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Abstract

We evaluate a Multilingual End-to-end BERT
based Dependency Parser which parses an in-
put sentence by directly predicting the relative
head-position for each word within it. Our
model is a Cross-lingual dependency parser
which is trained on a diverse polyglot corpus of
high-resource source languages, and is applied
on a low-resource target language.
To make model more robust to typological vari-
ations between source and target languages,
and to facilitate the cross-lingual transferring,
we utilized the Linguistic typology knowledge,
available in typological databases WALS and
URIEL. We induce such typology knowledge
within our model through an auxiliary task
within Multi-task Learning framework.

1 Introduction

Linguistic typology is the classification of human
languages according to their syntactic, phonolog-
ical and semantic features. There are numerous
available typological databases such as WALS
(Haspelmath, 2009), SSWL (Collins and Kayne,
2009), LAPSyd (Maddieson et al., 2013), ValPal
(Hartmann and Bradley Taylor, 2013), AUTOTYP
(Bickel et al., 2017), APCLS (Michaelis and Mag-
nus Huber, 2013) etc. These databases provide
taxonomies of typological features and their possi-
ble values, as well as the respective feature values
for most of the world’s languages.
Linguistic typology existed as an independent re-
search domain since long (Greenberg, 1963; Com-
rie, 1989; Nichols, 1992) but recently it has been
used along with Cross-lingual/Multi-lingual NLP
(Ponti et al., 2018; Wang and Eisner, 2017; Agić,
2017; Bender, 2016; O’Horan et al., 2016) to ad-
dress the issue of data-sparsity in low-resource lan-
guages.
However all the popular typological databases suf-
fer from a major shortcoming of limited cover-
age. In fact, values of many important typological

features for most languages (specially less docu-
mented ones) are missing in these databases. This
sparked a line of research on automatic acquisi-
tion of such missing typology knowledge. Many
researchers (Malaviya et al., 2017; Bjerva and Au-
genstein, 2018; Bjerva et al., 2019; Bjerva and Au-
genstein, 2017; Östling and Tiedemann, 2016) in-
deed successfully used Multi-lingual NLP and ML
techniques to predict these missing feature values.
Thus Multilingual NLP and Language typology fea-
ture prediction are very closely related tasks which
would complement each other. Based on this in-
tuition, we propose a model that performs both
Multilingual NLP and Linguistic typology feature
prediction tasks simultaneously, in a multi-tasking
setup.
Multi-task Learning (MTL) (Ruder, 2017) is neural
network framework which involves performing of
two or more tasks simultaneously leading to knowl-
edge/parameter sharing. These tasks are closely
related thus complement each other leading to im-
proved performance on all of them. Even in sce-
narios where we primarily care about a single task,
using a closely related task as an auxiliary task for
MTL can be useful (Caruana, 1998; Zhang et al.,
2014; Liu et al., 2015; Girshick, 2015; Arik et al.,
2017).
In this work, we use Linguistic Typology feature
prediction task as auxiliary task for End-to-end
Cross-lingual Dependency Parsing. Hence, we
make following contributions.

1. We evaluated the performance an End-to-end
BERT Based Parser which can parse a sen-
tence by directly predicting relative head-
position tag for each word within input sen-
tence. This is inspired by (Li et al., 2018)
which is an End-to-end Seq2seq Dependency
Parser. We evaluated the performance of this
BERT based End-to-end parser in both mono-
lingual and cross-lingual/multilingual setups
(using mBERT). We will refer to this model



as Base E2E BERT parser in this paper.

2. We added the auxiliary task of Linguistic ty-
pology prediction to our Base E2E BERT
parser to observe the change in performence
under different settings. We will refer to this
model as Multitasking E2E BERT Parser in
this paper.

