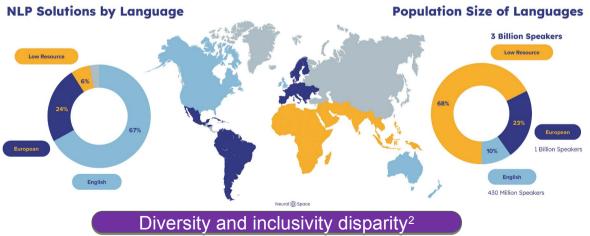
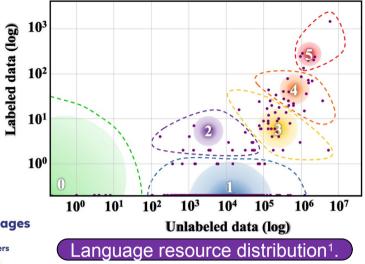


Does Transliteration Help Multilingual Language Modeling?

Ibraheem Muhammad Moosa, Mahmud Elahi Akhter, Ashfia Binte Habib


EACL 2023 Paper ID: 433



Motivation & Background

Open Problems

- Resource disparity between Low Resource Languages and High Resource Languages
- Diversity and Inclusivity of Low Resource Language tasks

Issues for Low Resource Languages

- Lack of large pretraining corpus
- Lack of diverse evaluation dataset

- 1. The State and Fate of Linguistic Diversity and Inclusion in the NLP World, Joshi et al. (2020)
- 2. Challenges in using NLP for low-resource languages and how NeuralSpace solves them, Felix Laumann (2022)

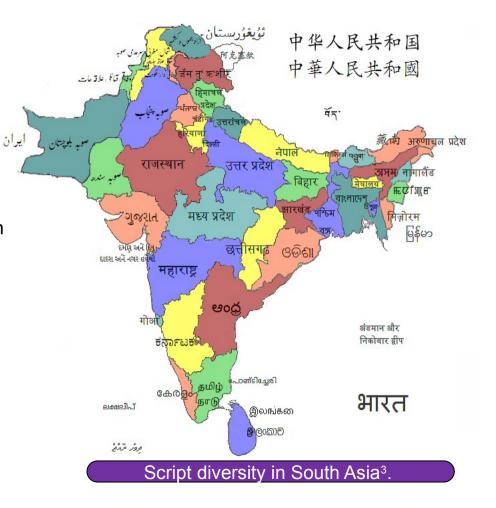
Motivation & Background

Additional obstacles for Low Resource Language

Script barrier leads to poor lexical overlap ¹

Poor Tokenization leads to increase in unknown tokens²

Proposed Solution


Grapheme-to-phoneme (G2P)

Transliteration

UNKs Everywhere: Adapting Multilingual Language Models to New Scripts, Pfeiffer et al. (2021)

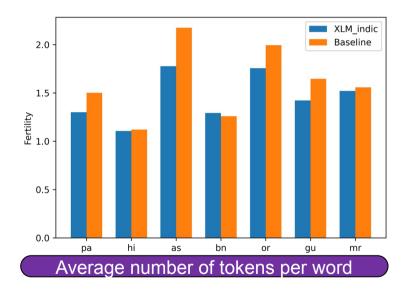
3. en.wikipedia.org/wiki/Languages_of_South_Asia#/media/File:States_of_South_Asia.png

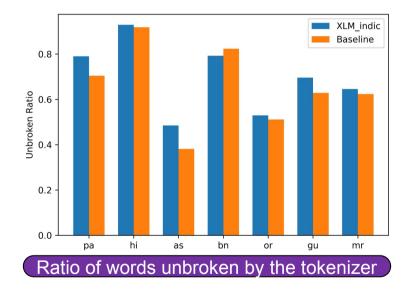
Case for Translitertion

Benefits of Transliteration?

Transliteration collapses multiple scripts into a single script

Improves lexical overlap


Reduces number of token


However..

