Information-Theoretic Characterization of Vowel Harmony:

 A Cross-Linguistic Study on Word ListsJulius Steuer ${ }^{1}$,Badr Abdullah ${ }^{1}$, Johann-Mattis List ${ }^{2}$, Dietrich Klakow ${ }^{1}$
${ }^{1}$ Language Science and Technology, Saarland University ${ }^{2}$ MPI-EVA / Univ. of Passau

SIGTYP @ EACL 2023

Vowel Harmony

- Constraint on the vowels in a word form
- Vowels need to agree w. r. t. a feature
- Backness (Finnish, Hungarian, Turkish, Korean), Roundness (Turkish, Mongolian), Nasality (Guaraní), Tongue root position (Mongolian)
- Surfaces mainly in inflectional and derivational morphology

Vowel Harmony

- Constraint on the vowels in a word form
- Vowels need to agree w. r. t. a feature
- Backness (Finnish, Hungarian, Turkish, Korean), Roundness (Turkish, Mongolian), Nasality (Guaraní), Tongue root position (Mongolian)
- Surfaces mainly in inflectional and derivational morphology

Turkish Front, Back harmony:

Genitive -In	$=[\mathrm{un}] /[\mathrm{un}] /[\mathrm{yn}] /[\mathrm{in}]$	
Plural	-lAr	$=[\mathrm{ler}] /[\mathrm{lar}]$

Vowel Harmony

- Constraint on the vowels in a word form
- Vowels need to agree w. r. t. a feature
- Backness (Finnish, Hungarian, Turkish, Korean), Roundness (Turkish, Mongolian), Nasality (Guaraní), Tongue root position (Mongolian)
- Surfaces mainly in inflectional and derivational morphology

Turkish Front, Back harmony:

Genitive -In	$=[u n] /[u n] /[y n] /[i n]$
Plural -1Ar	$=[1 \varepsilon \mathrm{r}] /[\mathrm{lar}]$
[kuz] 'girl' +	enitive) $=$ [kuzum $]$
[jyz] 'face' +	enitive) $=$ [jyzyn]

Vowel Harmony

- Constraint on the vowels in a word form
- Vowels need to agree w. r. t. a feature
- Backness (Finnish, Hungarian, Turkish, Korean), Roundness (Turkish, Mongolian), Nasality (Guaraní), Tongue root position (Mongolian)
- Surfaces mainly in inflectional and derivational morphology

Turkish Front, Back harmony:

```
Genitive -In \(=[u n] /[u n] /[y n] /[i n]\)
Plural - \(\mathrm{lAr}=[1 \varepsilon r] /[l a r]\)
[kuz] 'girl' + -In (genitive) \(=\) [kuzun] + -lAr (plural) \(=\) [kuzlarun \(]\)
[jyz] 'face' + -In (genitive) \(=\) [jyzyn] +-1 Ar (plural) \(=\) [jyzl\&rin \(]\)
```


Motivation

Previous Work:

- Quantify vowel harmony based on estimates from large corpora of inflected word forms
- E.g. Goldsmith \& Riggle (2012), Baker (2009), Mayer et al. (2010)
- Requires specific and on a specific type of data (precompiled lists of inflected word forms, running text)
- Cannot be applied to low-resource languages

Motivation

Previous Work:

- Quantify vowel harmony based on estimates from large corpora of inflected word forms
- E.g. Goldsmith \& Riggle (2012), Baker (2009), Mayer et al. (2010)
- Requires specific and on a specific type of data (precompiled lists of inflected word forms, running text)
- Cannot be applied to low-resource languages

Our Approach:

- Use concept-based word lists instead of large corpora
- (Recover vowel harmony even if it is no more present in inflectional morphology)
- NLMs are a smart way to parametrize a probability distribution
- Quantify vowel harmony based on the performance of a NLM

Data

UNIVERSITÄT
DES
SFB 1102
SAARLANDES

NorthEuraLex

Language Family	\#
Indo-European	37
Uralic	26
Turkic	8
Nakh-Daghestanian	6
Dravidian	4
Eskimo-Aleut, Mongolic, Tungusic	3
Afro-Asiatic, Abkhaz-Adyge,	2
Chukotko-Kamchatkan, Yukaghir	
Nivkh, Ainu, Koreanic, Japonic,	1
Burushaski, Kartvelian, Basque,	
Yeniseian, Sino-Tibetan	

- Dataset by Dellert et al. (2021), Lexibank (List et al. 2022) version by Dellert (2021)
- Concept-based word lists
- 107 Languages, 9 language families (without isolates)
- 677 (Italian) to 1513 (Manchu) lemmata per language

