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Introduction

SIGTYP 2024 is the sixth edition of the workshop for typology-related research and its integration into
multilingual Natural Language Processing (NLP). The workshop is co-located with the 18th Conference
of the European Chapter of the Association for Computational Linguistics (EACL 2024), which takes
place in St Julian’s, Malta. This year our workshop features a shared task on Word Embedding Evaluation
for Ancient and Historical Languages.
Encouraged by the 2019 – 2024 workshops, the aim of the sixth edition of SIGTYP workshop is to act as
a platform and a forum for the exchange of information between typology-related research, multilingual
NLP, and other research areas that can lead to the development of truly multilingual NLP methods. The
workshop is specifically aimed at raising awareness of linguistic typology and its potential in supporting
and widening the global reach of multilingual NLP, as well as at introducing computational approaches
to linguistic typology. It fosters research and discussion on open problems, not only within the active
community working on cross- and multilingual NLP but also inviting input from leading researchers in
linguistic typology.
The workshop provides focused discussions on a range of topics, including the following:
1. Integration of typological features in language transfer and joint multilingual learning. In addition to
established techniques such as “selective sharing”, are there alternative ways to encoding heterogeneous
external knowledge in machine learning algorithms?
2. Development of unified taxonomy and resources. Building universal databases and models to facilitate
understanding and processing of diverse languages.
3. Automatic inference of typological features. The pros and cons of existing techniques (e.g. heuris-
tics derived from morphosyntactic annotation, propagation from features of other languages, supervised
Bayesian and neural models) and discussion on emerging ones.
4. Typology and interpretability. The use of typological knowledge for interpretation of hidden rep-
resentations of multilingual neural models, multilingual data generation and selection, and typological
annotation of texts.
5. Improvement and completion of typological databases. Combining linguistic knowledge and auto-
matic data-driven methods towards the joint goal of improving the knowledge on cross-linguistic varia-
tion and universals.
6. Linguistic diversity and universals. Challenges of cross-lingual annotation. Which linguistic phenom-
ena or categories should be considered universal? How should they be annotated?
7. Language-specific studies to support or contradict universals. Framing a study on 1-3 languages that
would shed more light on common linguistic structures and properties.
The final program of SIGTYP contains 2 keynote talks, 5 shared task papers, 11 archival papers, and
2 extended abstracts. This workshop would not have been possible without the contribution of its pro-
gram committee, to whom we would like to express our gratitude. We should also thank Chris Bentz and
Ximena Gutierrez-Vasques for kindly accepting our invitation as invited speakers. The workshop is spon-
sored by Google. Please find more details on the SIGTYP 2024 website: https://sigtyp.github.io/ws2024-
sigtyp.html
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Keynote Talk: Zipfian laws across diverse languages
Christian Bentz

University of Tübingen
2024-03-22 09:00:00 – Room: Radisson, Marie Loise 1

Abstract: There are few - if any - universals which hold across all known languages. Promising candi-
dates are quantitative laws such as Zipf’s law of word frequencies and Zipf’s law of abbreviation. This
talk will review some of the current research into these laws from a cross-linguistic perspective. This in-
cludes a discussion of the methodological challenges when working with diverse languages, modalities,
and writing systems, as well as the controversial question how “meaningful” the laws are given random
baselines. Finally, an avenue for further research is explored: the challenge of defining a statistical fin-
gerprint for human languages.

Bio: Christian Bentz is currently an Assistant Professor at the Department of General Linguistics, Uni-
versity of Tübingen. He received his PhD in Computation, Cognition, and Language from the University
of Cambridge. His research interests include information theory, quantitative linguistics, language typol-
ogy, and language evolution.
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Keynote Talk: Text-based typology for modeling linguistic
diversity in NLP
Ximena Gutierrez-Vasques

UNAM, Mexico City
2024-03-22 13:45:00 – Room: Radisson, Marie Loise 1

Abstract: During this presentation, I will elaborate on the importance of capturing the immense diver-
sity inherent in natural languages. This extends beyond advancing language technologies; it also serves
to answer interdisciplinary research questions and enrich the exploration of linguistic typology through
computational lenses. By harnessing textual data and unsupervised NLP techniques, we can induce ty-
pological knowledge, thereby facilitating the expansion of existing typological databases and facilitating
more comprehensive language comparisons for various NLP applications.
I will illustrate these concepts through a case study that demonstrates how simple techniques such as
subword tokenization and the analysis of multilingual text corpora enable the study of the morphological
typology of languages and the complexity of their morphological systems. We will also examine the
implications and constraints associated with these methodologies.

Bio: Ximena Gutierrez-Vasques is a computational linguist with an interdisciplinary focus to deepen the
study of human language. Her lines of research cover multilingual NLP, computational morphology, and
NLP under-resourced languages of the Americas. She was a postdoctoral researcher at the University of
Zürich where she specialized in approaches for modeling linguistic complexity and typology using text
corpora and inspired by information theory. She recently joined an interdisciplinary research center in
Mexico (CEIICH, UNAM), where she works in the interface between humanities and the field of AI.
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Luise Häuser, Gerhard Jäger, Johann-Mattis List, Taraka Rama and Alexandros Stamatakis . . . 78

Compounds in Universal Dependencies: A Survey in Five European Languages
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Syntactic dependency length shaped by strategic memory allocation

Weijie Xu
University of California, Irvine

weijie.xu@uci.edu

Richard Futrell
University of California, Irvine

rfutrell@uci.edu

Abstract

Human processing of nonlocal syntactic de-
pendencies requires the engagement of limited
working memory for encoding, maintenance,
and retrieval. This process creates an evolu-
tionary pressure for language to be structured
in a way that keeps the subparts of a depen-
dency closer to each other, an efficiency prin-
ciple termed dependency locality. The current
study proposes that such a dependency locality
pressure can be modulated by the surprisal of
the antecedent, defined as the first part of a de-
pendency, due to strategic allocation of work-
ing memory. In particular, antecedents with
novel and unpredictable information are prior-
itized for memory encoding, receiving more
robust representation against memory interfer-
ence and decay, and thus are more capable of
handling longer dependency length. We exam-
ine this claim by analyzing dependency corpora
of 11 languages, with word surprisal generated
from GPT-3 language model. In support of
our hypothesis, we find evidence for a positive
correlation between dependency length and the
antecedent surprisal in most of the languages
in our analyses. A closer look into the depen-
dencies with core arguments shows that this
correlation consistently holds for subject rela-
tions but not for object relations.

1 Introduction

Language processing requires efficient use of
bounded cognitive systems, creating evolutionary
pressures that have been argued to shape the struc-
ture of human language (Gibson et al., 2019). In
the domain of syntax, one source of evidence for
this idea comes from the principle of dependency
locality, which holds that linguistic units connected
in a syntactic dependency tend to stay close in lin-
ear order, due to the limited resources of working
memory (WM) to hold the subparts of a non-local
dependency in working memory (Hawkins, 1994;
Gibson, 1998, 2000; Ferrer-i-Cancho, 2004; Liu,

2008; Futrell et al., 2015, 2019; Temperley and
Gildea, 2018; Futrell et al., 2020). With this basic
finding, a natural next step is to see how far this
efficiency-based account for dependency locality
can go, with a more and more realistic characteri-
zation of the nature and constraints of WM.

We explore strategic memory allocation as one
such constraint that may further shape the structure
of syntactic dependencies. The idea is that limited
WM resources are strategically allocated, subject
to a trade-off between the economical investment
of WM on each linguistic unit stored, and the mini-
mization of potential cost in future processing tasks
(Lieder and Griffiths, 2020; Lewis et al., 2014; Ger-
shman et al., 2015). Specifically, we propose that
linguistic units with novel and unpredictable infor-
mation should receive prioritized WM resources
for encoding and storage in memory, thus yielding
more robust representation against memory inter-
ference and decay.

The result of this strategic memory allocation
is that when an antecedent carries novel and un-
predictable information, it can tolerate longer de-
pendency length. In the current study, we test
this hypothesis in 11 languages: Amharic, Dan-
ish, English, German, Italian, Japanese, Korean,
Mandarin, Russian, Spanish, and Turkish. To pre-
view the results, across all the dependency types,
we find a general positive correlation between an-
tecedent surprisal and dependency length for more
than half of the languages in our analysis. A closer
look into the dependencies with core arguments
demonstrates that the effect consistently emerges
for most of the languages in subject relations, but
not in object relations.

2 Background

2.1 Dependency Locality

At the individual level, the processing of sentences
with nonlocal dependencies requires active engage-

1



Language Corpus Genre All Depends Subject Object
Amharic ATT (Seyoum et al., 2018) doc-by-doc 4,164 643 525
Danish DDT (Johannsen et al., 2015) sent-by-sent 45,976 4,203 3,963
English GUM (Zeldes, 2017) doc-by-doc 89,947 7,881 7,296
German GSD (McDonald et al., 2013) sent-by-sent 155,480 9,602 8,474
Italian ISDT (Bosco et al., 2013) doc-by-doc 208,939 10,323 11,735
Japanese GSD (Tanaka et al., 2016) sent-by-sent 113,771 5,005 4,018
Korean Kaist (Chun et al., 2018) doc-by-doc 154,609 9,855 24,690
Mandarin GSDSimp (Nivre et al., 2020) sent-by-sent 63,456 5,538 7,576
Russian SynTagRus (Droganova et al., 2018) doc-by-doc 329,745 32,822 25,065
Spanish AnCora (Taulé et al., 2008) doc-by-doc 333,728 21,472 31,143
Turkish BOUN (Marşan et al., 2022) sent-by-sent 45,914 3,861 4,680

Table 1: Dependency corpora used as datasets. ‘Genre’ refers to whether the texts in the corpus are organized
as independent sentences (sent-by-sent), or as documents with larger coherent discourse size (doc-by-doc). ‘All
Depends’ indicates the number of all the dependencies after data exclusion. ‘Subject’ is a subset of ‘All Depends’
and indicates the number of dependencies with subject relations. ‘Object’ indicates the number of dependencies
with object relations.The original Russian corpus has over 1.2M tokens with over 600 documents; we randomly
sampled 300 documents from the original corpus in our analysis in order to save the computational power.

ment of working memory. Consider the sentence
with a nonlocal dependency as in (1b) compared
to (1a). The language user needs to maintain the
antecedent “nurse” active in WM for a longer pe-
riod of time until it is retrieved later at the retrieval
site “supervised.” Under the Dependency Locality
Theory (Gibson, 1998, 2000), the integration of
the second part of the dependency should become
increasingly difficult as the dependency length in-
creases. This effect has been confirmed empirically
in reading time studies (Bartek et al., 2011; Grod-
ner and Gibson, 2005). This locality effect could be
due to the memory decay of the antecedent’s repre-
sentation over time, or due to cumulative similarity-
based interference introduced by the intervening
materials between head and dependent (Lewis and
Vasishth, 2005; Vasishth et al., 2019).

(1) a. The nurse supervised the administrator...
b. The nurse who was from the clinic in down-

town LA supervised the administrator...

At the population level, this processing con-
straint functions as an evolutionary pressure that
shapes language structure. It has been observed
crosslinguistically that word order reflects the
minimization of dependency length in general
(Hawkins, 1994, 2004, 2014; Ferrer-i-Cancho,
2004; Liu, 2008; Futrell et al., 2015, 2020). For
example, Futrell et al. (2020) point out the explana-
tory power of dependency locality principle for
multiple typological phenomena, such as the conti-
guity of constituents, short-before-long and long-

before-short constituent ordering preference, and
the consistency in head direction.

2.2 Strategic Memory Allocation

Despite the general constraint of the limited mem-
ory capacity, WM is a highly flexible system that
is dynamically optimized for the relevant cognitive
tasks at hand or in the future (Sims et al., 2012;
Sims, 2016; Van den Berg and Ma, 2018; Jakob
and Gershman, 2023). One instantiation of this
dynamic optimization of WM can be the strategic
memory allocation: WM resources such as atten-
tion can be dynamically and strategically allocated
in a way that prioritizes the information with novel
and unexpected content given its context, result-
ing in higher memory precision and representation
fidelity (Bruning and Lewis-Peacock, 2020).

Empirically, in the domain of language process-
ing, deeper encoding for more informative referents
have been shown to facilitate their retrieval later
at the other side of the dependency (Hofmeister,
2011; Hofmeister and Vasishth, 2014; Karimi et al.,
2019; Troyer et al., 2016). Theoretically, a more
predictable unit is a priori more likely to be recon-
structed successfully even if it is lost from memory,
and thus if only a limited number of units can be
stored, it would be less important to store the pre-
dictable ones, a dynamic observed in the sentence
processing model of Hahn et al. (2022).

If WM resources can be dynamically and strate-
gically allocated to prioritize novel and unexpected
information, this can potentially shape the struc-

2
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Figure 1: Average orthographic dependency length as a function of antecedent surprisal. Surprisal is binned into 25
categories, and the mean dependency length within each category is shown in black with a 95% confidence interval
in blue. A linear fit to these points is shown in red.

ture of language by modulating the pressure of
dependency locality. When the antecedent is less
predictable but more informative, it should receive
more WM resources and thus maintain a more ro-
bust memory representation, making it less likely
to go through memory decay before it needs to be
retrieved from memory at the other side of the de-
pendency. Consequently, dependencies with less
predictable antecedents are able to tolerate more
intervening materials before the retrieval site, re-
sulting in less pressure to put the subparts of a
dependency local to each other, hence more likely
to have longer dependency length.

3 Method

3.1 Data

We examine our hypothesis using the corpora
taken from Universal Dependencies (UD) release
2.11 (Nivre et al., 2020), as described in Table 1.
Some UD corpora consist of independent sentences,
while others are organized document by document,
thus providing longer and enriched discourse con-
text for each token.

Token surprisal. For each token w in the depen-
dency corpora, we obtain its surprisal − ln p(w|c)
given the preceding context c using the GPT-3
base language model (text-davinci-001; Brown
et al., 2020). We use the maximally allowed context
window in the corresponding document or sentence.
Due to the recent advancements in the performance
of language models, they are increasingly applied
to approximate human predictions in psycholin-
guistics literature (Levy, 2008). The surprisal gen-
erated from these models highly correlates with
human processing difficulty indexed by behavioral
measures such as reading times (Smith and Levy,
2013; Goodkind and Bicknell, 2018; Hao et al.,
2020; Wilcox et al., 2020; Hoover et al., 2023),
and this relationship has been shown to hold cross-
linguistically (Wilcox et al., 2023; Xu et al., 2023).

