Limitations

The resource described herein includes information
for only approximately one third of the languages
of the world; its use for computational tasks in-
volves some risk of bias related to sampling based
on availability of grammatical descriptions and risk
of excluding understudied languages.

The evaluation of the Grambank resource pre-
sented here relies on qualitative differences be-
tween this resource and the existing state of the
art in cross-linguistic morphosyntactic data. Fur-
ther analyses are warranted to examine the impacts
of this resource on specific tasks.

Ethics Statement

This research complies with the principles of the
ACL Ethics Policy. Cross-linguistic morphosyntac-
tic resources have the potential to aid in the expan-
sion of computational resources to less-resourced
languages, but we note that the needs and inter-
ests of language communities vary and that digital
equity and inclusivity require the involvement of
those communities in research and development of
technologies.
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