2 Related Work

Cross-lingual Model-transfer approaches to De-
pendency Parsing such as (McDonald et al., 2011;
Cohen et al., 2011; Duong et al., 2015; Guo et al.,
2016; Vilares et al., 2015; Falenska and Çetinoğlu,
2017; Mulcaire et al., 2019; Vania et al., 2019;
Shareghi et al., 2019) involve training a model on
high-resource languages and subsequently adapt-
ing it to low-resource languages.
Participants of CoNLL 2017 shared-task (Daniel
et al., 2017) and CoNLL 2018 shared task (Zeman
et al., 2018) also provide numerous approaches to
dependency parsing of low-resource languages.
Some approaches such as (Naseem et al., 2012;
Täckström et al., 2013; Barzilay and Zhang, 2015;
Wang and Eisner, 2016a; Rasooli and Collins,
2017; Ammar, 2016; Wang and Eisner, 2016b)
used typological information to facilitate cross-
lingual transfer. All these approaches directly
feed the linguistic typology features into the model
whereas we induce the linguistic typology knowl-
edge through Multitask learning.
Inducing typology knowledge through MTL
rather than directly feeding it along with word-
embeddings have following advantages.

1. The model can also be applied to low-resource
languages for which many typology feature
values are unknown/missing.

2. The auxiliary task should help to improve the
performance on the main dependency parsing
task as well, since it would make the model
give special emphasis on the syntactic typol-
ogy (specially word-order typology) of lan-
guage being parsed while predicting the de-
pendency relations.

3 Base End-to-end BERT Parser

This section elaborates the details of our End2End
BERT based Dependency Parser which directly
predicts the relative head position tag of each word
within input sentence.

Given a sentence of length T, its dependency parse-
tree can be represented as a sequence of T relative
head-position tags as demonstrated in figure 1a.
Figure 2a depicts the architecture of our baseline
model. The depicted architecture comprises of
three components namely BERT Encoder, Output
Network and Tree-decoder described as section 3.1,
3.2 and 3.3.

3.1 BERT Encoder
It is a BERT based network which takes as input,
the entire sentence as sequence of tokens. The
model outputs d−1 dimensional word-embeddings
for all words within the input sentence. Thus for a
sentence of length T, it would output matrix E ∈
RT∗(d−1).
We use WordPiece tokenizer (Wu et al., 2016) to
tokenize input sentence and extract embeddings.
For each word within input sentence, we use the
BERT output corresponding to the first wordpiece
of it as its embedding, ignoring the rest.

3.1.1 POS tag information
We add pos-tag information in our parser by ap-
pending index of pos-tag of each word, to the en-
codings outputted by BERT encoder as evident in
figure 2b. Thus matrix Ê is derived from E through
equation 1 .

Ê = E; [t1; t2; ....; tT ] (1)

Here ti is POS-tag index of ith word. Ê ∈ RT∗d

3.2 Output Network
Its a simple feed-forward network with softmax ac-
tivation. The network takes-in embedding matrix
from the BERT encoder and outputs the probabil-
ities of all possible relative head position tags at
each word by applying equation 1.

Pr = softmax(Ê ∗W + b) (2)

Here W,b are weights and biases. Pr ∈ RT∗N

where N is the number of valid relative head-
position tags.
For the sentence of length T, set of all possible
relative head position tags ST is given as

ST = [L1, L2, ..., LT , R1, R2, ..., RT−1,

< root >,< EOS >]

Here < root > and < EOS > are tags to be as-
signed to < s > and < /s > tokens at the begin



Figure 1: Examples of dependency parse tree being represented as relative head-position tag sequence

and end of the input sentence as shown in figure
1a.
For training and evaluations, we always com-
puted probabilities of all relative head-position tags
within the tag-set for a sentence of length Max
i.e. SMax as the dimensions of model parameters
should be fixed. Here Max is the length of largest
sentence from all copra used during experiments.
In this paper we experimented with only Unlabeled
Dependency Parsing however same architecture
can be used for Labeled Dependency Parsing as
well. In such case the output tags would comprise
of relative head positions as well as relationship
labels (eg: L2-nsubj ). Hence, the set of all pos-
sible relative head position tags S would be much
larger. Figure 1b depicts a labelled parse-tree being
represented as sequence of head-position tags.

3.3 Tree-Decoder

This component decodes the most probable correct
label sequence from Probabilities outputted by Out-
put Network. The correct label sequence would
satisfy following constraints.

1. Sequence should start with < root > and end
with < EOS > tags. These tags should not
appear anywhere else.

2. At each index (of word being labelled) the
assigned label should be within the range of
sentence. For eg: Word ’That’ within sen-
tence shown in figure 1a can not have tags
L2, L3, L4, L5, L6 and word ’.’ in the sen-
tence can not have any right tags as these are
outside the range of sentence.