Data transformation. Flat structures (e.g. for-
eign phrases, multiword proper names, fixed ex-
pressions, etc.) are merged such that the surprisal
of the whole structure is the sum of all its com-
ponents, and that the first word in the structure
is treated as the head when calculating the depen-
dency length with other sentence elements. Sen-

3



Full Dataset Subject Relations Object Relations
Language L (words) L (surprisal) L (words) L (surprisal) L (words) L (surprisal)
Amharic p = 0.175 + + p = 0.186 − p = 0.876
Danish + + + + p = 0.447 +
English + + + + p = 0.743 +
German + + − − − −
Italian + + + + p = 0.093 +
Japanese p = 0.416 p = 0.775 p = 0.088 p = 0.985 p = 0.21 p = 0.94
Korean − − p = 0.072 p = 0.156 − −
Mandarin p = 0.062 p = 0.331 + + − p = 0.359
Russian p = 0.395 p = 0.050 + + − p = 0.454
Spanish + + + + p = 0.058 +
Turkish p = 0.161 p = 0.784 − p = 0.59 p = 0.384 p = 0.083

Table 2: Summary of statistical results for the effect of antecedent of surprisal on dependency length. “+" indicates
a significant (at p < 0.05) positive correlation between antecedent surprisal and dependency length, while “−"
indicates a significant negative correlation; p values are presented if the effect is not significant.

tences that are too short may have limited room
for the dependency length to vary, so we exclude
sentences containing less than five words. We ex-
clude tokens that are punctuation. We also exclude
tokens with a surprisal value greater than 20 bits.
We then extract all the dependencies in which both
the head and the dependent are spared from data
exclusion. We also analyze two subsets of these de-
pendencies: 1) a subset that only includes subject
relations (marked as nsubj and csubj); and 2) a
subset that only includes object relations (marked
as obj, iobj, ccomp, and xcomp). These are con-
sidered core arguments in a sentence, whose head-
dependent distance is less subject to grammatical
constraints than other syntactic relations.

Dependency length. We analyze two variants
of measures for dependency length L. The first
variant takes L as the orthographic dependency
length, measured as the number of intervening or-
thographic words between the head and the depen-
dent. The second variant takes L as the sum of
surprisal of all the intervening words. Instead of
assuming that every word contributes to memory
interference to the same extent, this information-
theoretic dependency length is supposed to better
handle low-informative words, such as function
words, which induce less memory burden com-
pared to high-informative content words (Gibson,
1998; Grodner and Gibson, 2005).

3.2 Statistical Analyses

For the full dataset, we fit linear mixed-effect mod-
els (Baayen et al., 2008) for each language to sepa-

rately predict the two variants of dependency length
L introduced above as a function of antecedent sur-
prisal, with random slope and intercept by depen-
dency type. We also include three control variables:
sentence position in the text (if the corpus is doc-by-
doc), sentence length (word counts of a sentence),
and the antecedent position in the sentence. In the
analyses of the two subsets of data with subject
or object relations only, we fit a linear model with
the same critical variable and control variables as
above. All the continuous variables are z-scaled.

4 Results

Figure 1 shows the average orthographic depen-
dency length as a function of antecedent sur-
prisal, along with linear fits. The visualization
for the information-theoretic dependency length
yields similar patterns (see additional figure in
Appendix). Table 2 summarizes the statistical re-
sults of all the six versions of analyses (two mea-
sures of dependency length L crossed with three
datasets). The sign indicates the direction of the
antecedent surprisal effect on dependency length,
with a plus sign suggesting a significant positive
correlation between antecedent surprisal and de-
pendency length.1

For the analysis on the full dataset, Danish, En-
glish, German, Italian, and Spanish show signif-
icant positive effect of antecedent surprisal with
both measures of dependency length. The effect is
significant for Amharic only with the dependency

1Analysis code is available at
https://github.com/weijiexu-charlie/
Dependency-length-strategic-memory-allocation
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length as surprisal. A significant negative effect of
antecedent surprisal is found for Korean. The effect
for other languages does not reach significance.

For subject relations, we find evidence for a pos-
itive effect of antecedent surprisal on dependency
length for 7 out of 11 languages, namely Amharic,
Danish, English, German, Italian, Mandarin, Rus-
sian, and Spanish. There is no significant effect
for Japanese and Korean. For German and Turkish,
however, the data support a negative antecedent
surprisal effect. For object relations, there is lit-
tle evidence for a positive antecedent surprisal ef-
fect on the orthographic dependency length, with
the effect being significantly negative for Amharic,
German, Korean, Mandarin, and Russian. For the
dependency length as surprisal, there is a positive
antecedent surprisal effect in Danish, English, Ital-
ian, and Spanish. But the effect is negative for
German and Korean.

5 Discussion

In general, our results provide evidence for a posi-
tive correlation between antecedent surprisal and
dependency length, indicating that dependencies
whose antecedent is more surprising and informa-
tive are able to tolerate longer dependency length.
This is especially true for subject relations, where
7 out of 11 languages in our analysis exhibit a
positive antecedent surprisal effect on dependency
length. For object relations, however, the data
presents a mixed picture without clear support for
an expected antecedent surprisal effect.

This asymmetry between the subject and the ob-
ject can be due to the possibility that object rela-
tions may be under more grammatical pressure than
subject relations to put head and dependent closer
to each other. For example, according to the Acces-
sibility Hierarchy proposed by Keenan and Comrie
(1977) as a linguistic universal, the subject is more
relativizable than the object crosslinguistically to
form a relative clause.

It is worth noting that the correlation observed
in the current study is compatible with some other
theories as well. For example, the Uniform Infor-
mation Density (UID) theory holds that language
production should avoid abrupt fluctuation of in-
formation across linguistic units (Jaeger and Levy,
2006; Meister et al., 2021). Therefore, surprising
antecedents may be followed by longer sequence
of units for a smoother transition to the other side
of the dependency, which is supposed to bear lower

surprisal due to the high mutual information with
its antecedent (Futrell et al., 2019). However, com-
pared to UID, which is a computational-level the-
ory (Marr, 1982), the strategic memory allocation
proposed in the current study focuses on the pro-
cesses more at the mechanistic level.

6 Conclusions

In a nutshell, we find empirical support for a posi-
tive correlation between the length of a dependency
and the surprisal of its antecedent. A closer look
into the dependencies with core arguments shows
that this relationship consistently holds for subject
relations, but not for the object, possibility due to
the stronger grammatical constraint between the
object and the verb. At the population level, this
finding indicates that although working memory
constraints exert a general pressure on language
structure to organize in a way that minimizes de-
pendency length, this pressure is further modulated
by informativity. This crosslinguistic pattern is
consistent with our hypothesis of strategic working
memory allocation as an individual-level process-
ing strategy, where less predictable but more infor-
mative linguistic units are prioritized in working
memory to maintain a more robust representation
against memory interference and decay, thus are
more tolerant for longer dependency length.

Limitations

The results of the current study are contingent
upon the reliability of the corpora and the language
model we use. For the use of corpora, our anal-
yses may be vulnerable to the potential inaccura-
cies in corpus annotations, especially for dependen-
cies whose identity is ambiguous and controversial.
In terms of the use of language model, as one of
the state-of-the-art LLMs, GPT-3 provides high-
quality estimation of token surprisal, especially in
languages with substantial sample size, such as En-
glish. However, the accuracy of surprisal estimates
may be compromised when the model’s training
data is limited, diminishing the extensibility of our
analysis to understudied languages. This limitation
is particularly relevant for languages of potential
interest from a typological perspective.
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Figure 2: Average information-theoretic dependency length as a function of antecedent surprisal with subject
relations. Surprisal is binned into 25 categories, and the mean dependency length within each category is shown in
black with a 95% confidence interval in blue. A linear fit to these points is shown in red.
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Abstract 

Over 7,000 of the world’s 7,168 living lan-
guages are still low-resourced. This paper aims 
to narrow the language documentation gap by 
creating multiparallel dictionaries, clustered 
by SIL’s semantic domains. This task is new 
for machine learning and has previously been 
done manually by native speakers. We propose 
GUIDE, a language-agnostic tool that uses a 
GNN to create and populate semantic domain 
dictionaries, using seed dictionaries and Bible 
translations as a parallel text corpus. Our work 
sets a new benchmark, achieving an exemplary 
average precision of 60% in eight zero-shot 
evaluation languages and predicting an average 
of 2,400 dictionary entries. We share the code, 
model, multilingual evaluation data, and new 
dictionaries with the research community.1 

Introduction 

There are 7,168 languages spoken on Earth accord-
ing to the Ethnologue (Eberhard et al., 2023). Creat-
ing dictionaries is the frst step toward documenting 
languages, and it is also one of the most effective 
ways to preserve languages and cultures (Abah 
et al., 2018). A successful approach to creating dic-
tionaries for low-resource languages is rapid word 
collection (Boerger, 2017): A team of linguists trav-
els to spend 2–3 weeks with around 60 indigenous 
people and guides them through a questionnaire. 
Each question pertains to a particular semantic do-
main (Moe, 2010) that groups words with related 
meanings. In the following, we call this member-
ship word-Semantic Domain Question (SDQ) link. 
Since this manual collection process involves trav-
eling, it is expensive and sometimes even impos-
sible (e.g., due to the risk of spreading diseases). 
This work investigates to what extent automated 
solutions can be an alternative means to procure 

*Work done while the author was at SIL International. 
1Repository: https://github.com/janetzki/GUIDE 

(1) What are the parts of a bird?

• èfuwu, èkoa, àwàdawo, nusuɖùtɔ,

(feathers, gizzard, wings, greedy)

xèvia, àzì, àwàda,

(bird, egg, wing)

Figure 1: New dictionary entries: GUIDE linked seven 
words (bold) in the low-resource language Mina-Gen 
to an SDQ (top). Five are correct (blue), and two are 
incorrect (orange and underlined; labeled by a Mina-
Gen speaker). Words in parentheses are translations. 

such dictionary information at a greater speed and 
lower cost. 

The key idea of this paper is to automatically cre-
ate semantic domain dictionaries for low-resource 
languages and fll in missing entries using a mul-
tilingual parallel text corpus of Bible translations, 
along with existing semantic domain dictionaries. 

Our paper makes the following contributions: 

• Dictionary creation. We propose the 
language-agnostic tool Graph-based Uni-
fed Indigenous Dictionary Engine (GUIDE), 
which links words in 20 languages and seven 
language families to their SDQs. It achieves 
state-of-the-art performance and has an aver-
age precision of 65% (see Figure 1). To the 
best of our knowledge, we propose the frst 
automated approach to address this task. 

• Language fexibility. To build a dictio-
nary for a language, GUIDE requires only 
a Bible translation in that language, which 
is accessible in a verse-aligned format for at 
least 833 (Åkerman et al., 2023) languages. 
GUIDE can also be adapted to build dictionar-
ies from any other parallel text. 

• Richer dictionaries. We have predicted 
32,000 new word-SDQ links for twelve lan-
guages with existing dictionaries that can en-
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rich FieldWorks Language Explorer (FLEx)2 

(if verifed by a native speaker). Three of these 
languages are low-resourced. 

• New dictionaries. We have predicted 19,000 
word-SDQ links for eight languages with lit-
tle to no pre-existing dictionary entries (see 
Figure 1). While these require further valida-
tion by a native speaker, they can be a useful 
resource, given that seven of the languages are 
low-resourced. 

2 Background 

Before describing the task in more detail, we intro-
duce key resources and terms. 

2.1 SIL’s Semantic Domains 

SIL’s semantic domains (Moe, 2010) are a 
language-agnostic, standardized taxonomy to cre-
ate dictionaries that mirror arbitrary aspects of the 
world, arranging words in 1,783 semantic domains, 
which are in turn divided into one or more SDQs. 
For each SDQ, the dictionaries list corresponding 
words. Semantic domains, SDQs, and words form 
a tree-structured graph3, shown in Appendix A. 

Each semantic domain consists of an identifer 
(ID) (e.g., “5.6.2”), a name (e.g., “Bathe”), a short 
description, one or more SDQs, and a list of entries 
(matching words or phrases) for each SDQ. In the 
following, we use the notation “5.6.2-4” as SDQ 
ID for the 4th question of semantic domain 5.6.2. 

2.2 Defning “Low-Resource Language” 

We follow the NLLB Team’s (2022) defnition 
of “low-resource languages”, assuming that every 
language that is not listed as one of the 53 high-
resource languages in their FLORES-200 dataset 
(Goyal et al., 2022; Guzmán et al., 2019) is a low-
resource language. 

3 Related Work 

Existing approaches to creating dictionaries ad-
dress different sets of languages and map words to 
ontologies or words of other languages. 

2FLEx is a tool to document and analyze languages and the 
most common tool used with Moe’s (Moe, 2010) seman-
tic domains. The FieldWorks page provides a more de-
tailed description of FLEx: https://software.sil.org/ 
fieldworks/flex (visited on 2023-10-16). 

3The entire hierarchy of semantic domains can be explored 
at the offcial page: https://semdom.org/v4/1 (visited on 
2023-10-09). 

The Universal Wordnet (UWN) is a graph-
structured knowledge base for more than 200 lan-
guages that de Melo and Weikum (2009) automat-
ically generated. They used several data sources, 
especially existing bilingual dictionaries and to a 
limited extent also parallel corpora. As a scaffold, 
they used Princeton WordNet (Fellbaum, 2000), 
which provides a semantic hierarchy of English 
terms, and they enriched it with more than 1.5 mil-
lion new semantic links for more than 800,000 
words. Our work has a similar goal, as we inves-
tigate how to create and enrich another linguistic 
resource automatically. We use the semantic do-
mains as a scaffold and focus on low-resource lan-
guages, for which we assume only a small amount 
of parallel text. 