NorthEuraLex

No.		Name	-	English	ث	German	Russian	ث	Concepticon	$\hat{*}$
Search		Search		Search		Search	Search		Search	
	1	EYE		eye [[anatomy]]		Auge [[Anatomie]]	глаз [[анатомия]]		C EYE	
	2	EAR		ear [[anatomy]]		Ohr [[Anatomie]]	ухо [[анатомия]]		cear	
		NOSE		nose [[anatomy]]		Nase [[Anatomie]]	нос [[анатомия]]		C NOSE	
	4	MOUTH		mouth [[anatomy]]		Mund [[Anatomie]]	рот [[анатомия]]		ce MOUTH	
	5	TOOTH		tooth [EX:human incisor]		Zahn [BSP:menschlicher Schneidezahn]	зуб [НАПР:человека]		C TOOTH	
	6	tongue		tongue [[anatomy]]		Zunge [[Anatomie]]	язык [орган в полости рта]		C. TONGUE	
	7	LIP		lip [[anatomy]]		Lippe [[Anatomie]]	губа [[анатомия]]		ce LIP	
		CHEEK		cheek [[anatomy]]		Wange [[Anatomie]]	щека [[анатомия]]		c CHEEK	
	9	FACE		face [of a human]		Gesicht [des Menschen]	лицо [человека]		c FACE	
10		FOREHEAD		forehead [of a human]		Stirn [des Menschen]	лоб [человека]		C- FOREHEAD	
1		HAIR		hair [of human head]		Haar [Kopfhaar des Menschen]	волос [на голове человека]		c. HAIR	
12		MOUSTACHE		moustache [of a man]		Schnurrbart [eines Mannes]	усы [мужчины]		ce moustache	
1		BEARD		beard [generic]		Bart [allgemein]	борода [волосяной покров нижней части лица]		C BEARD	
1		CHIN		chin [[anatomy]]		Kinn [[Anatomie]]	подбородок [[анатомия]]		c CHIN	

Language Sample

- Subset of NorthEuraLex
- 5 languages with vowel harmony
- 5 languages without vowel harmony
- "Harmonic Groups" defined by features

Language	Harmonic Groups		
Finnish	$\begin{gathered} -\mathrm{BACK} \\ \{\mathrm{y}, \varnothing, æ\} \end{gathered}$	$\begin{aligned} & \hline+\mathrm{BACK} \\ & \{\mathrm{u}, \mathrm{o}, \mathrm{a}\} \end{aligned}$	BACK neutral $\{\mathrm{e}, \mathrm{i}\}$
Hungarian	$\begin{aligned} & -\mathrm{BACK} \\ & \{\mathrm{y}, \varnothing\} \end{aligned}$	$\begin{gathered} +\mathrm{BACK} \\ \{\mathrm{u}, \mathrm{o}, \mathrm{~d}\} \end{gathered}$	$\begin{gathered} \hline \text { BACK neutral } \\ \{\mathrm{e}, \mathrm{i}\} \end{gathered}$
Manchu	$\begin{gathered} -\mathrm{BACK} \\ \{\mathrm{e} / \gamma\} \end{gathered}$	$\begin{gathered} +\mathrm{BACK} \\ \{\mathrm{a}, \mathrm{o} \mathrm{\}} \end{gathered}$	BACK neutral $\{i, u\}$
Khalkha Mongolian	-ATR \{e, u, o\} -ROUND \{e, a, i\}	$\begin{gathered} + \text { ATR } \\ \{\mathrm{a}, \mathrm{U}, \mathrm{o}\} \\ + \text { ROUND } \\ \{\mathrm{oo}\} \end{gathered}$	ATR neutral \{i\} ROUND neutral $\{\mathrm{u}, \mathrm{u}\}$
Turkish	$\begin{gathered} -\mathrm{BACK} \\ \{\mathrm{i}, \mathrm{e}, \mathrm{y}, \infty\} \\ - \text { ROUND } \\ \{\mathrm{i}, \mathrm{e}, \mathrm{u}, \mathrm{o}\} \end{gathered}$	$\begin{gathered} \text { +BACK } \\ \{\mathrm{w}, \mathrm{a}, \mathrm{u}, \mathrm{o}\} \\ +\mathrm{ROUND} \\ \{\mathrm{w}, \mathrm{a}, \mathrm{y}, \infty\} \end{gathered}$	BACK neutral ROUND neutral
Arabic			
Ainu			
Estonian			
Armenian			
Basque			

Methodology

Feature Surprisal from Word Lists

- Average feature surprisal over vowel positions t for harmonic group H in word list W :

$$
\bar{\eta}(\mathcal{H})=-\frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} \sum_{t \in\{\tau, \cdots, T\}} \eta(\mathcal{H}, t)
$$