- Does transliterating input scripts improve performance of multilingual language models?
- Given it does, is this improvement statistically significant?
- Does a model trained on transliterated script learn better representation?

Results: Tokenization Quality

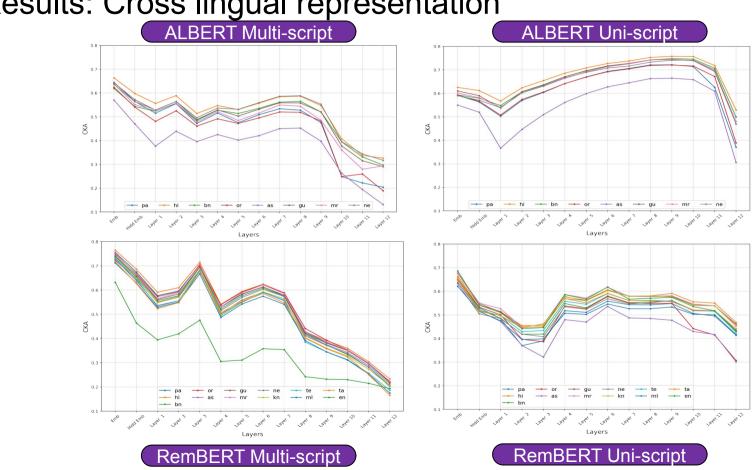
Transliteration Reduces number of token

Results: Performance analysis

Model	ра	hi bn or as		gu	mr	kn	te ml		ta	avg			
Wikipedia Sec	tion Title Pre	diction											
RemBERT _{MS}	68.42±0.92	70.90±0.39	72.58±0.45	69.92±0.90	68.37±1.37	72.93±0.58	73.23±0.61	71.67±0.41	92.98±0.19	69.03±0.57	69.77±0.45	73.00	
RemBERT _{US}	71.01±0.22	72.45±0.29	73.65±0.21	75.37±0.69	72.50±0.91	76.35±0.29	74.58±0.72	74.21±0.29	93.66±0.09	69.33±0.35	70.63±0.22	74.89	
δ	2.59	1.55	1.07	5.45	4.13	3.42	1.34	2.54	0.68	0.31	0.86	1.89	
p-value	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0035	0.0004	0.0004	0.2505	0.0006	-	
ALBERT _{MS}	74.33±0.83	78.18±0.33	81.18±0.28	74.35±1.2	76.70±0.83	76.37±0.53	79.10±0.84	-	-	-	-	77.17	
ALBERT _{US}	77.55±0.61	82.24±0.18	84.38±0.29	81.47±0.99	81.74±0.82	82.39±0.27	82.74±0.52	-	-	-	-	81.78	
δ	3.22	4.06	3.20	7.12	5.04	6.02	3.64	-	-	-	-	4.61	
p-value	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	-	-	-	-	-	
Named Entity	Named Entity Recognition (F1-Score)												
RemBERT _{MS}	69.47±1.72	90.95±0.33	95.51±0.18	87.92±1.26	79±0.22	69±0.94	90.72±0.17	72.65±1.81	81.82±1.81	89.17±0.25	90.07±0.33	83.40	
RemBERT _{US}	81.91±1.93	91.73±0.39	96.19±0.21	88.92±2.88	83.50±2.75	80.25±1.42	90.75±0.35	78.98±1.50	84.97±0.45	89.26±0.46	90.18±0.27	86.97	
δ	12.44	0.78	0.68	1.00	4.28	10.31	0.02	6.33	3.15	0.01	0.12	3.56	
p-value	0.00004	0.0005	0.00001	0.1615	0.0019	0.00004	0.6665	0.00004	0.00004	0.7304	0.2973	-	
ALBERT _{MS}	76.69±1.5	91.80±0.42	96.39±0.19	84.18±1.8	75.45±1.8	69.10±2.9	88.72±0.40	-	-	-	-	83.19	
ALBERT _{US}	85.42±1.9	92.93±0.21	97.31±0.22	93.54±0.58	89.06±2.2	80.16±0.15	90.56±0.44	-	-	-	-	89.85	
δ	8.73	1.13	0.92	9.36	13.61	11.06	1.84	-	-	-	-	6.66	
p-value	0.0004066	0.0004066	0.0003983	0.0004038	0.000401	0.0004066	0.0004095	-	-	-	-	-	

Orange indicates the multi-script and uni-script models are equal and blue indicates the uni-script model is better

✓ On average transliteration improves performance of multilingual language models.