Alnajjar et al. (2022) show how to fnd new trans-
lations of words in three endangered Uralic lan-
guages. Their key idea is to construct a graph of 
words in these and other languages, with known 
translations as edges. An advantage of their ap-
proach is that it does not require parallel texts or 
word alignment. By predicting missing links in this 
graph, they built new bilingual dictionaries that 
help preserve these endangered languages. Simi-
larly, we build a graph in which words in different 
languages are separate nodes. But there are two 
important differences: 

1. GUIDE also builds dictionaries for languages 
without labeled data. 

2. We group words by their SDQs instead of pre-
dicting word-to-word translations. This ap-
proach allows us to build highly multiparallel 
dictionaries because words often have no 1:1 
translations across languages but have differ-
ent semantic ranges. “Multiparallel” means 
that the dictionaries are not mono- or bilingual 
but follow the same structure in all languages. 
SDQs provide for this fexibility. 

Based on the reviewed related work on dictio-
nary creation, we can summarize the research gap 
as follows: There is a need to create highly mul-
tiparallel dictionaries for low-resource languages 
without labeled data. We address this gap by using 
existing parallel text. 

4 Dataset 

We next describe the source of our parallel text, the 
20 languages that we selected for our dataset, and 
its size. 
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Language information Bible translations Dicts. 

Language ISO # Speakers Language family Res. Sample # V. # Entries 

Development 
Bengali ben 273M Indo-European High 31k 0.91k 

(āelā ehāka) 
Chinese (simplifed) cmn 1.14B Sino-Tiebetan High 31k 24k 

(yào yǒu guāng) 
English eng 1.46B Indo-European High Let there be light 37k 26k 
French fra 310M Indo-European High Que la lumière soit 37k 30k 
Hindi hin 610M Indo-European High 31k 22k 

(ujiyālā ho) 
Indonesian ind 199M Austronesian High Jadilah terang 11k 11k 
Kupang Malay mkn 350k Creole (Malay-based) Low Musti ada taráng 9.8k 0.33k 
Malayalam mal 37.4M Dravidian Low 31k 25k 

Nepali npi 25.6M Indo-European Low 31k 14k 
(ujyālo hos) 

Portuguese por 260M Indo-European High Que haja luz 31k 21k 
Spanish spa 559M Indo-European High Sea la luz 37k 29k 
Swahili swh 71.6M Niger-Congo High na kuwe nuru 31k 5.2k 

Evaluation (zero-shot) 
German deu 133M Indo-European High Es werde Licht 31k 0 
Hiri Motu hmo 95.0k Austronesian Low Diari ia vara namo 31k 0 
Igbo ibo 30.9M Niger-Congo Low 31k 0 
Mina-Gen gej 620k Niger-Congo Low KẼklẼ ne va e mè 35k 0 
Motu meu 39.0k Austronesian Low Diari aine vara 31k 0 
South Azerbaijani azb 14.9M Turkic Low Qoy işıq olsun 31k 0 
Tok Pisin tpi 4.13M Creole (English-based) Low Lait i mas kamap 36k 0 
Yoruba yor 45.9M Niger-Congo Low 31k 0 

Table 1: Language information and dataset size: Language name, ISO 639 code (Eberhard et al., 2023), Number 
of speakers (Eberhard et al., 2023), Language family (Eberhard et al., 2023), and “resourcefulness” for the 20 
languages in our dataset (defned in subsection 2.2). “Dicts.” means “Semantic domain dictionaries” and “V.” means 
“Verses”. The matched number of words refers to the number of dictionary entries that also appear as words in 
the respective Bible translation. All samples have the same meaning. Text in parentheses shows transliterations of 
non-Latin scripts. Appendix B lists the Bible translations’ source URLs. 

4.1 The eBible Corpus 

Åkerman et al. (2023) compiled the eBible cor-
pus, which covers 833 languages from 75 language 
families, including languages that are considered 
extremely low-resourced. Each Bible translation 
in the eBible corpus is a text fle with one line per 
verse (i.e., the corpus is verse-aligned). 

Our dataset covers 20 languages in total: twelve 
development (i.e., training) languages and eight 
zero-shot evaluation languages. The difference be-
tween the two is that our dataset also contains se-
mantic domain dictionaries for the development 
languages, which serve as labels, while there are 
no labels for the evaluation dataset. 

4.2 Selected Languages 

Table 1 displays the twelve languages that we use 
to train our model and the eight zero-shot evalua-

tion languages that we use for testing. We chose 
languages based on the availability of data, the 
availability of language speakers for evaluation, 
and the language family (seeking to cover a broad 
spectrum). 

4.3 Dataset Size 

Table 1 further shows the size of our dataset for 
each of these languages, measured in terms of the 
number of verses in the Bible translations as a paral-
lel text corpus and the number of semantic domains, 
which serve as labels. FLEx4 provides the semantic 
domain dictionaries. 

4A list of languages with existing semantic domain dictionaries 
is on this FieldWorks page: https://software.sil.org/ 
fieldworks/download/localizations/ (visited on 2023-
10-16). 
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5 Dictionary Creation with GUIDE 

We now describe the GUIDE technique to induce 
dictionary entries for semantic domains based on a 
graph neural network. 

5.1 Graph Induction 

We transform our dataset into a graph, in which 
each node is a word in one of the 20 languages. 
The unique key of each node is its language code 
and the word itself (e.g., “eng: grandchild”). We 
hence use the term “node” as a synonym for “word” 
because each word becomes a node in the Multi-
lingual Alignment Graph (MAG) (ImaniGooghari 
et al., 2022) that we build. The edges are the align-
ments between these words. We frst create a raw 
MAG, which uses absolute word alignment counts 
from the parallel corpora as edge weights. We then 
transform it into the fnal MAG, which uses nor-
malized edge weights and contains only a fltered 
subset of the raw MAG’s nodes and edges. 

Figure 2 shows the neighborhood of the Mina-
Gen word “màmayOviwoa” (grandchild of a female 
person, according to a Mina-Gen speaker) in the 
fnal MAG. Four words from the development lan-
guages have a link to an SDQ, while the Mina-Gen 
(zero-shot evaluation language) word does not. 

GUIDE’s preprocessing pipeline converts our 
dataset into the raw MAG and converts the raw 
MAG into the fnal MAG. Appendix C visualizes 
the individual steps. Note that we do not remove 
stop words. 

5.1.1 Tokenization 

The frst step of our preprocessing pipeline is to-
kenization. Depending on the language, we use 
different tokenizers. 

Stanza tokenizer. A Stanza (Qi et al., 2020) to-
kenizer exists for eight of the 20 languages in 
our dataset: Chinese (simplifed), English, French, 
Hindi, Indonesian, Portuguese, Spanish, and Ger-
man. All of them are high-resource languages. 

SentencePiece. If the Stanza toolkit does not pro-
vide a tokenizer, we use a language-agnostic tok-
enizer. For six agglutinative languages (Bengali, 
Malayalam, Nepali, Swahili, South Azerbaijani, 
and Igbo), we invoke SentencePiece (Kudo and 
Richardson, 2018) to identify subwords. We train 
the SentencePiece tokenizer for each of these six 
languages with a vocabulary size of 10,000. 

Figure 2: A subgraph from the fnal MAG showing 
the 1-hop neighborhood of the Mina-Gen word “mà-
mayOviwoa”: The gray edges are word alignments with 
their normalized strength. Edges with higher strengths 
are thicker. The blue edges are SDQ links. The shown 
SDQ 4.1.9.1.5-1 is “What words refer to the children of 
your children?” The SDQ is shown here as a separate 
node, although it is technically part of the word nodes’ 
feature vectors. To improve readability, the graph ex-
cludes some languages. 

Punctuation mark splitting. If we cannot use 
Stanza, and the language is not agglutinative, we 
resort to simply splitting at punctuation marks (in-
cluding whitespace). Specifcally, we use such 
punctuation mark splitting for Kupang Malay, Hiri 
Motu, Mina-Gen, Motu, Tok Pisin, and Yoruba. 

5.1.2 Term Normalization 
Multi-Word Terms. For each language covered 
by the Stanza toolkit (Qi et al., 2020), we perform 
additional preprocessing steps: Part-of-Speech 
(POS)-Tagging, Multi-Word Token (MWT) expan-
sion (only for French, Indonesian, Portuguese, 
Spanish, and German), and lemmatization. MWT 
expansion merges common combinations of tokens. 
It produces, for example, “arc-en-ciel” (rainbow) 
in French and “guarda-costa” (coastguard) in Por-
tuguese. 

Case Normalization. We normalize the words 
in all languages with Latin script by lowercasing 
them. 

5.1.3 Edge Induction 
Word-SDQ Matching. For all languages in our 
development dataset, we assign all matching SDQs 
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to each word. We perform this matching by simply 
looking for exact matches in the semantic domain 
dictionary for the respective language. 

Word Alignment. The core assumption of this 
paper is that words with similar meanings would 
be aligned. Similar to Imani Googhari et al. (2022), 
we use the Efomal statistical word aligner (Östling 
and Tiedemann, 2016) to generate bilingual align-
ments for each language pair in our dataset, except 
for pairs of two zero-shot evaluation languages be-
cause both have no labels. We post-process the uni-
directional alignments of Efomal with atools5 and 
the grow-diag-fnal-and (GDFA) heuristic (Koehn 
et al., 2005) to obtain symmetric bilingual align-
ments. We also aggregate all alignments by word, 
resulting in the raw MAG. 

5.1.4 Graph Refnement 
Three processing steps convert our raw MAG to 
the fnal MAG. 

Edge Weight Normalization. In the raw MAG, 
each edge between two word nodes u and v has 
a weight wraw(u, v) ∈ N+ that we convert to a 
normalized weight wnorm(u, v) ∈ (0, 1]: 

wraw(u, v) 
wnorm(u, v) = 2 

SL(v)(u) + SL(u)(v) 

where SL(v)(u) is the strength of node u concern-
ing the language of v, specifcally the sum of the 
edge weights of all edges from word u to a word 
in language v. 

Edge Weight Filtering. To reduce noisy align-
ments, we remove all edges (u, v) with a weight 
wnorm(u, v) < 0.2. 

Isolated Node Removal. As the fnal preprocess-
ing step, we remove all words from the graph that 
have no edge to a word in the development dataset, 
including words from such development languages. 
We call such words isolated even though they may 
have neighbors in a zero-shot evaluation language. 
This process reduces the number of nodes in the 
MAG by 52% – from 414,964 to 199,605, which 
is the fnal number of nodes in the MAG. 

5.2 Graph Neural Network 
GUIDE uses a Graph Neural Network 
(GNN) (Scarselli et al., 2009) to perform a 
5fast-align repository: https://github.com/clab/fast_ 
align (visited on 2023-10-20) 

massively multi-class multi-label classifcation. 
Each class is one of 7,425 SDQs. 

5.2.1 Node Features 
We train the GNN by representing each node with 
a set of features, using two main types of node fea-
tures (Duong et al., 2019): graph structural features 
and word meaning features. 

Graph structural features. Inspired by Imani 
et al. (2022), we incorporate node degree and 
weighted node degree (i.e., the sum of adjacent 
weights) as additional graph structural information. 
These two features are continuous numbers. 

Word meaning features. We further incorpo-
rate SDQ count and SDQ link features. While the 
SDQ count is an integer (stored as a continuous 
number), the SDQ links are a multi-hot vector with 
7,425 dimensions (i.e., these links are categorical 
features). In total, each node/word receives a vector 
with 7,428 feature values. 

5.2.2 Model Architecture 
The GNN adopts a Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) architecture, 
as implemented in PyTorch Geometric (Fey and 
Lenssen, 2019). Appendix C visualizes its fairly 
simple architecture. After adding the node features 
to the fnal MAG, the single-layer GCN (a GCN-
Conv6 layer) aggregates the features of each node’s 
neighbors. The results are 7,425 scores per node, 
one for each SDQ. We normalize these scores with 
sigmoid as a non-linear output activation function. 
Finally, we apply a threshold, accepting only word-
SDQ links with a score ≥ 0.999. The GCNConv 
layer has 55,160,325 parameters in total. 

Modifed Identity Matrix Initialization. After 
initializing the weight matrix and bias vector of our 
model’s GCN layer with small random weights, we 
overwrite parts of it. Our initialization strategy is 
similar to an identity initialization, which uses an 
identity matrix as a weight matrix. 

Our weight matrix has the shape 7,428 × 7,425 
(see Section 5.2.1). Of the 7,428 input features, 
7,425 are a multi-hot vector that encodes the SDQ 
links. We modify the identity initialization by over-
writing the diagonal of this 7,425 × 7,425 subma-
trix with large weights (50.0). We also initialize the 
entire bias vector with low weights (-5.0). Thus, 
6PyTorch Geometric documentation: https: 
//pytorch-geometric.readthedocs.io/en/latest/ 
generated/torch_geometric.nn.conv.GCNConv.html 
(visited on 2023-10-10) 
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during optimization, the learning process starts at 
the point that a word can e.g. belong to the SDQ 
“What words refer to the sun?” only if at least one 
neighbor does. 

Soft F1 Loss. As the loss function, we use the 
soft F1 loss7. The soft F1 loss uses continuous 
(“soft”) instead of discrete values. 

6 Experimental Setup 

This section provides details about the environment 
in which we executed GUIDE and how we evalu-
ated it. 

6.1 Confguration 
We split our development data with a random 
80%/10%/10% node split. We train the model ten 
times in a range of 30 to 40 epochs on the develop-
ment dataset with a batch size of 6,000 and a learn-
ing rate of 0.05 using Adam optimization (Kingma 
and Ba, 2014). We use early stopping after fve 
epochs with a warm-up time of 30 epochs. 

Hardware. We run all experiments on an ASUS 
ESC8000 G4 with 500 GB of RAM, two AMD Intel 
Xeon Silver 4214 processors with twelve cores and 
2.20 GHz, and eight NVIDIA Quadro RTX A6000 
(each having 48 GB VRAM) GPUs. We train the 
model on a single GPU. The entire training process 
takes less than 30 minutes and the inference time 
is approximately ten milliseconds per word. 

6.2 Evaluation Setup 
We use two evaluation methods: evaluation on the 
incomplete semantic domain dictionaries (dataset-
based) and manual evaluation (questionnaire-
based). 

Dataset-based Evaluation. In the calculation of 
soft F1 loss as well as precision, recall, and F1 

score, we ignore “empty” SDQs. An empty SDQ 
is an SDQ that has no assigned words in the dataset 
in a specifc language. Ignoring empty questions 
allows us to evaluate our model even using incom-
plete semantic domain dictionaries. 