- Analogical for disharmonic vowels
- Relative strength of vowel harmony is indicated by the difference in average feature surprisal:

$$
\Delta_{\eta}=\bar{\eta}(\mathcal{H})-\bar{\eta}(\neg \mathcal{H})
$$

- Difference quantifies the relative strength of the vowel harmony constraint
- Diff > 0: strong vowel harmony constraint
- Diff ≈ 0 : no vowel harmony
- Diff < 0: should not occur

Example

Phoneme surprisal

- Finnish silmässä [silmæs:æ] 'eye (locative)'
- [i] triggers -BACK harmony
- First vowel [i] is ignored (no context)
- Surprisal at [æ]: $-\log (0.27)=1.8889$

Feature surprisal

- Surprisal @ -BACK: $-\log (0.66)=0.5995$
- Surprisal @ + BACK: - $\log (0.07)=3.8365$
- Surprisal reduction: 3.8365-0.5995 $=3.2370$

$$
\eta(\mathcal{H}, t)=-\log _{2} \sum_{\pi \in H} p(\pi \mid t, \varphi<t)
$$

- Surprisal of harmonic group H given context

Neural Language Model

- Probabilities are parametrized via a NLM
- Based on Feedforward LSTM and hyperparameters in Pimentel et al. (2021)
- Task: Next phoneme prediction, minimize NLL loss
- Output restricted to vowel inventory (consonants replaced by mask symbol)
- Separate model trained for each language

Results

Turkish

- Turkish has strong BACK and ROUND harmony
- + BACK harmony stronger than -BACK
- ROUND harmony not as strong as BACK
- Expected, since some suffixes lack + ROUND forms

Surprisal Reduction

- Difference between surprisal in the harmonic and disharmonic context
- Turkish + Manchu as expected, Finnish \& Hungarian closer to non-VH languages
- Khalkha Mongolian indecisive

Discussion

SFB 1102

Findings

- NLM could learn vowel harmony constraints from word list data
- Word lists were on the "larger" side
- Found vowel harmony constraints in
- Turkish, Manchu, Khalkha Mongolian
- To a lesser degree in Finnish and Hungarian
- Few items with $>=3$ vowels for Hungarian
- Makes it difficult to analyze behavior of neutral vowels
- Even fewer for Khalkha Mongolian

Limits of Word List Data

- Test set of ~ 300 word forms
- Majority of the data needed for NLM training
- For complex interactions more data is needed to observe them in the test set
- Neutral vowels, weaker constraints, loanwords, opaque vowels...
- Supports Dockum et al. (2019)

\square	Afro-Asiatic
\square	Chukotko-Kamchatkan
\square	Dravidian
\square	Eskimo-Aleut
\square	Indo-European
\square	Mongolic
\square	Nakh-Daghestanian
\square	Tungusic
\square	Turkic
\square	Uralic
\square	Yukaghir
	Abkhaz-Adyge, Ainu,
\square	Basque, Burushaski,
Kartvelian Koreanic, Japonic	
Nivkh, Yeniseian, Sino-Tibetan	

Questions?

References

- Baker, Adam C. "Two Statistical Approaches to Finding Vowel Harmony." University of Chicago, 2009. http://www.cs.uchicago.edu/research/publications/techreports/TR2009-03.
- Dellert, J. (2021). CLDF dataset derived from Dellert et al.'s "NorthEuraLex (Version0.9)" from 2020 (v.4.0) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5121268.
- Dellert, J., Daneyko, T., Münch, A., Ladygina, A., Buch, A., Clarius, N., Grigorjew, I., Balabel, M., Boga, H. I., Baysarova, Z., Mühlenbernd, R., Wahle, J., and Jäger, G. (2020). NorthEuraLex: a wide-coverage lexical database of Northern Eurasia. Language Resources and Evaluation, 54(1):273-301.
- Dockum, Rikker and Bowern, Claire (2019). Swadesh lists are not long enough: Drawing phonological generalizations from limited data. Language Documentation and Description, 16:3554.
- Goldsmith, John, and Jason Riggle. "Information theoretic approaches to phonological structure: The case of Finnish vowel harmony." Natural Language \& Linguistic Theory 30, no. 3 (August 2012): 859-96. https://doi.org/10.1007/s11049-012-9169-1.
- Mayer, Thomas, Christian Rohrdantz, Miriam Butt, Frans Plank, and Daniel Keim. "Visualizing vowel harmony." Linguistic Issues in Language Technology; Vol 4, January 1, 2010.

References

- Pimentel, T., Cotterell, R., and Roark, B. (2021). Disambiguatory signals are stronger in wordinitial positions. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 31-41.

Appendix

SFB 1102

Results: Finnish

Results: Hungarian

Results: Khalkha Mongolian

Results: Manchu

Results: Turkish

