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Cross-Lingual Transfer

The Method and Motivation of Cross-Lingual Transfer in NLP

• Typical cross-lingual transfer steps

1. Pre-train multilingual model

2. Fine-tune model on labelled data in source language

3. Evaluate/apply fine-tuned model in target language

• Enables better performance for low-resource languages

• Different factors (data size, model architecture, language similarity, etc.) impact cross-lingual transfer performance

• Fine-tuning affects cross-lingual alignment (Singh et al., 2019; Muller et al., 2021)
à relative impact on representation space

• We focus on the absolute impact on the representation space of a (target) language
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Correlation Analysis
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Impact on 
Representation 

Space 

Cross-Lingual 
Transfer 

Performance

Language 
Distance

lang2vec and URIEL 
Typological Database 

(Littell et al., 2017) 

Typical Zero-Shot 
Cross-Lingual Transfer 

pipeline

Centered Kernel 
Alignment method 

(Kornblith et al., 2019) 



Correlation Analysis: Results
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Language 
Distance Pearson Spearman

Syntactic -0.3193** -0.4683**

Geographic -0.3178** -0.3198**

Inventory -0.1706* -0.1329*

Genetic -0.3364** -0.3935**

Phonology -0.2075** -0.2659**

Relationship Between Language Distance and Cross-Lingual Transfer Performance

(∗p < 0.05, and ∗∗p < 0.01, two-tailed)

• All distance metrics correlate with cross-
lingual transfer performance
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Layer Pearson Spearman
1 0.2779* 0.3233*
2 0.2456* 0.2639*
3 0.5277* 0.5926*
4 0.3585* 0.3411*
5 -0.009 0.0669
6 0.1033 0.1969
7 0.2945* 0.3500*
8 0.3004* 0.3517*
9 0.4209* 0.4583*
10 0.6088* 0.6532*
11 0.7110* 0.7525*
12 0.5731* 0.5901*

ALL 0.4343* 0.5026*

Relationship Between the Impact on the Representation Space and Cross-Lingual Transfer Performance

(∗p < 0.01, two-tailed)

• Cross-lingual transfer performance correlates with 
impact on the representation space of the target 
language. This correlation tends to be stronger in 
the deeper layers of the model.
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Relationship Between the Impact on the Representation Space and Language Distance

(∗p < 0.05, and ∗∗p < 0.01, two-tailed)

• Almost no significant correlation between 
representation space impact and inventory or 
phonological distance

• Geographic and syntactic distance mostly show 
significant correlation values at the last layers

• Genetic distance correlates significantly
across all layers with the impact on the 
representation space.



Does Selective Layer 
Freezing Allow to 
Improve Transfer to 
Linguistically Distant 
Languages? 03
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Experiment A
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Frozen 
Layers SYN GEO INV GEN PHON Transfer 

Perf.

{} -0.7354 -0.5109 -0.4907 -0.6116 -0.5776 66.70

{2} -0.7310 -0.5109 -0.4791 (↑) -0.6009 -0.5791 66.53

{5} -0.7438 -0.5053 -0.4897 -0.6148 -0.5896 66.77

{1,2,6} -0.7325 -0.5000 -0,4846 -0.6065 -0.5666 66.75

Correlation between cross-lingual transfer performance and different language 
distance metrics after freezing different layers

Reducing the transfer gap based on a single language distance metric
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Frozen 
Layer SYN GEO INV GEN PHON Transfer 

Perf.

{} -0.7354 -0.5109 -0.4907 -0.6116 -0.5776 66.70

{2} -0.7310 -0.5109 -0.4791 -0.6009 -0.5791 66.53

{5} -0.7438 -0.5053 -0.4897 -0.6148 -0.5896 (↓) 66.77

{1,2,6} -0.7325 -0.5000 -0,4846 -0.6065 -0.5666 66.75

Correlation between cross-lingual transfer performance and different language 
distance metrics after freezing different layers

Increasing the transfer gap based on a single language distance metric



Experiment C

Language Distance and Cross-Lingual Transfer in a Multilingual Space 12

Frozen 
Layer SYN GEO INV GEN PHON Transfer 

Perf.

{} -0.7354 -0.5109 -0.4907 -0.6116 -0.5776 66.70

{2} -0.7310 -0.5109 -0.4791 -0.6009 -0.5791 66.53

{5} -0.7438 -0.5053 -0.4897 -0.6148 -0.5896 66.77

{1,2,6} -0.7325 (↑) -0.5000 -0,4846 (↑) -0.6065 -0.5666 (↑) 66.75

Correlation between cross-lingual transfer performance and different language 
distance metrics after freezing different layers

Reducing the transfer gap based on multiple language distance metrics



Conclusion04
Language Distance and Cross-Lingual Transfer in a Multilingual Space 13



Conclusion

• New perspective on the representation space dynamics during cross-lingual transfer

• Inter-correlation between language distance, representation space impact and cross-lingual transfer performance

• Hypothesis: By selectively freezing layers, based on the observed correlations, languages that exhibit specific 
linguistic features can be targeted for better transfer
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