Human Evaluation using Questionnaires. For 
each language, we built one questionnaire to evalu-
ate 100 – 120 random and shuffed predicted word-
SDQ links. We recruited human annotators who 
7Our implementation is inspired by this GitHub 
page: https://gist.github.com/SuperShinyEyes/ 
dcc68a08ff8b615442e3bc6a9b55a354 (visited on 2023-
10-16). 

speak the respective languages, in part by seeking 
out language-specifc online fora and communities. 
The human annotators who answered the question-
naires could select only “yes” or “no” for each pair. 
We always consider only the frst 100 answers in 
the evaluation. 

Appendix D lists the URLs to the 20 completed 
questionnaires. To clarify the SDQs, we also pro-
vided a list of valid English answers for each SDQ 
(except in the English questionnaire). The 14 lan-
guages for which a tokenizer or lemmatizer could 
change a word’s spelling (see Section 5.1.1 and Sec-
tion 5.1.2) also included this note: “Please also an-
swer "yes" if there is a typo but you still recognize 
a matching word.” An example of a preprocessing-
related “typo” is the German word “Hüfte” (hip), 
which became “huft”. This word does not exist 
because the Stanza lemmatizer applied stemming. 

7 Evaluation 

This section evaluates GUIDE’s performance, 
shows the results of an ablation study, and discusses 
the fndings. 

7.1 Results 
Table 2 shows the evaluation results. We include 
a random baseline, as we are not aware of any 
other approach to automatically link words from 
low-resource languages to SDQs. For each word-
SDQ pair, the random classifer predicts an existing 
word-SDQ link with a probability of 50%. There 
are N = 199, 605 words in the MAG with 81,632 
links to SDQs. Therefore, the random classifer 
predicts 741 million (N × 7, 425/2) word-SDQ 
links, of which 40,816 are correct. This ratio leads 
to a precision of 0.00006. The recall is 0.5, and the 
F1 score is 0.0001. 

7.2 Ablation Study 
Table 3 shows how GUIDE’s (dataset-based) per-
formance changes when components are removed. 

Interestingly, four components harm the model’s 
F1 score: the isolated node removal and all features 
of the node feature vector, but the SDQ link feature. 

7.3 Discussion of the Results 
GUIDE predicted 71,094 word-SDQ links in total, 
of which 19,166 (37%) belong to zero-shot evalua-
tion languages. 31,873 (62%) of the links predicted 
for the development languages are new. Because 
the total number of matched words in the MAG is 
199,605, the model predicts one word-SDQ link 
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Evaluation with dataset Manual evaluation 
Language Precision Recall F1 Precision # Predicted links 

Random baseline 0.00 0.500 0.000 n/a 741,033,563 

Development 
Bengali 0.22 ± 0.11 0.002 ± 0.001 0.004 ± 0.003 0.56 2,809 (2,770) 
Chinese (simplifed) 0.17 ± 0.02 0.014 ± 0.002 0.026 ± 0.004 0.34 5,752 (5,036) 
English 0.63 ± 0.02 0.125 ± 0.006 0.208 ± 0.009 0.86 7,119 (2,314) 
French 0.59 ± 0.03 0.097 ± 0.005 0.167 ± 0.008 0.78 6,993 (2,527) 
Hindi 0.25 ± 0.02 0.029 ± 0.003 0.051 ± 0.006 0.78 3,914 (2,835) 
Indonesian 0.34 ± 0.05 0.035 ± 0.005 0.064 ± 0.009 0.77 1,799 (1,068) 
Kupang Malay 0.14 ± 0.05 0.013 ± 0.005 0.024 ± 0.009 0.79 1,440 (1,351) 
Malayalam 0.10 ± 0.03 0.015 ± 0.004 0.026 ± 0.007 0.45 2,768 (2,480) 
Nepali 0.20 ± 0.01 0.022 ± 0.002 0.039 ± 0.004 0.38 2,641 (2,156) 
Portuguese 0.43 ± 0.02 0.088 ± 0.006 0.146 ± 0.009 0.86 6,759 (3,737) 
Spanish 0.59 ± 0.02 0.090 ± 0.005 0.155 ± 0.008 0.84 7,614 (3,579) 
Swahili 0.33 ± 0.04 0.018 ± 0.003 0.033 ± 0.005 0.75 2,320 (2,020) 

Evaluation (zero-shot) 
German n/a n/a n/a 0.67 5,022 
Hiri Motu n/a n/a n/a 0.62 1,190 
Igbo n/a n/a n/a 0.45 1,405 
Mina-Gen n/a n/a n/a 0.80 3,063 
Motu n/a n/a n/a 0.32 2,731 
South Azerbaijani n/a n/a n/a 0.58 2,238 
Tok Pisin n/a n/a n/a 0.69 880 
Yoruba n/a n/a n/a 0.63 2,637 

Averages 
Development set 0.33 ± 0.04 0.046 ± 0.004 0.079 ± 0.007 0.68 ± 0.19 4,327 ± 2,338 

Zero-shot evaluation set n/a n/a n/a 0.60 ± 0.15 2,396 ± 1,324 

Stanza 0.43 ± 0.02 0.068 ± 0.005 0.117 ± 0.008 0.74 ± 0.17 5,622 ± 1,975 

SentencePiece 0.21 ± 0.05 0.014 ± 0.003 0.026 ± 0.005 0.53 ± 0.13 2,364 ± 524 

Punctuation mark split 0.14 ± 0.05 0.013 ± 0.005 0.024 ± 0.009 0.64 ± 0.18 1,990 ± 927 

Total 0.33 ± 0.04 0.046 ± 0.004 0.079 ± 0.007 0.65 ± 0.18 3,555 ± 2,180 

Table 2: Evaluation results: For each development language, cells with “±” show the average value of ten runs and 
the standard deviation. In the six bottom rows, “±” shows the average and the respective standard deviation. The 
six “average” rows show the average values for the development set, zero-shot evaluation set, and the languages 
tokenized with Stanza, SentencePiece, and punctuation mark splitting, respectively (see Section 5.1.1), as well as 
the average of all languages. The number of predicted word-SDQ links in the rightmost column is only from the run 
that we used to create the questionnaires. The number in parentheses is the number of new links. The highest values 
in each category are bolded. 

per 2.8 words. Taking the model’s precision of and the (dataset-based) recall of 0.046 show that 
0.65 into account, it predicts one correct word- the model predicts mostly correct word-SDQ links, 
SDQ link per 4.4 words. This number demonstrates but it creates only fractions of complete semantic 
GUIDE’s few-shot learning capabilities. domain dictionaries. Nevertheless, the recall is 

likely to be higher in practice because the evalua-
The human evaluation using questionnaires re- tion with the incomplete dataset fails to recognize 

veals that GUIDE’s precision is in fact almost twice true positive predictions. While GUIDE cannot re-
as high as suggested by the dataset-based evalua- place linguists who compile semantic domain dic-
tion (0.65 instead of 0.34). The precision of 0.65 
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8 

∆ Precision ∆ Recall ∆F1 

GUIDE (reference values) 0.33 ± 0.04 0.046 ± 0.004 0.079 ± 0.007 

Preprocessing 
¬ Stanza pipeline 0.01 ± 0.04 0.017 ± 0.005 0.027 ± 0.008 

¬ MWT expansion +0.02 ± 0.03 0.001 ± 0.003 0.001 ± 0.006 

¬ Lemmatization +0.00 ± 0.03 0.016 ± 0.003 0.025 ± 0.006 

¬ SentencePiece tokenization 0.00 ± 0.04 0.005 ± 0.003 0.008 ± 0.006 

¬ Lowercasing +0.01 ± 0.05 0.001 ± 0.005 0.002 ± 0.008 

¬ Isolated node removal 0.02 ± 0.03 +0.013 ± 0.006 +0.019 ± 0.009 

Node features 
¬ Degree 0.00 ± 0.04 +0.012 ± 0.005 +0.016 ± 0.007 

¬ Weighted degree +0.01 ± 0.04 +0.007 ± 0.004 +0.010 ± 0.007 

¬ SDQ count +0.02 ± 0.04 +0.001 ± 0.004 +0.002 ± 0.007 

¬ SDQ links 0.33 ± 0.00 0.045 ± 0.000 0.077 ± 0.001 

Other 
¬ Modifed identity matrix initialization 0.05 ± 0.07 0.038 ± 0.001 0.063 ± 0.003 

Table 3: Changes in GUIDE’s performance for eleven ablations: Cells with “±” show the average value of three 
runs and the standard deviation. Deactivating the Stanza pipeline and SentencePiece tokenization means that we 
used tokenization by punctuation mark split instead (see Figure 4). 

tionaries, it can provide an initial dictionary with 
thousands of entries, of which a signifcant percent-
age is correct. 

Conclusion 

This paper presents the language-agnostic tool 
GUIDE, which creates and flls up multiparallel 
semantic domain dictionaries in 20 languages from 
seven language families. The model achieves 
state-of-the-art performance in linking words to 
their SDQs and supports 833 languages. Although 
GUIDE has a recall of only 0.046, we show that it 
has a precision of 0.60 even in languages for which 
it has no training data, probably due to language 
similarity and the model’s multilingual nature. 

We propose 32,000 new word-SDQ links for 
twelve existing dictionaries and 19,000 word-SDQ 
links for eight new dictionaries. Ten out of these 
20 languages are low-resource languages. 

Limitations 

We discuss the limitations of our approach across 
multiple components. 

Computational Limitations 

The node feature matrix is a memory bottleneck. 
It is saved as a dense vector of size N × 7, 428, 
where N is the number of nodes/words. The model 
allocates approximately 3.5 GB of VRAM per lan-
guage. Therefore, 48 GB of VRAM (see Sec-
tion 6.1) limit us to loading approximately 13 lan-
guages. Therefore, we cannot load the entire MAG 
of 20 languages at once but load a subgraph of 
the twelve development languages plus only a sin-
gle zero-shot evaluation language. This approach 
does not affect the quality of the results because 
the evaluation languages do not have labeled data 
and cannot learn word-SDQ links from each other. 

Dataset 

The used Bible translations and semantic domain 
dictionaries cause various limitations that we dis-
cuss in the following. 

Bible translations. The general challenge of us-
ing only the Bible as parallel data is the narrow do-
main (Ebrahimi and Kann, 2021). The Bible does 
not include all the words used in today’s world, 
particularly those related to technology, science, 
and modern culture, such as “computer”. The lan-
guage in the Bible is often of a high register and 
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does not refect the way people talk in everyday life 
(e.g., with slang and idioms). Although different 
Bible translations convey the same meaning, they 
differ in their proximity to the original text (in He-
brew, Aramaic, and Greek). While some are literal 
translations, others paraphrase a lot to be under-
standable to a modern audience. These different 
approaches to Bible translation cause noise in the 
word alignments. 

Semantic domain dictionaries. The semantic 
domain dictionaries are incomplete. They cover 
a part of the languages’ vocabularies and are also 
missing SDQ links for the words they cover. This 
limitation is the nature of language data because 
living languages are constantly evolving. They re-
ceive new words and new meanings for existing 
words. However, we found only a handful of incor-
rect SDQ links in our training data, listed in Ap-
pendix E. 

Preprocessing Pipeline 

The preprocessing pipeline produces a MAG that 
contains misleading edges (leading to false posi-
tives) and lacks useful edges and nodes (leading to 
false negatives). We now discuss three reasons for 
these limitations. 

Ambiguity. Words are often ambiguous (e.g., 
“date”) and thus align to different words in another 
language. The preprocessing pipeline treats them 
as if they are the same word, which confuses se-
mantic patterns in the MAG, leading to misclassif-
cations. 

Noisy alignments. There is a lot of noise in word 
alignments because we train Efomal on a small 
corpus that contains many words only once. We 
mitigate this noise by aggregating all alignments 
from all languages. 

Collocations. We ignore most word groups (so-
called collocations (Smadja et al., 1996), e.g., “har-
vest moon”) in the semantic domain dictionaries 
unless Stanza provides an MWT expansion model 
for the language. 

Node Features 

Although three node features turned out to harm 
the model’s performance, it could also ignore other 
potentially useful node properties. 

Ethics Statement 

We are not aware of any adverse effects on any in-
dividual or group resulting from the study we have 
conducted. However, we acknowledge that the lim-
itations raised above may lead to dictionaries of 
inferior quality compared to manual language doc-
umentation. Thus, automated techniques cannot 
be taken as a reason to forgo traditional language 
documentation. 
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A Appendix A. Semantic Domain 
Hierarchy 

Figure 3 visualizes the semantic domain hierarchy. 

B Appendix B. Bible Translation Sources 

Table 4 shows the web source of the Bible transla-
tions we used. 

C Appendix C. Pipeline and Model 
Visualization 

Figure 4 and Figure 5 visualize our preprocessing 
pipeline. Figure 6 shows the model architecture. 

D Appendix D. Questionnaires 

Table 5 provides the links to the questionnaires 
that we used to manually evaluate GUIDE’s perfor-
mance. 

E Appendix E. Incorrect Semantic 
Domain Dictionary Entries 

Table 6 shows incorrect entries that we discovered 
in the development dataset. 
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Figure 3: A drill-down into the tree-structured hierarchy of semantic domains: Nodes with expanded children are 
highlighted. 