3. Label sequence should not generate any cycles
within dependency tree.

4. One of the words should have the head at <
root > token.

We used dynamic programming with beam-
search to efficiently extract the most probable la-
bel sequence which satisfies the above listed con-
straints, out of all possible label sequences.

3.4 Multitasking End-to-end BERT Parser
Figure 2b demonstrates the architecture of our pro-
posed model. The model is very similar to the Base
E2E BERT Parser described in section 3 with one
extra component namely Linguistic typology pre-
dictor which predicts the typology features of lan-
guage being parsed. Thus model is Multi-tasking
model with hard-parameter sharing (Ruder, 2017).

3.4.1 Linguistic typology predictor
It is a simple deep feed forward neural network
which takes in the embedding generated by BERT
Encoder for token < /s > and outputs probabilities
of values of binary syntactic typology features for
the language being parsed as 1. Such features are
provided by URIEL database (Littell et al., 2017).
Let N̂ be the number of syntactic typology features
provided by URIEL database. The Linguistic typol-
ogy predictor would then predict probability matrix
Prty ∈ RN̂ by applying equation 2.

Prty = sigmoid(e</s> ∗ U + c) (3)

Here e</s> ∈ Rd is embedding from BERT En-

coder for < /s > token. U ∈ Rd∗N̂ and c ∈ RN̂

are weights and biases respectively.

3.5 Training
We trained both BERT Encoder (fine-tuning of pre-
trained BERT model) and Output Network compo-
nents of Base E2E BERT Parser model jointly, by



Figure 2: a. Base End-to-end BERT parser architecture. b.Multitasking End-to-end BERT parser architecture. Its an
extension of Base End-to-end BERT parser architecture with one extra component namely Typology Predictor.

optimizing the cross-entropy loss (Gómez, 2018)
between true relative head-position tags and proba-
bilities outputted by the Output Network.
On the other hand, Multitasking E2E BERT parser
is trained to perform tasks of Prediction of relative
heap-position tag sequence and Prediction of typol-
ogy features simultaneously through MTL, by op-
timizing the total-loss as the sum of cross-entropy
loss over true head-position tag-sequence and the
binary cross-entropy loss over true typology val-
ues.
Table 4 outlines values of hyper-parameters used
during experimentation. These values are obtained
by minimizing loss on Validation dataset for En-
glish language.

4 Experiments

4.1 Experimental setups

We evaluated the monolingual and multilingual
variants of our proposed models within two dis-
tinct experimental setups namely Monolingual and
Cross-lingual setups. These are described as sec-

tions 4.1.1 and 4.1.2 respectively.1.

4.1.1 Monolingual Setup
In this setup we conducted experiments to evaluate
the performance of fully monolingual variants of
our proposed Base E2E BERT Parses and Multi-
tasking E2E BERT Parser. In these settings we
experimented in two languages namely English
and Chinese. These monolingual variants use pre-
trained monolingual English and Chinese BERT
models provided by [].
For all experiments within this setup, we used the
Deep Biaffine Parser (Dozat and Manning, 2016)
as baseline. Its is a neural graph-based dependency
parser which uses biaffine attention classifiers to
predict the arcs and labels of the required parse-tree
for an input sentence.

4.1.2 Cross-lingual setups
We conducted numerous experiments to evalu-
ate the performance of Multilingual/Cross-lingual
variants of our proposed Base BERT Parses and

1Source code at https://github.com/XXXXX



Experimental Settings Source Languages Target Languages
Monolingual English, Chinese English, Chinese
Cross-lingual with single
source language

English German, Croatian, Italian,
Hindi, Chinese, Estonian,
Vietnamese

Cross-lingual with multiple
source languages

English, Urdu, French, Ara-
bic, Japanese, Polish, Latvian,
Tamil, Greek, Coptic, Kazakh,
Turkish

German, Croatian, Italian,
Hindi, Chinese, Estonian,
Vietnamese

Table 1: Source and Target Languages used during experiments

Languages Corpus
English en_ewt-ud-train
Urdu ur_udtb-ud-train
French fr_ftb-ud-train
Arabic ar_padt-ud-train
Japanese ja_gsd-ud-train
Polish pl_pdb-ud-train
Latvian la_ittb-ud-train
Tamil ta_ttb-ud-train
Greek el_gdt-ud-train
Coptic cop_scriptorium-ud-

train
Kazak kk_ktb-ud-train
Turkish tr_imst-ud-train

Table 2: Copra for source languages listed in table 1
used during experiments. All copra are part of Universal
Dependencies dataset.