It improves the performance of low resource languages more compared to high resource languages

It does not deteriorate the results of low resource languages

Results: Performance analysis

Language		Dataset		RemBER	Γ_{MS}	RemBERT _{US}	δ	p-value	AL	BERT _{MS}	ALBE	ERTUS	δ	p-value
Article Gen	nre Classific	ation		3		n a configura en constaño			81					
hi	BBC News			76.80±0.84		77.78±0.92	0.98	0.0466	77.28±1.51		79.14±0.60		1.86	0.0088
bn	Soham News Article Classification			92.86±0.10		93.69±0.20	0.83	0.0004	93.22±0.49		93.89±0.48		0.67	0.0090
gu	INLTK Headlines			90.27±0.47		91.60±0.28	1.33	0.0004	90.41±0.69		90.73±0.75		0.32	0.6249
mr	INLTK Headlines			91.24±0.50		92.27±0.39	1.03	0.0008	92.21±0.23		92.04±0.47		-0.17	0.3503
ml	INLTK Headlines			94.11±0.49		93.33±0.22	-0.78	0.003	-		-		-	-
ta	INLTK Headlines			95.59±0.70		94.93±0.30	-0.65	0.013	-		-		-	-
Sentiment /	Analysis						11.1.1.	U.7.2.		March 1	1000	all and a second	60552	MARK.
hi	IITP Product Reviews			72.17±1.98		72.85±0.63	0.68	0.9646		.33±0.84	77.18±0.77		0.85	0.04099
hi	IITP Movie Reviews			58.66±1.09		62.65±2.74	3.99	0.0023		5.91±2.2	66.34±0.16		0.15	0.8941
te	ACTSA			61.18±1	1.18±1.38 60.53±0.85 -0.66 0.1981 -					-				
Discourse N	Mode Class	ification			222		and and a	1. 20 (State State State)	98. un 10	10.00100000	100940100	1000000		0.000000000
hi	MIDAS Discourse			78.07±0.83		79.46±0.67	1.39	0.0415	415 78.39±0.33		78.54±0.91		0.15	0.7561
Model		pa	hi	bn	or	as	g	u m	r	ta	te	ml	kn	avg
Mouel		Pa	m	UII	U	43	5	- II		u	it	III	KI	arg
Cloze-st	tyle QA	(Zero Sl	hot)											
RemBE	RTMS	33.93	39.06	38.93	37.3	37.66	84.	21 46.	15	37.02	34.42	38.45	40.75	42.53
RemBE	RTus	33.92	40.10	39.62	38.2	8 39.26	85.	37 45.	92	36.68	34.36	37.16	44.29	43.17
δ		-0.01	1.04	0.69	0.9		1.1			-0.34	-0.06	-1.29	3.54	0.64
0		-0.01	1.04	0.05	0.7	0 1.0	1	-0.	20	-0.04	-0.00	-1.27	5.54	0.04
ALBER	TMS	31.04	36.72	35.19	34.6	3 33.92	59.	9.86 36.14		-	-		-	38.21
ALDLIN		32.77	38.52	36.38	36.0	0 37.36	70	0.22 39.53		-	-	-	-	41.54
ALBER	US	34.11	20.24	50.50										

Orange indicates the multi-script and uni-script models are equal, cyan indicates multi-script is better than uni-script and blue indicates vice versa

Results: Cross lingual representation

Does Transliteration Help Multilingual Language Modeling?

Ibraheem Muhammad Moosa, Mahmud Elahi Akhter, Ashfia Binte Habib

EACL 2023 Paper ID: 433