Language Bible translation URL 

Development 
Bengali https://github.com/BibleNLP/ebible/blob/main/corpus/ben-ben2017.txt 
Chinese https://github.com/BibleNLP/ebible/blob/main/corpus/cmn-cmn-cu89s.txt 
English https://github.com/BibleNLP/ebible/blob/main/corpus/eng-eng-web.txt 
French https://github.com/BibleNLP/ebible/blob/main/corpus/fra-frasbl.txt 
Hindi https://github.com/BibleNLP/ebible/blob/main/corpus/hin-hin2017.txt 
Indonesian https://github.com/BibleNLP/ebible/blob/main/corpus/ind-ind.txt 
Kupang Malay https://github.com/BibleNLP/ebible/blob/main/corpus/mkn-mkn.txt 
Malayalam https://github.com/BibleNLP/ebible/blob/main/corpus/mal-mal.txt 
Nepali https://github.com/BibleNLP/ebible/blob/main/corpus/npi-npiulb.txt 
Portuguese https://github.com/BibleNLP/ebible/blob/main/corpus/por-porbrbsl.txt 
Spanish https://github.com/BibleNLP/ebible/blob/main/corpus/spa-spablm.txt 
Swahili https://github.com/BibleNLP/ebible/blob/main/corpus/swh-swhulb.txt 

Evaluation (zero-shot) 
German https://github.com/BibleNLP/ebible/blob/main/corpus/deu-deu1951.txt 
Hiri Motu https://github.com/BibleNLP/ebible/blob/main/corpus/hmo-hmo.txt 
Igbo https://ebible.org/details.php?id=ibo 
Mina-Gen https://www.bible.com/sl/versions/2236-gen-gegbe-biblia-2014 
Motu https://github.com/BibleNLP/ebible/blob/main/corpus/meu-meu.txt 
South Azerbaijani https://github.com/BibleNLP/ebible/blob/main/corpus/azb-azb.txt 
Tok Pisin https://github.com/BibleNLP/ebible/blob/main/corpus/tpi-tpi.txt 
Yoruba https://github.com/BibleNLP/ebible/blob/main/corpus/yor-yor.txt 

Table 4: The links show the source of the Bible translations: All translations are from ebible.org, except for the 
Mina-Gen Bible, which was provided by a language expert. We downloaded the Igbo Bible from ebible.org because 
it is not in the eBible corpus (i.e., on GitHub). All URLs were visited on 2023-10-21. 
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Figure 6: Model architecture: GUIDE takes the MAG with node features and predicts SDQ-links for these nodes. 

Language Questionnaire URL 

Development 
Bengali https://docs.google.com/spreadsheets/d/1_qoYnswufDY0gVZuebcoQ1DD9BLqSVD8NozWzqiGWR8 
Chinese (simplifed) https://docs.google.com/spreadsheets/d/1sppwKhC5Ev3frbQ8Mq_MoQGc5ehym6QdQSPcjjdWNPg 
English https://docs.google.com/spreadsheets/d/1zt_3gqNrbSYsIOzjwm3BxewOaulFY1laVXshCZIYGLU 
French https://docs.google.com/spreadsheets/d/1eWkOK5T9ttWx-9ZmETc-fUY1Q7HzihbTr6mK8irZ83g 
Hindi https://docs.google.com/spreadsheets/d/14D6pGKgQtoHG5LWORaU9Ko5XUn_wDh0-x4Hnxj2nHag 
Indonesian https://docs.google.com/spreadsheets/d/13iVFF0xxwpQ_pXf-zKFW2jebA3TZnIiSL9rFpD-dWPY 
Malayalam https://docs.google.com/spreadsheets/d/1-DFjBkS1wjCahowBjg-iGLBV-moZww-J8lKpO0HN44Y 
Nepali https://docs.google.com/spreadsheets/d/1n-f9LbF0vYfO4gtu1YmD6LZB1_Gyo-VxV35WaYBN9_Q 
Portuguese https://docs.google.com/spreadsheets/d/1_WKQmj5KHDE6p8MsCFawvQoxOcLn3MYPWb-4aYpgV6U 
Kupang Malay https://docs.google.com/spreadsheets/d/1EP1ctJ7yl5QYFdY6eV6KYDQg1_mz90j-J8jDGwT9yJY 
Spanish https://docs.google.com/spreadsheets/d/1-2ZwbunnsqOYBW_beI9Rax3XW1Zjpacl5GrrzlPtfF0 
Swahili https://docs.google.com/spreadsheets/d/1H9RVi1mCkL9WmcH2zXYuOwwj73CAMg1My6P-jAAWYgI 

Evaluation (zero-shot) 
German https://docs.google.com/spreadsheets/d/1mPtzuD3_NFWOhLBXUElRNeAGtmiiXcKx_7n7Er3kZsc 
Hiri Motu https://docs.google.com/spreadsheets/d/1gTiNxhvRV9UtUq84Q0E3itJ2nYS8Gv4ElpIp3mEEHAE 
Igbo https://docs.google.com/spreadsheets/d/1yU8FCS19KRIWkbqm1aQBUCBEjVA4zoC60TuM0fTQN8Q 
Mina-Gen https://docs.google.com/spreadsheets/d/1Ib-xD6-1FuBLQ9M3F2UVbocnnbK7NBgv62Lg9h0p_6o 
Motu https://docs.google.com/spreadsheets/d/1e45Hw000K6OrluBQxe-8ifAR3h_Dz725sg3ZBlVnXRM 
South Azerbaijani https://docs.google.com/spreadsheets/d/1q8WfBhZDlOzRsihUbjH-wFyruudA11Chosotgf71rx0 
Tok Pisin https://docs.google.com/spreadsheets/d/1EENt0FJpTdDHpm2P1i-MQ56ZkdQKkBi5GnUDw30gx_o 
Yoruba https://docs.google.com/spreadsheets/d/11LBgUSHSnUFOP3Zp2ikgTp8vjGB6xR8cQkcdZeKNaSQ 

Table 5: The completed questionnaires on Google Sheets for each of the 20 languages: We instructed the participants 
to answer 100 – 120 questions (see Section 6.2). 
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https://docs.google.com/spreadsheets/d/1-DFjBkS1wjCahowBjg-iGLBV-moZww-J8lKpO0HN44Y
https://docs.google.com/spreadsheets/d/1n-f9LbF0vYfO4gtu1YmD6LZB1_Gyo-VxV35WaYBN9_Q
https://docs.google.com/spreadsheets/d/1_WKQmj5KHDE6p8MsCFawvQoxOcLn3MYPWb-4aYpgV6U
https://docs.google.com/spreadsheets/d/1EP1ctJ7yl5QYFdY6eV6KYDQg1_mz90j-J8jDGwT9yJY
https://docs.google.com/spreadsheets/d/1-2ZwbunnsqOYBW_beI9Rax3XW1Zjpacl5GrrzlPtfF0
https://docs.google.com/spreadsheets/d/1H9RVi1mCkL9WmcH2zXYuOwwj73CAMg1My6P-jAAWYgI
https://docs.google.com/spreadsheets/d/1mPtzuD3_NFWOhLBXUElRNeAGtmiiXcKx_7n7Er3kZsc
https://docs.google.com/spreadsheets/d/1gTiNxhvRV9UtUq84Q0E3itJ2nYS8Gv4ElpIp3mEEHAE
https://docs.google.com/spreadsheets/d/1yU8FCS19KRIWkbqm1aQBUCBEjVA4zoC60TuM0fTQN8Q
https://docs.google.com/spreadsheets/d/1Ib-xD6-1FuBLQ9M3F2UVbocnnbK7NBgv62Lg9h0p_6o
https://docs.google.com/spreadsheets/d/1e45Hw000K6OrluBQxe-8ifAR3h_Dz725sg3ZBlVnXRM
https://docs.google.com/spreadsheets/d/1q8WfBhZDlOzRsihUbjH-wFyruudA11Chosotgf71rx0
https://docs.google.com/spreadsheets/d/1EENt0FJpTdDHpm2P1i-MQ56ZkdQKkBi5GnUDw30gx_o
https://docs.google.com/spreadsheets/d/11LBgUSHSnUFOP3Zp2ikgTp8vjGB6xR8cQkcdZeKNaSQ


Language Word Translation SDQ ID SDQ 

English stock 3.2.5.1-1 What words refer to believing that something is true? 
Hindi (rāl) resin 1.2.2.4-2 What types of minerals are there? 
Portuguese estoque stock 3.2.5.1-1 What words refer to believing that something is true? 
Portuguese rebelião rebellion 4.5.4.6-10 What do the authorities do to stop a rebellion? 
Portuguese estoque stock 4.7.7.3-7 What means are used to restrain prisoners? 
Portuguese deter detain 3.4.2.1.2-1 What words refer to feeling hateful? 
Portuguese carmesim crimson 8.3.3.3.4-7 What are the shades of blue? 
Spanish rebelión rebellion 4.5.4.6-10 What do the authorities do to stop a rebellion? 
Spanish sedición sedition 4.5.4.6-10 What do the authorities do to stop a rebellion? 

Table 6: Nine incorrect entries in the semantic domain dictionaries that we discovered, verifed by native speakers: 
The incorrect word-SDQ links in the dataset are rare. The text in parentheses shows a transliteration. 
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Abstract

Traditional dialectology or dialect geography
is the study of geographical variation of lan-
guage. Originated in Europe and pioneered in
Germany and France, this field has predomi-
nantly been focusing on sounds, more specifi-
cally, on segments. Similarly, quantitative ap-
proaches to language variation concerned with
the phonetic level are in most cases focusing
on segments as well. However, more than half
of the world’s languages include lexical tones
(Yip 2002). Despite this, tones are still un-
derexplored in quantitative language compar-
ison, partly due to the low accessibility of the
suitable data. This paper aims to introduce a
newly digitised dataset which comes from the
Yue- and Pinghua-speaking areas in Southern
China, with over 100 dialects. This dataset
consists of two parts: tones and segments. In
this paper, we illustrate how we can computa-
tionaly model tones in order to explore linguis-
tic variation. We have applied a tone distance
metric on our data, and we have found that
1) dialects also form a continuum on the tonal
level and 2) other than tonemic (inventory) and
tonetic differences, dialects can also differ in
the lexical distribution of tones. The availabil-
ity of this dataset will hopefully enable further
exploration of the role of tones in quantitative
typology and NLP research.

1 Introduction

Traditional dialectology or dialect geography
(Chambers and Trudgill 1998: 14), is the study
of geographical variation of language. This field
originated in Europe, pioneered in Germany and
France, and has always been focusing on sounds,
more specifically, on segments. In the second
half of the 20th century, the quantitative turn in
dialectology, known as dialectometry, is no ex-
ception to this. While these methodologies have
been widely used in Europe and America, there are
only limited regions in the rest of the world which
employ these methodologies, although there is a

sign of growth in recent years. For instance, Yu-
catec Mayan (Pfeiler and Skopeteas 2022), Bantu
languages (Nerbonne 2010), Japanese (Jeszenszky
et al. 2019).

Tonal languages are defined as “[languages] in
which an indication of pitch enters into the lexical
realisation of at least some morphemes” (Hyman
2006: 229), and more than half of the world’s lan-
guages include lexical tones (Yip 2002). Despite
this, tones are still gaining little attention in quan-
titative models of language variation. This lack of
attention on tones is not surprising, however, since
most European languages mostly do not use pitch
to differentiate lexical meaning. One other reason
could be the fact that digital data is not accessi-
ble and freely available. These factors cause bar-
riers to the development of computational meth-
ods for tonal languages. For example, it is unclear
whether the existing methods (e.g. Yang and Cas-
tro 2008) are suitable and adequate to deal with
tones in tonal languages (Sung et al. forthcoming).

Take Chinese dialectology as an example, there
are numerous studies on dialects spoken in China,
and it has a century-long tradition, but most stud-
ies on tonal variation are descriptive. Traditional
studies usually report the tonal inventory of a di-
alect after a fieldwork investigation, and/or tones
are analysed in terms of how they correspond to
historical tone categories (from the Middle Chi-
nese period, based on the ancient rhyme dictionary
descriptions). Although there is a huge amount
of dialect data available for Chinese (in the form
of IPA transcriptions, including tones), they are
mostly printed on paper and are not digitised,
ready to be used for quantitative analyses.

Until today, there is generally a very limited
number of digital datasets which allows us to quan-
titatively model variation of tones, which is prob-
lematic given that the majority of the world’s lan-
guages are tonal. Furthermore, although there are
tools which allow us to align Southeast Asian tone
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languages (Wu et al. 2020), and then visualize the
correspondences (both tones and segments) in ta-
ble form (List 2019), these tools were developed
for historical linguistics. In order to understand
the synchronic dialect variation on the tonal level,
alternative methods are needed in order to investi-
gate how tones vary beyond correspondences.

This paper aims to introduce a newly digitised
dataset which comes from the Yue- and Pinghua-
speaking areas in Southern China, with over 100
dialects.1 This dataset consists of two parts: seg-
ments (Section 3) and tones (Section 4). The avail-
ability of this dataset will hopefully be an invita-
tion to researchers around the world to initiate an
exploration of tonal variation, which has long been
neglected. In section 5 we present out preliminary
research on tonal variation, followed by a conclu-
sion.

2 Data Sources

The data presented in this paper consists of seg-
ments and tones. Segments contain impressionis-
tic transcriptions of consonants and vowels of the
words. Impressionistic tone transcriptions of pitch
contours are represented using Chao’s (1930) tone
letters. The two sets of transcriptions are from the
same sources; they were extracted from the same
words (see below) and from the same dialects.

There are two main sources for the dataset,
namely word lists and homonymic syllabaries,
which came from various dialect surveys and in-
dividual studies. Both sources are based on im-
pressionistic transcriptions from word elicitation,
but they are presented differently. Word lists are
word-based, meaning words are organised in a
tabular format (Francis 1983: 105-106), where
the IPA transcriptions of each word are listed
for each dialect all at once. On the other hand,
homonymic syllabaries are pronunciation-based,
meaning words with the same pronunciation are
grouped together under one pronunciation (repre-
sented by the IPA transcriptions).

2.1 Sources

Our dataset consists of IPA transcriptions of over
130 words in 104 dialects. These dialects include
traditional Yue and (Southern) Pinghua dialects
(Chinese Academy of Social Sciences (CASS)
2012), which are Sinitic languages spoken in the

1The datasets can be found under Supplementary Mate-
rial.

Guangdong and Guangxi provinces in Southern
China.

The dialect surveys include Survey of Di-
alects in the Pearl River Delta (SDPRD, Zhan
and Cheung 1987), Survey of Yue Dialects in
Northern Guangdong (SYDNG, Zhan and Che-
ung 1994), Survey of Yue Dialects in Western
Guangdong (SYDWG, Zhan and Cheung 1998),
The Phonological Study of the Yue Dialects spo-
ken in the Zhan-Mao area in Western Guangdong
(SYDZM, Shao 2016), Chinese Dialect Research
in the Guangxi Province (CDRGP, Xie 2007), Yue,
Pinghua and Tuhua Dialect Survey Collection Part
1 (YPTDSC1, Chen and Lin 2009). Other (indi-
vidual) studies include Liu (2015), Zhong (2015),
Huang (2006), Chen (2009), Yang (2013), Tan
(2017), Shi (2009) and Chen and Weng (2010).