Multitasking E2E BERT Parser models in cross-
lingual settings. These Multilingual variants use
pre-trained Multilingual BERT (mBERT) (Wu and
Dredze, 2019) model which is trained on data from
Wikipedia in 104 languages.
We evaluated the Multilingual variants of our mod-
els under following two Cross-lingual setups.

1. Cross-lingual with single source language
(CL-Single): In this setup, all the parsers are
trained in single source language English, but
tested on a diverse range of target languages

2. Cross-lingual with multiple source languages
(CL-Poly): In this setup, all the parsers are
trained on diverse polygot corpus and tested
on a diverse range of target languages. There
is no overlap between source and target lan-
guage sets.

Furthermore, the experiments within Cross-lingual
with single source language (CL-Single) and Cross-

Languages Corpus Dev Corpus*
German de_hdt-ud-test de_hdt-ud-dev
Croatian hr_set-ud-test hr_set-ud-dev
Italian it_isdt-ud-test it_isdt-ud-dev
Hindi hi_hdtb-ud-

test
hi_hdtb-ud-
dev

Chinese zh_gsd-ud-test zh_gsd-ud-dev
Estonian et_edt-ud-test et_edt-ud-dev
Vietnamese vi_vtb-ud-test vi_vtb-ud-dev

Table 3: Copra for target languages listed in table 1 used
during experiments. All copra are part of Universal
Dependencies dataset. * A small subset of sentences
are sampled from these copra to be added to the source
copra in Few-shot scenarios

lingual with multiple source languages (CL-Poly)
setups are conducted under both Few-shot and Zero-
shot learning scenarios.
Within Zero-shot learning scenario the training cor-
pus does not contain any sentence in the target lan-
guage on which the model is being evaluated. On
the other hand, within Few-shot learning scenario
the training corpus consists of few sentences in the
target language on which the model is being evalu-
ated, along with other source language sentences
(covering over 80% the corpus). In Cross-lingual
setups we used Graph-based mBERT parser by (Wu
and Dredze, 2019) as baseline. It is a multilingual
parser that uses same architecture as (Dozat and
Manning, 2016) except the LSTM encoder which
is replaced by mBERT.

4.2 Languages

Table 1 lists various source and target language
used in each of the experimental settings. In CL-
Poly setup, we trained our models on joint polygot
corpus of all twelve source languages listed in Ta-
ble 2. All these twelve languages belong to distinct



Hyper-parameter Value
d 768
Dropout prob. 0.01
Bach-size 32
Number of steps per
epoch

Size of training corpus
/ 32

Epochs 50
BERT dimensions cased_L-12_H-768_A-

12

Table 4: Hyper-parameters

linguistic families thus making the corpus typolog-
icaly diverse.
For all experiments, the training corpus size is al-
ways fixed to 30,000 sentences. The joint polygot
corpus to train CL-Poly is created by randomly sam-
pling 2500 sentences from the training coprus for
each of the 12 source languages listed in Table 1,
concatenating them as one treebank and randomly
shuffling the order.
Our Cross-lingual models are tested on seven target
languages, belonging to distinct linguistic families.
Three of these seven languages namely Chinese,
Estonian and Ammheric belong to a linguistic fam-
ily which is distinct from language families of all
the source languages listed in Table 2. Thus perfor-
mance on these languages indicate true robustness
of the evaluated models to typological variations
between source and target languages.

4.3 Treebank and Typology datasets

Tables 2 and 3 list the treebank copra for each of
the languages listed in Table 1, used during ex-
periments. All these copra are downloaded from
Universal Dependencies2 .
For Linguistic typology feature prediction auxil-
iary tasks we used Linguistic typology feature val-
ues provided by URIEL database (Littell et al.,
2017). URIEL database is a collection of bi-
nary features extracted from multiple typological,
phylogenetic, and geographical databases such as
WALS (Haspelmath, 2009), PHOIBLE (Moran and
Richard Wright, 2014), Ethnologue (M. Paul Lewis
and Fennig, 2015) and Glottolog (Harald Ham-
marstrom and Bank, 2015). URIEL database can
be accessed through Pyton PyPi library called
lang2vec3. Library also allows users to access only
a subset of all binary features as well.