Figure 1: Localities and their respective sources.2

2.2 Selection of Words
Out of the 130 words in our Yue dialect dataset, a
portion of the items comes from the Swadesh 100-
word list (Swadesh 1955), while some additional
items come from outside this list. The Swadesh
list is chosen because it is a standard word list
for language comparison, with the assumption that
words on this list represent the basic or core vo-
cabulary – words that are universal, relatively cul-
ture free and thus less likely to be replaced com-
pared to other vocabulary (Campbell 2013: 448).
In addition, Swadesh’s 100 basic-word list has
been tested by Wang and Wang (2004) to be the
most suitable word list for sub-grouping Chinese
dialects.

Not all items from the Swadesh list are, how-
ever, suitable for the data extraction process. One

2Map created using QGIS (QGIS Development Team
2022).
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group of such items are polysyllabic words. The
data collected in the Yue and Pinghua dialect
surveys are mainly monosyllabic words (or cog-
nate morphemes), because records of polysyllabic
words are not available (collected) for a big por-
tion of the dialects in this dataset. Therefore,
only a subset of the items in the Swadesh list
is used, in order to ensure the commensurabil-
ity of the dataset for all dialects. Another group
of items from the Swadesh list was excluded be-
cause they were not included in the dialect sur-
vey. An example is ‘tongue’. The pronunciation
of the written form of this word (舌 sit3) is in-
cluded in the Swadesh list, but the actual spoken
form used in Cantonese, 脷 lei3, is not included.
One other group of words include items which
can have two pronunciations, namely literary and
colloquial pronunciations. Colloquial pronuncia-
tions of the characters usually reflect the pronun-
ciations inherited by the dialects from their ances-
tors, while literary pronunciations are borrowings
from the koine from different historical periods (Li
2007: 93). Although Yue has relatively fewer char-
acters with literary pronunciations (Lau 2001: 134-
135), it is still present in the Swadesh list, like聽
‘listen’ (Lit. ting3, Col. teng1). Therefore, such
items are discarded. Lastly, some items are dou-
blets, meaning that both the spoken and written
forms can be found. Both variants are included in
the dataset.

In total, 54 words in our dataset do not come
from the Swadesh list. These words can be con-
sidered to be common, although not ‘basic’ or
‘core’ as such. The domains of these supplemen-
tary words include the rest of the numbers up
to 10 (Swadesh list only includes one and two),
colour terms, direction, animals, and some words
with known phonological variation, like ‘flower’,
‘spring’, and ‘duck’. This addition is set out to en-
large the range of variation within the Yue dialects
which are not present in the Swadesh list already.

The list of items can be found in Appendix A.

3 Modifications to the Original
Segmental Transcriptions

Dialect survey data are often found with tran-
scribers’ differences (or fieldworker isoglosses,
Trudgill 1983; Mathussek 2016) when there are
more than one fieldworker documenting dialects
in the field. Transcribers’differences are incon-
sistencies of impressionistic transcriptions due to

the different uses of phonetic symbols to represent
the same sound by different transcribers. In other
words, the differences we see in the data might be
due to the habitual difference of the fieldworker in-
stead of ‘real’ linguistic difference. To reduce the
effects from the transcribers’differences, we have
made some modifications to the original data.

3.1 Comparison with Existing Recordings
The data sources we have used do not have acous-
tic data accompanying the transcriptions. One
of the ways to find out whether transcribers used
different symbols to represent the same sound is
to compare these transcriptions with the existing
recordings from different projects on the same or
nearby dialects. We have used recordings from
the Yubao database (中國語言資源保護研究
中心 [Research Centre of Linguistic Resource
Reservation in China] 2022) for such comparisons.
For instance, this task allows us to identify sub-
phonemic contrasts such as Cantonese [8] (Interna-
tional Phonetic Association 2005) before -n and -t,
which are often transcribed as <œ> in the transcrip-
tions in varieties such as Guangzhou and Hong
Kong (Urban) dialects.

3.2 Maintaining Contrasts
Another approach to reducing transcriber’s differ-
ences is to collapse contrasts between different no-
tations, i.e. to merge symbols. However, this
would potentially lead to a loss of information,
with the risk of merging actual contrasts which are
present in different dialects. To avoid collapsing
unnecessary contrasts, when minimal pairs could
be found in the rhyme inventory (provided in the
dialect surveys for all localities), contrasts would
be kept.

For example, one common difference in tran-
scriptions is the high back vowel symbol before
-N, namely [UN]. The tendency across Yue dialects
is that there are two non-low back vowels which
commonly pair with -N, namely /U/ and /O/. Based
on this tendency, we can derive the phonetic values
of the vowels by inspecting the symbols used and
the phonemic contrasts in the dialects. The main
transcriptions of [UN] are <oN> and <uN> cross-
dialectally. We have chosen <oN> to be the default
in representing [UN]. However, the tendency does
not imply all instances of <uN> represent a [UN].
To make the more plausible judgement, we have
checked 1) whether the inventory also has <oN>,
and 2) whether <oN> could represent some other
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sounds, such as [ON]. This relies on the presence
of minimal pairs. In the Hong Kong (Kam Tin) di-
alect, the original data have <uN> and <oN>. In ad-
dition, the Hong Kong (Kam Tin) dialect also has
<ON>. Because [O] already occupies the vowel in
<ON>, <oN> that implies the pronunciation [UN]. At
the same time, it implies that <uN> has the value
[uN], a combination of a sound sequence uncom-
mon across the Yue dialects (as a result of sound
change).

In contrast, in the Nanning (Urban) dialect,
<uN> does not form a minimal pair with <oN>
(since it does not exist). Furthermore, the absent
<oN> cannot be [ON] since <ON> already exists in
the inventory. This implies that <uN> represents
[UN]. This is indeed also the case in the recording
from the Yubao database (under ‘南寧白話’).

3.3 Removal of Redundant Characters
There are cases where symbols were added to the
transcription in the original data, but they do not
actually contribute to the actual phonetic realiza-
tion of the word. The <ñi-> sequence is an ex-
ample. In words such as 人 ‘man/human/people’
(which is typically transcribed as <ñi5n> in West-
ern Yue dialects), the -i- medial is not really per-
ceptible in the Yubao recordings. The addition of
<-i-> is perhaps due to the fact that [ñ] often ap-
pears before an -i- medial, and it is analysed as
an allophone of /N/ (Shao 2016: 42) or /n/ (e.g.
Zhan and Cheung 1998). For <ñi5n>, since [5]
is not a high vowel, the medial -i- then could be a
convention which indicates the presence of /i/ (but
phonetically silent). While this information could
be useful in the synchronic phonological analysis
of the dialect, it creates inconsistencies for dialect
comparison. Therefore, such redundant informa-
tion (for dialect comparison) was removed.

3.4 Simplification of Overly Detailed
Transcriptions

Different transcribers would transcribe sounds in
different broadness. Some (usually a minority) are
narrower, with all the diacritics included, while
some are broader, without diacritics.

The different degrees of transcription broadness
cause additional inconsistencies to the data. In or-
der to level the broadness, we have removed dia-
critics for the vowel backness and height param-
eters. For example, Hong Kong (Kam Tin) di-
alect has a non-standard IPA symbol <A>, which
stands for [a

¯
]. This is further simplified to

<a>. Superscripted segments, such as uV, NC
(nasal+obstruent, could be NC or NC), were all
treated as full segments. This is because it is dif-
ficult to verify the status of the u in the uV se-
quence. For the nasal+obstruent sequence, some
descriptions noted that these sequences have varia-
tion, like the Guangning dialect (Zhan and Cheung
1998: 14), which were not reflected in the data.
We have decided to level these contrasts to full seg-
ments.

3.5 Consistency of Onsets

Consistency of onsets mainly concerns word-
initial high vowels. In Yue dialectology, it is com-
mon to see a zero-onset plus a medial (i.e. start-
ing with i-, u- or y- instead of j- and w-) in the
transcription, but not all transcribers do this. To
our knowledge, the Zhongshan dialect (Zhan and
Cheung 1990: 72) and a few dialects in Guangxi
(Xie 2007) do not start with a glide before a
high vowel nucleus. For other dialects, it is un-
clear whether the choice between the vowel-initial
vs. glide-initial reflects transcribers’differences.
Therefore, the chosen normalised form is an on-
set with a glide for these syllables, until further
reports of the presence (or absence) of an initial
glide for the dialects in our dataset.

3.6 Converting Chinese IPA to Standard IPA

There are a few differences between the Chinese
IPA and Standard IPA (International Phonetic As-
sociation 2005). These non-standard IPA sym-
bols were converted to Standard IPA. For instance,
the symbol for aspiration <’> was replaced with
<h>; capital vowel symbols <A> and <E> (roughly
[a
¯
] and [efl]/[Efi] (between [e] and [E]) respectively,

Handel 2015; Li 2017: 31) were converted into
diacritic-less IPA symbols. One exception is the
apical vowel <ę>, which remains in the dataset as a
contrastive sound to the existing IPA symbols.3 In
terms of consonants, palatal nasals <ő> and lami-
nal <S>4are replaced by IPA <ñ> and <s> respec-
tively.

3There could actually be more than one phonetic realisa-
tion for what is represented as an ‘apical vowel’. However,
since this information is not available in the dialect survey
data, we treat this pool of possible sounds as one homoge-
nous sound value by using the apical vowel symbol.

4Chinese IPA uses tongue positions instead of the palate
as the places of articulation.
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3.7 Phonetic Alignment

We have also modified the kv- and kV-, versus
the ku- sequence. All the ku- sequences were
converted to kw-, so that the medial -u- would
be treated as a consonant. In quantitative lan-
guage comparison, phonetic transcriptions are of-
ten aligned using pairwise or multiple sequence
alignment algorithms. Introducing the above men-
tioned modification allows the medial -u- to be
aligned with -v- and -V-, instead of a nucleus vowel
which does not belong to the onset.

3.8 Descriptive Statistics

In Table 1, we have illustrated how the data look
before and after the cleaning process.

Dialect Item Raw Cleaned
Guangzhou ‘water’ sœy s8y
Guangzhou ‘skin1’ p’ei phei

Table 1: Examples of Raw vs. Cleaned transcriptions

A reduction in the contrasts from the raw
data can yield information loss. We have calcu-
lated the Normalized Levenshtein distance (Lev-
enshtein 1966; Heeringa 2004) to see how much
our cleaned transcription deviate from the raw tran-
scription. The distribution of the deviation scores
per dialect can be found in Figure 2 below.

Figure 2: Boxplot of Distances between Raw and
Cleaned Transcriptions.

The mean Levenshtein distance is 0.043, and
the standard deviation is 0.029. The minimum
distance found between the raw and the cleaned
transcriptions within a dialect is 0.004 (found in
Zengcheng), while the maximum distance is 0.121
(found in Binyang (Binzhouzhen)).

The descriptive statistics of the raw vs. cleaned
transcriptions does not suggest a huge deviation
from the raw data after we have removed some po-
tential transcribers’ differences. On average, we
might see 4 changes per 100 segments (mean value
0.04 multiplied by 100).

4 Tone Data

The second half of the dataset consists of the tonal
data from the same words and the same dialects.
Up to date, there are no large-scale dialectometric
studies on tones; the highest number of dialects in-
volved are no more than 20 dialects (see Yang and
Castro (2008); Tang (2009)). In some dialectomet-
ric studies, tones were neglected (e.g. Wichmann
and Ran (2019)), others used a rather simplified
method (e.g. Stanford (2012)). In addition, there
are studies on the correlation between phonetic dis-
tance and the perception of tones (e.g. Yang and
Castro (2008)), which do not focus on the appli-
cation of these measures on dialect classification.
Research questions regarding to the variation of
tones in larger dialect areas, or if there is a correla-
tion between tonal and segmental variation cannot
be researched upon using these datasets.

Our tonal dataset is different from existing dig-
ital datasets, since it allows comparisons between
tonal and segmental levels. The tones were tran-
scribed in Chao’s (1930) tone letters, which is a
system for tone transcription consisting of 5 digits,
1, 2, 3, 4, 5, representing different (possible) con-
tour levels in a tone. In this system, 1 represents
the lowest contour level and 5 represents the high-
est. When combined together (with two digits or
three digits), they can indicate a change in the con-
tour, which represents the shape of the tone. For
example, 53 is a falling tone, whereas 213 is a dip-
ping tone (a falling contour followed by a rising
contour).

The tonal transcriptions cannot directly be used
for the purpose of dialectometry, though. Sung
et al. (forthcoming) have found that directly apply-
ing Levenshtein distance on the tone letters and
comparing these tones categorically (the ‘binary’
method, Sung et al. (forthcoming)) do not yield
satisfying tone distances for the purpose of dialec-
tometry. Further conversion of these tones to an-
other representation (e.g. Onset-Contour-Offset,
Yang and Castro 2008) is required in order to get
more meaningful tone distances. The availability
of tones as tone letters allows users to apply any
conversion of their choice. The question raised
in Sung et al. (forthcoming) shows that currently
there is no existing satisfying tone distance met-
ric for dialectometry. In the subsections below, we
briefly introduce three quantitative models of tone
representation, tested in Sung et al. (forthcoming),
as well as our modified version of the existing rep-
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resentation proposed by Yang and Castro (2008)5.

4.1 Chao’s representation

The tone-to-string method applies the Levenshtein
distance algorithm directly to Chao’s (1930) tone
letters. Levenshtein distance (Levenshtein 1966)
is a string distance metric which seeks the least
amount of operations, namely insertions (addition
of element in string), deletions (removal of ele-
ment in string) and substitutions (replacement of
element in string) in order to transform one string
into the other. The degrees of difference in the
digits (pitch contours) are not accounted in this
method, i.e. a substitution from 2 to 1 costs the
same distance as from 4 to 1. This implemen-
tation of the tone-to-string method follows Tang
(2009), where a two-digit tone aligns with a three-
digit tone from the second digit of the three-digit
tone, see the example below. Note that short tones
are not distinguished from their longer counter-
part, since it has not been proposed yet how tones
like a short concave tone are represented under
this method. Users should remove the ’#’ (length
marker) in their data before applying this method.
Take two tones, 15 vs. 325, as an example, we cal-
culate the Levenshtein distance between the tones,
which is demonstrated in Table 2. In this exam-
ple, one substitution and deletion are required to
convert 325 to 15, and that yields 2 / 3 = 0.67 dif-
ference between the two tones.