2https://universaldependencies.org/
3https://pypi.org/project/lang2vec/

Model en zh
Deep Biaffine Net-
work

93.77 93.77

Base E2E BERT
Parser

93.00 93.77

Multitasking E2E
BERT parser

93.13 93.77

Table 5: Unlabeled Attachment Scores (UAS) achieved
in Monolingual experimental settings.

For the experiments within this paper, we used
only syntactic binary features generated from
WALS database (categorised as Syntax-WALS
within URIEL database).

4.3.1 Missing Typology
As with most typology databases, URIEL also
comprises of several missing values of features
for many languages. These missing values are
indicated as ’–’ in typology vector provided by
URIEL (rather than having values 0 or 1). A ty-
pology feature can also have value as ’–’ for a
well-documented language if that feature has no
dominant value observed within the respective lan-
guage
These missing features pose a problem during
training of Multitasking BERT Parser as there
are no true-values for these to optimize loss with.
We address this issue through masking technique
(Vaswani et al., 2017). We masked the missing
typology features and train only on available ones
for each source language.

4.3.2 Short tree-bank copra
For each experiment under Few-shot learning sce-
nario, we extracted a small set of target language
sentences (on which model is being evaluated), to
be added to the source training corpus before train-
ing.
We extracted this subset by randomly sampling
sentences from the dev corpus of the respective
target-language tree-bank dataset until the token-
size becomes approximately equal to 3000. This is
inspired by (Ammar et al., 2016) who used same
yardstick to evaluate their Multi-lingual Depen-
dency Parser (MALOPA).

5 Results and Inference

Tables 5 outlines Unlabeled Attachment Score
(UAS) achieved by the baseline Deep Biaffine
Parser as well as our Base E2E BERT Parser and



CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 43.32 42.98 41.74 0.01 66.81 66.52 65.35 0.28
hr 72.49 72.07 70.91 0.07 75.28 75.01 74.05 0.14
et 71.05 70.69 69.72 0.05 67.2 66.8 65.67 0.26
de 78.07 77.68 76.67 0.04 78.85 78.54 77.33 0.21
hi 44.83 44.42 43.18 0.11 74.68 74.4 73.32 0.22
it 86.63 86.32 85.23 0.04 77.77 77.4 76.3 0.21
vi 40.74 40.34 39.25 0.08 66.89 66.56 65.45 0.24

Table 6: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual settings under Zero-shot scenario. *F1
values achieved on the auxiliary task of linguistic typology prediction (excluding missing values)

CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 44.04 43.69 44.29 0.57 67.68 67.37 68.19 0.76
hr 73.38 73.0 73.46 0.6 75.93 75.58 76.28 0.68
et 71.89 71.5 71.96 0.56 67.91 67.55 68.45 0.78
de 78.8 78.47 79.08 0.57 79.74 79.45 80.25 0.71
hi 45.63 45.33 45.91 0.61 75.59 75.16 76.13 0.62
it 87.44 87.12 87.63 0.61 78.51 78.14 78.98 0.66
vi 41.44 41.16 41.62 0.61 67.68 67.41 68.37 0.75

Table 7: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual settings under Few-shot scenario. *F1
values achieved on the auxiliary task of linguistic typology prediction (excluding missing values)

Multitasking E2E BERT Parser in monolingual set-
tings, on both English and Chinese.
Tables 6 and 7 outline Unlabeled Attachment
Scores (UAS) obtained under the Few-shot and
the Zero-shot learning scenarios respectively. Re-
sults indicate that in both Monolingual and Cross-
lingual settings, our Base E2E BERT parser per-
formed at par with the baseline Deep Biaffine
Parser (Dozat and Manning, 2016) and Graph-
based mBERT parser (Wu and Dredze, 2019) mod-
els respectively, despite being much simpler in de-
sign as its end-to-end.