Slot 1 Slot 2 Slot 3 Operations Distance
3 2 5 - -
- 2 5 Deletion of 3 1
- 1 5 Substitution of 2 > 1 1

Sum 2

Table 2: Calculation of Levenshtein Distance between
325 and 15 with the tone-to-string method

4.2 Onset-Contour-Offset (OCO)

Onset-Contour-Offset (OCO hereafter) is a repre-
sentation of tones proposed by Yang and Castro
(2008). This representation gives a more phonetic
representation of tones, instead of an abstract one,
as its purpose is to approximate multiple cues of
tones in the distance measure in order to gener-
ate a more accurate prediction for intelligibility be-

5The scripts for the conversion of the original tone data to
each of the representations introduced below are provided in
the supplementary material. The converted tones can then
be processed by existing dialectometric tools online, such as
Gabmap (Nerbonne et al. 2011; Leinonen et al. 2016).

tween dialects (the purpose of Yang and Castro’s
study).

OCO involves a transformation of the tone let-
ters/ 5-level transcription (Chao 1930) into a repre-
sentation which consists of three components: On-
set, Contour and Offset, each represented with one
character, except for Contour, which can have up
to two characters. Onset and Offset are the starting
and ending contour levels of the tone, and the Con-
tour is the shape of the tone. For the contour lev-
els, the original 5-level transcription is converted
into three categories, which are H(igh), M(id) and
L(ow). H represents levels 4 and 5, M represents 3
and L represents 1 and 2. For contours, the basic
shapes include R(ising), F(alling), L(evel), and the
complex tones are represented by the combination
of the basic shapes, hence it has up to two charac-
ters. Examples of the Contour representations can
be found in Table 3 below.

Representation Contour Example
L Level 11, 33
R Rising 12, 35
F Falling 31, 52

RF Convex 131, 253
FR Concave 213, 424

Table 3: Contours in OCO representation with exam-
ples

As an example, the OCO representation of 221
would be LLFL, and for 24, it would be LRH. To
calculate tone distances, Yang and Castro (2008)
applied the Levenshtein distance algorithm on the
OCO representation. This is illustrated in Table 4
below.

When two tones with different lengths are com-
pared (length of three and four, like in Table 4),
the Onset (Slot 1) and Offset (Slot 4) are always
aligned together. In this example, we can find two
substitutions and one deletion out of four align-
ment slots, which yields a Levenshtein distance of
0.75 between the tone pair.

Slot 1 Slot 2 Slot 3 Slot 4 Operations Distance
L L F L - -
L R F L Substitution of L > R 1
L R - L Deletion of F 1
L R - H Substitution of L > H 1

Sum 3

Table 4: Calculation of Levenshtein Distance between
221 and 24 with the OCO method

4.3 Modified Onset-Contour-Offset (mOCO)
In Sung et al. (forthcoming), it has been shown
that the biggest drawback of the OCO represen-
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tation is that it is not able to distinguish enough
tones in the Yue dataset (only 43.8%). Therefore,
we made some adjustments in order to differenti-
ate more tones present in our data. This represen-
tation is largely the same as OCO, and it still op-
erates with a transformed representation of Chao’s
tone letters into onset-contour-offset.

Firstly, the pitch levels are expanded from origi-
nally differentiating three levels (merging 1 and 2
and merging 4 and 5) to distinguishing all five lev-
els found in Chao’s (1930) tone letters. Our modi-
fication creates a five-level contrast by having HH
(5), H (4), M (3), L (2) and LL (1). The double
representation ‘HH’ and ‘LL’ make their immedi-
ate neighbouring pitch levels, i.e. H and L respec-
tively, costing a difference of 1, while all other
pitch levels cost a difference of 2. Another mod-
ification we have made has to do with tone length.
The differences in tone length are usually found
between checked syllables and non-checked syl-
lables. We have decided to represent tone length
with a superscript h, which indicates a difference
of 0.5.6

This representation of the highest and lowest
pitch levels maintains the dimensions of ‘direction’
and ‘average pitch’, which has been identified in
Gandour and Harshman (1978).

With the mOCO representation, when we ap-
ply Levenshtein distance between the tones in our
dataset, we can differentiate 72 out of 73 tones
(98.6%). The tone distances calcualted with the
mOCO representation can be found in Figure 3.
Since the mOCO representation can differentiate
72 tones, it should also be sufficient for other tonal
languages in Southeast Asia, and perhaps in other
parts of the world (given the same tone notation is
used in the documentation, so that the conversion
can be done).

5 Preliminary Results of Tonal
Dialectometry of Yue Dialects

In this section, we will present our preliminary
analysis of the tonal data, using the mOCO tone
representation. The first question that we will try
to answer is whether dialects form a dialect contin-

6Superscripted characters are counted as a difference of
0.5 in the Levenshtein algorithm implemented in Gabmap,
if the last character of the Offset of both tones (but not the
length) are identical. This implies that the tone length is only
differentiated if the final character of the offset in the mOCO
representation is identical. Please note that LED-A.org does
not have the same implementation of the superscript h.

Figure 3: Multidimensional Scaling plot of tone dis-
tances calcualted with the mOCO representation.

uum, which has previously been observed in differ-
ent languages on the segmental level. A follow-up
question we investigated is in what ways do tones
differ gradually from one dialect to another.

5.1 Methodology
Firstly, the whole tonal dataset is converted to the
mOCO representation. Next, for each pair of di-
alects, the tone distances for all the lexical items
are calculated using normalized Levenshtein dis-
tance, summed and then divided by the total num-
ber of lexical items compared in the pairwise di-
alect comparison. These procedures yield a nor-
malised aggregate tonal distance between all pairs
of dialects in the data, which we store in a distance
matrix. The distance calculation procedures de-
scribed above were computed with Gabmap (Ner-
bonne et al. 2011; Leinonen et al. 2016).

5.2 Multidimensional Scaling Plot
Since a distance matrix is not interpretable for hu-
man eyes, we have employed multidimensional
scaling to our distance matrix of the dialect tonal
distances, in order to gain further insights into the
tonal variation in our data. Multidimensional Scal-
ing (MDS hereafter) is a dimensionality reduction
method which represents“measurements of sim-
ilarity (or dissimilarity) among pairs of objects
as distances between points”(Borg and Groenen
2005: 3). In our case, an MDS plot would rep-
resent the dialects as points, and the further the
points are from each other, the more different they
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are. Unlike cluster analysis, the points on an MDS
plot are not partitioned into discrete groups. In
addition, no geographical information is added to
the plot, so the distances projected on the plot is
simply based on the distance matrix generated in
the distance calculation. This technique is useful
to visualize continuum-like dialect relations (exis-
tence of transitional dialects), as well as clusters.
However, it requires one to interpret the plot them-
selves, including in what ways dialects differ from
each other.

It is also important to check how much the dis-
tances represented in an MDS plot correlate to
the original distance matrix. This is indicated by
the explained variance (r2) or by the Stress value
(Heeringa 2004).

Figure 4: MDS plot of tone distances between Yue di-
alects (r2= 0.70).

In Figure 4, we see a continuum-like distribu-
tion for the majority of the dialects in our data,
with the possible exception of the Siyi dialects.
They are marked with a red circle in Figure 4 and
are clearly separate from the rest of the dialects.
This corresponds to the analysis done on the seg-
mental level (Sung 2023; Sung and Prokic 2023).
This dialect group serves as our preliminary inves-
tigation into the ways in which tones vary in be-
tween dialects.

Figure 5 is a zoomed-in view of the Siyi cluster
in Figure 4. We can see that although these di-
alects are relatively similar to each other in Figure
4, they do not completely overlap, meaning their
tones are not completely identical. To gain more

Figure 5: MDS plot of tone distances between Siyi di-
alects (Figure 4 zoomed in).

insights into how their tones differ from each other,
we turn to the tonal inventories of these dialects.

In Table 5, the tonal inventories of the Siyi di-
alects are listed as the reflexes of the Middle Chi-
nese (MC) tone categories. We can see that Tais-
han, Doumen and Kaiping dialects share the ex-
act same inventory. Enping dialect has an almost
identical inventory as these three dialects, except
two MC tone categories share the same reflex,
indicated by the merged cell in gray. Another
group of dialects consists of Jiangmen and Xin-
hui. Their tonal inventories only differ from Tais-
han, Doumen and Kaiping dialects by one tone:
the reflex of Yin Shang category is 45 instead of
55. Based on the inventories, we would expect
the MDS plot to show overlaps of Taishan-type
dialects (with Enping slightly further away), and
the Jiangmen-type dialects to be even further away.
This is however not the case in Figure 4. If we
look at the tone correspondences between the Tais-
han and Kaiping dialects (see Appendix B), we
can see that even though the tones in their inven-
tories are identical, their correspondences are not
perfect. This suggests that there are lexical dis-
tribution (Wells 1982) differences between these
dialects occurring in the data.

Our preliminary results suggest that mOCO can
detect both tonemic (inventory) and sub-tonemic
(phonetic) differences between dialects. In addi-
tion, it can also detect lexical distributional differ-
ences between dialects with identical tone invento-
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Tone Categories Taishan Kaiping Doumen Enping Jiangmen Xinhui
Yin Ping 33 33 33 33 23 23

Yang Ping 22 22 22 22 22 22
Yin Shang 55 55 55 55 45 45

Yang Shang 21 21 21
31

21 21
Qu 31 31 31

31
31 31

Yin Ru1 55# 55# 55# 55# 55# 55#
Yin Ru2 33# 33# 33# 33# 33# 33#
Yang Ru 21# 21# 21# 21# 21# 21#

Table 5: Tone inventories of Siyi dialects (based on Middle Chinese tone categories)

ries.

6 Conclusion

Our Yue dataset has provided new possibilities in
the study of language variation. It consists of
both tonal and segmental data for the same lex-
ical items for over 100 dialects. To our knowl-
edge, this is one of the biggest dialectal dataset
for tones within one language area. Our tonal
dataset is digitised from dialects surveys which
were transcribed in Chao’s (1930), which means
that it can be converted to any existing tone repre-
sentations for further dialectometric analyses. In
this paper, we have briefly demonstrated how we
can use one of these representations to investigate
how tones vary across different dialects. By us-
ing the mOCO representation, which can differen-
tiate almost 99% of the tones in our data, we have
identified a dialect continuum as well as a dialect
island, namely the Siyi dialect group. Through
a comparison of tone inventories and tone corre-
spondences of Siyi dialects, we have further iden-
tified that dialects can differ on the tonal level tone-
mically, sub-tonemically and in terms of lexical
distribution.

Tonal languages have been neglected in the
study of linguistic variation for decades, partly due
to the lack of available data. We hope this dataset
will serve as the first step to remove the barrier
for any scholars who are interested in variation of
tones.
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Supplementary Material

The datasets and the tone conversion scripts can be
found in https://osf.io/m9g2a/.

Appendix A: List of Items in the Data

Chinese English Chinese English
一 one 二 two
三 three 四 four
五 five 六 six
七 seven 八 eight
九 nine 十 ten
我 I 你 you
全 all 多 many
大 big 長 long
細 small_col 小 small_lit
男 man 女 woman
人 person 魚 fish
鳥 bird_lit 雀 bird_col
狗 dog 虱 lice
樹 tree 葉 leaf
根 root 皮 skin1
膚 skin2 肉 meat
血 blood 骨 bone
脂 fat 角 horn
尾 tail 羽 feather
髮 hair_head 毛 hair_body

頭 head 耳 ear
眼 eye 鼻 nose
口 mouth 牙 tooth1
齒 tooth2 爪 claws
腳 leg 膝 knee
手 hand 肚 abdomen
胸 breast 心 heart
肝 liver 飲 to drink
食 to eat 咬 to bite
看 to see_lit 知 to know
睡 to sleep 死 to die
殺 to kill 游 to swim
飛 to fly 走 to walk
來 to sit 企 to stand
講 to speak_col 日 sun
月 moon 水 water
雨 rain 石 stone
沙 sand 土 soil/earth
地 floor/ground 雲 cloud
煙 smoke 火 fire
灰 ash 燒 to burn
路 road 山 mountain
紅 red 綠 green
黃 yellow 藍 blue
白 white 黑 black
夜 night 熱 hot
凍 cold 滿 full
新 new 好 good
圓 round 乾 dry
史 history 蛇 snake
虎 tiger 鼠 mouse/rat
馬 horse 牛 cow
船 boat 春 Spring
夏 Summer 秋 Autumn
冬 Winter 西 West
北 North 出 out
入 enter 墳 tomb
想 to think 雙 double
見 to see_col 雞 chicken
豬 pig 湖 lake
合 together/to merge 村 village
愛 love 鴨 duck
奇 strange 具 tool
花 flower 光 light
師 teacher 去 to go
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Appendix B: Tone Correspondences

Correspondences No. of Items
11# : 21# 1

21:21 4
21:31 2

21# : 21# 12
21# : 33# 1

22:22 21
22:55 1
31:31 10
33:21 2
33:33 33
33:55 1

33# : 21# 1
33# : 33# 3

35:21 1
55:55 26

55# : 55# 11
Correspondence Table of Tones between Taishan

(left) and Kaiping (right) Dialects (irregular
correspondences in gray)
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Abstract

Closely related languages show linguistic simi-
larities that allow speakers of one language to
understand speakers of another language with-
out having actively learned it. Mutual intelligi-
bility varies in degree and is typically tested in
psycholinguistic experiments. To study mutual
intelligibility computationally, we propose a
computer-assisted method using the Linear Dis-
criminative Learner, a computational model de-
veloped to approximate the cognitive processes
by which humans learn languages, which we
expand with multilingual semantic vectors and
multilingual sound classes. We test the model
on cognate data from German, Dutch, and En-
glish, three closely related Germanic languages.
We find that our model’s comprehension accu-
racy depends on 1) the automatic trimming of
inflections and 2) the language pair for which
comprehension is tested. Our multilingual
modelling approach does not only offer new
methodological findings for automatic testing
of mutual intelligibility across languages but
also extends the use of Linear Discriminative
Learning to multilingual settings.