5.1 Effect of Polygot Training
It is evident from results that in CL-Single setup
under both Few-shot and Zero-shot scenarios, all
the evaluated mBERT based cross-lingual models
(baseline and proposed models) perform better on
target languages which are genealogically or geo-
graphically closer to the source language English.
Thus high performance is observed for the Euro-
pean languages de, et, it and hr, whereas perfor-
mance drop significantly on Asian languages zh,
hi and vi as these are both genealogically and geo-

graphically apart from English.
On the other hand, in CL-Poly setup, these mod-
els show almost uniform performance across all
target languages. However even in Cl-Poly setup,
the models achieved comparatively lower UAS on
languages zh, et and vi than on other target lan-
guages, as these languages belong to a language
family which is distinct from language families of
all source languages listed in table 2 (section 4.2).
Since zh, et and vi are fully unknown languages in
both CL-Single and CL-Poly, the performance on
these languages indicate the cross-lingual transfer
ability of the evaluated mBERT based dependency
parsing models.
It is evident from results outlined in Tables 6 and 7
that both baseline and our proposed End-to-end
parsing models show very strong improvement
in performance on languages zh, et and vi when
trained on mixed polygot corpus as compared to
when trained on single source language copra.
Thus it can be inferred that Cross-lingual transfer-
ing ability of an mBERT based multilingual de-
pendency parser, to a distinct and unseen target



language increases significantly as a result of poly-
got training, as polygot training allows the model
to generalise better over a diverse set of languages.

5.2 Effect of Auxiliary task

Tables 2, 3 and 4 also outline the F1-scores
achieved by our Multitasking E2E BERT parser
model on the auxiliary task of predicting linguistic-
typology features in Monolingual settings as well
as both Cross-lingual with single source language
and Cross-lingual with multiple source languages
under both Zero-shot and Few-shot scenarios.

5.2.1 Effect in Monolingual setting
Results in Table 1 show that within Monolingual
setup, our Multitasking E2E BERT parser showed
marginal improvement over Base E2E BERT parser
for both English and Chinese. In-fact the monolin-
gual variant of our Multitasking E2E BERT parser
outperformed the baseline Deep Biaffine Parser
(Dozat and Manning, 2016) for both English and
Chinese.
Hence it can be inferred that in Monolingual set-
tings, the auxiliary task of predicting linguistic ty-
pology features does lead to improvement in pars-
ing performance indeed, as it enables the model
the model to emphasize on syntactic typology of
language being parsed (specifically word-order fea-
tures) while predicting the dependency relations
within the sentence.

5.2.2 Effect in Cross-lingual settings
Under the Zero-shot learning scenario, our Multi-
tasking E2E BERT parser under-performed Base
E2E BERT parser in both CL-Single and CL-Poly
settings for all target languages.
On the other hand under Few-shot learning sce-
nario, our Multitasking E2E BERT parser showed
improvement in performance for all target lan-
guages, in both CL-Single and CL-Poly settings.
Within CL-Poly setting under Few-shot learning
scenario, our Multitasking E2E BERT parser shows
an average improvement of 4.6% in UAS across all
target languages over Base E2E BERT parser. This
is much higher than average improvement of 1.93%
shown by ourMultitasking E2E BERT parser over
Base E2E BERT parser within CL-Single settings
under Few-shot learning scenario.
Based on these trends it can be inferred that the
auxiliary task does not help the model to improve
the cross-lingual transfer parsing in an unseen lan-
guage (which are not the part of training corpus).

However the task does enable the model to better
learn to distinctively parse in each of the languages
on which it is trained, even if the training corpus
consists of only few sentence in the language.
Further the improvement is higher in CL-Poly set-
tings than CL-Single settings as the model gener-
alizes better on the auxiliary task due to polygot
training.

6 Conclusion and Future Work

In this paper we evaluated the performance of our
proposed End-to-end BERT Based Dependency
Parser which can parse a sentence by directly pre-
dicting relative head-position tag for each word
within input sentence. Subsequently we added the
auxiliary task of Linguistic typology prediction to
our Base E2E BERT parser to observe the change
in performance under different settings.
Our results show that adding such auxiliary task
leads to improvement in performance of Base E2E
BERT Parser within Cross-lingual settings under
Few-shot learning scenario whereas no improve-
ment is observed within the Zero-shot learning sce-
nario.
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