1 Introduction

Speakers of a given language can often partially
comprehend other languages in the same language
family. This mutual intelligibility has been demon-
strated to be dependent on several linguistic vari-
ables, such as phonological, orthographic or lexical
similarity, and extralinguistic factors, such as the
amount of previous exposure to or the attitude to-
wards the other language (Gooskens and Swarte,
2017; Gooskens et al., 2015; Heeringa et al., 2014).
In addition, the phonetic similarity between words
expressing similar meanings has been shown to be
a major factor driving cross-linguistic mutual in-
telligibility (Gooskens et al., 2018). Phonetically
and semantically similar words are often called
cognates in studies on mutual intelligibility, for-
eign language learning, and bilingualism (Squires

et al., 2020). Originally, however, the term denotes
words inherited from the same ancestral language
in genetically related languages (List, 2016). Al-
though cognates in the original sense often exhibit
phonetic and semantic similarity across related lan-
guages, they do not necessarily do so, and words
can also be similar in pronunciation and meaning
due to other factors, including – most importantly –
intensive borrowing, and – to a much lower degree
– different kinds of sound symbolism (see Casad
1987, 87 for more details on the difference between
mutual intelligibility and genetic relationship).

Due to a focus on the abilities of language users,
research on mutual intelligibility often involves ex-
perimental studies with different groups and num-
bers of participants. Experiments are diverse, usu-
ally consisting of certain comprehension tasks. Ex-
perimental studies show some general limitations,
in so far as uniform methods are rarely used (1),
finding participants with a minimum or no ex-
posure to the test language is difficult (2), and
comparing several languages simultaneously is a
time- and resource-consuming effort (3) (Gooskens
and Swarte, 2017; Tang and van Heuven, 2009).
Gooskens and Swarte (2017) present a large-scale
study on mutual intelligibility of five Germanic
languages using a Cloze Test, i.e. a written or au-
dibly presented text in the target language with
gaps that need to be filled in. However, they re-
port a substantial loss in the number of participants
when testing inherent intelligibility, the ability to
comprehend the target language with no or little
previous exposure (Gooskens and Swarte, 2017).
In an ideal setting with zero exposure to the tar-
get language, inherent intelligibility captures how
comprehensible the target language is based on
structural similarities only. This, in turn, would
offer insights into what linguistic structures give
rise to mutual intelligibility without extralinguistic
or other language exposure-based interference. In
reality, the goal of finding participants with no or
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a minimum of exposure to certain languages is an
almost impossible requirement to fulfill due to the
status of some languages of being a common lin-
gua franca (Gooskens and Swarte, 2017; Hongyan,
2017).

In this study we propose a computer-assisted
method couched in the discriminative lexicon
framework by Baayen et al. (2019) to assess mutual
intelligibility in Germanic languages. By focusing
on computational methods instead of human sub-
jects we can overcome the mentioned limitations.
Our proposed model does not involve the recruit-
ment of participants, there are no extralinguistic
factors nor target language exposure involved in
training. We offer a uniform method that can be
adapted to various language families and lead to
new insights into intelligibility based on a careful
selection of linguistic factors that are involved in
language comprehension.

2 Linear Discriminative Learning

With the discriminative lexicon framework (DL),
Baayen et al. (2019) propose a model of language
processing that explores the cognitive mapping
mechanisms involved in language learning. Lan-
guage comprehension is understood as a mapping
of phonological forms onto meaning (Baayen et al.,
2019). Mathematically, it is implemented as multi-
variate multiple regression in the Linear Discrimi-
native Learner (LDL) model. Given a phonological
matrix C and a semantic matrix S, the comprehen-
sion matrix F is obtained by post-multiplying C
with F : CF = S. The F matrix then specifies
the associaton weights between all phonological
cues and all semantic dimensions (Chuang et al.,
2023). Multiplying C with F finally predicts the
semantic vector Ŝ for all input word forms that
can be used for evaluating comprehension accuracy
of the model. Computationally, the LDL model
conceptualizes language comprehension as a sim-
ple artificial neural network directly connecting
phonological and semantic vectors without any
hidden layers (Nieder et al., 2023; Chuang et al.,
2023). In this study, we make use of LDL to ex-
plore the mutual comprehension of the Germanic
languages Dutch, German and English based on a
cross-language learning setting (see also Chuang
et al., 2018, for another multilingual approach us-
ing LDL). As phonological input we use cognate
sets from all languages. For the semantic matrix,
we opted for the multilingual ConceptNet Number-

batch word embeddings version 19.08 from Speer
et al. (2017) that offer the possibility to directly
compare the meaning of cognate concepts.

3 Materials and Methods

3.1 Dataset of German Cognates

We use cognate sets derived from Kluge’s etymo-
logical dictionary in a rather recent, updated edition
(Kluge, 2002). From the etymological dictionary
of German, we hand-selected 340 entries that had
reflexes in Dutch, German, and English with their
proto-forms in Proto-Germanic, added phonetic
transcriptions, and provided phonetic alignments
by annotating the data with the help of the EDIC-
TOR tool (List, 2023).

In order to ease data sharing and reuse, the
etymological dataset was shared in the formats
recommended by the Cross-Linguistic Data For-
mats initiative (Forkel et al., 2018) using the work-
flow developed for the construction of the Lex-
ibank repository (https://lexibank.clld.org,
List et al. 2022). This means in this specific
case that languages are linked to Glottolog (https:
//glottolog.org, Hammarström et al. 2023) and
that the individual speech sounds employed in
the phonetic transcription we provide follows the
Cross-Linguistic Transcription Systems (CLTS,
https://clts.clld.org, List et al. 2021). CLTS
is a reference catalog for speech sounds which pro-
vides a standard transcription system that defines a
subset of the International Phonetic Alphabet (IPA,
1999) as a standard (Anderson et al., 2018), which
has by now been mapped to several datasets provid-
ing phoneme inventory data (Anderson et al., 2023)
and also underlies most data in Lexibank.

3.2 Multilingual Semantic Vectors

For semantic vectors, we used the multilingual
ConceptNet Numberbatch word embeddings ver-
sion 19.08 from Speer et al. (2017). The Concept-
Net Numberbatch word embeddings did not pro-
vide any data for the Dutch word form beukeboom
‘beech’, thus we deleted the German and English
counterparts from the data resulting in a set of 339
cognates in total. To ensure that the embeddings
capture semantic similarites of the cognate dataset,
we computed the cosine similarity for each word
triplet across the languages. Figure 1 shows the
distribution of cosine similarity values between
language pairs. While the peaks for all language
pairs are located at around 0.9, indicating an overall
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Figure 1: Distribution of cosine similarity scores between language pairs for all cognate triplets. Note that smoothing
of the distribution results in values exceeding 1.0.

high semantic similarity of the word embeddings
for cognate triplets, some of the German-English
data and Dutch-English data is distributed over a
lower cosine similarity range (green and red curve).
This results in less concentrated peaks for these
language pairs. From this we can conclude that
German vs. Dutch cognates are semantically more
similar than German vs. English or Dutch vs. En-
glish cognates.

3.3 Multilingual Sound Classes

Scholars have proposed to test mutual intelligibility
by representing word forms in phonetic transcrip-
tions and measuring string similarity for words that
express the same meaning (Tang and van Heuven,
2007). This approach to intelligibility has, how-
ever, the disadvantage of not being able to test for
asymmetric forms of intelligibility by which speak-

English German
Word drink trinken
IPA d R I N k t R I N k @ n
IPA (trimmed) d R I N k t R I N K @
Sound Classes T R V N K T R V N K V N
Sound Cl. (trimmed) T R V N K T R V N K V

Table 1: Exemplary data representation for English and
German with full forms vs. trimmed forms and sound
class representations.

ers of one language can understand speakers of
another language more properly than vice versa.
For our model-based approach, we need a more
abstract – phonetically broader – representation
of speech sounds that allows us to capture broad
phonetic similarities in a multilingual setting. Tak-
ing inspiration from computational approaches in
historical linguistics, we decided to represent word
forms with sound class models. Sound classes have
been first introduced by Dolgopolsky (1986), who
proposed 9 broad classes by which all possible con-
sonants can be represented, searching for cognates
across distantly related languages. While this is a
really crude reduction of phonetic detail, Dolgopol-
sky sound classes have been shown to work very
well for comparative tasks (Turchin et al., 2010). In
our approach, we use Dolgopolsky’s original conso-
nant classes and represent vowels by an additional
symbol.

The fact that our original data are provided in
CLDF with standardized phonetic transcriptions
is a great advantage when it comes to the conver-
sion of phonetic strings to sound classes. Since
sound class conversion routines are readily avail-
able for phonetic transcriptions that conform to
the standard for IPA proposed in CLTS, converting
the cognate sets in German, Dutch, and English
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to sound classes requires very few preprocessing
operations.

3.4 Trimming Word Forms

We experiment with two different representations
of word forms, full forms and trimmed forms,
where we automatically exclude endings. Full
forms reflect the word forms as they are typically
encountered in dictionaries (with nominative case
for nouns in German and infinitive endings for
verbs). Bare stems are typically used in historical
language comparison in order to show how words
were historically related before they were modified
in the respective descendant languages by various
morphological processes. In order to obtain bare
stems from our cognate sets in German, English,
and Dutch, we make use of the recently introduced
technique for the trimming of phonetic alignments
(Blum and List, 2023). With this technique, those
sites (columns) in a multiple phonetic alignment
that show an exceeding amount of gaps (sounds
that do not have counterparts across all languages
in the sample) are excluded from the alignment. Al-
though not identical with manually prepared word
stem representations, we find that applying this
technique drastically reduces the amount of gaps
in the multiple alignments, while at the same time
successfully removing verb endings in our sample.
Table 1 displays the representation of our data with
full forms vs. bare stems sound class representa-
tion.

3.5 Linear Discriminative Learning Model

In a first step, we evaluated the LDL model on
the cognate data of each language separately. The
model is trained and tested on all 339 word forms.
Phonological input cues are 4-gram, 3-gram and 2-
gram chunks of sound classes, while multilingual
word embeddings are representing the semantic
vectors. In a second step, we train the model on
a single language, i.e. creating a naive speaker of
a language with zero exposure to other languages,
and subsequently test the model on the cognate
data from the target language. In doing so, we are
replicating the setting of psycholinguistic studies
but overcome the limitations of previous language
exposure to exclusively focus on the predictiveness
of historical sound classes as cues to mutual intelli-
gibility.

4-grams 3-grams 2-grams
German 0.99 0.93 0.51
Dutch 1.0 0.93 0.52
English 1.0 0.95 0.54

(a) Training data (full words)
4-grams 3-grams 2-grams

German 0.99 0.92 0.50
Dutch 1.0 0.89 0.48
English 1.0 0.99 0.57

(b) Training data (trimmed words)

Table 2: Comprehension accuracies on full (a) and
trimmed (b) training data. Top-1 candidate is taken
into account to compute accuracies.

3.6 Implementation

The experiments are implemented in the form of
Python and Julia scripts. For sound class conver-
sion, we used the LingPy Python package (List
and Forkel, 2023a). For the extraction of bare
word stems through trimming, the LingRex pack-
age was used (List and Forkel, 2023b). For the
implementation of the LDL models, the Linear
Discriminative Learner from the JudiLing pack-
age (an implementation of DL in the Julia pro-
gramming language) was used (Luo et al., 2021).
Data and code needed to replicate the experiments
from this study are curated on GitHub (https:
//github.com/digling/intelligibility) and
archived with Zenodo (https://doi.org/10.
5281/zenodo.10609356). Detailed instructions
on how to run the code are given in the repository.

4 Evaluation

4.1 Evaluation on Individual Languages

Table 2(a) displays the comprehension accuracies
on the training data for full word forms. For the
evaluation process only the predicted meaning, the
top-1 candidate, was considered. The evaluation
results suggest a good comprehension memory of
the model when Dolgopolsky sound classes are
provided as 4-gram or 3-gram chunks. If sound
classes are fed into the model as 2-gram chunks we
observe a substantial drop in accuracy, indicating a
reduced discriminative power to predict a semantic
vector Ŝ that is similar to the gold standard vector
S of the training language. Table 2(b) displays
the evaluation results after trimming word forms.
Comprehension accuracy remains high for 4-gram
and 3-gram chunks. Again, the accuracy drops
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Language Pair (a) Full Word Forms (b) Trimmed Word Forms
4-grams 3-grams 2-grams 4-grams 3-grams 2-grams

GER-DUT 0.57 (0.71) 0.51 (0.68) 0.28 (0.52) 0.81 (0.86) 0.75 (0.86) 0.39 (0.65)
DUT-GER 0.51 (0.67) 0.48 (0.61) 0.25 (0.48) 0.82 (0.83) 0.75 (0.83) 0.40 (0.67)
GER-ENG 0.68 (0.75) 0.62 (0.73) 0.29 (0.53) 0.79 (0.85) 0.75 (0.84) 0.33 (0.59)
ENG-GER 0.48 (0.59) 0.46 (0.55) 0.23 (0.45) 0.60 (0.66) 0.59 (0.64) 0.32 (0.53)
DUT-ENG 0.68 (0.75) 0.6313 (0.72) 0.31 (0.55) 0.77 (0.84) 0.71 (0.81) 0.30 (0.60)
ENG-DUT 0.53 (0.64) 0.50 (0.59) 0.29 (0.49) 0.60 (0.67) 0.59 (0.64) 0.35 (0.54)

Table 3: Comprehension accuracies of multilingual models for comprehension for (a) full word forms and (b)
trimmed word forms. Values without brackets indicate results when the top-1 candidate is considered to compute
accuracies, values in brackets indidcate results when top-5 candidates are considered.

substantially when 2-gram chunks are taken into
account.

4.2 Evaluation Across Languages

Table 3(a) illustrates the result of the multilingual
models for full word forms. The first column con-
tains the training-test language pairs. Values with-
out brackets indicate accuracies when the top-1
candidate was taken into account for evaluation,
values in brackets indicate accuracies when the
correct meaning among top-5 candidates was con-
sidered. Allowing the model to evaluate compre-
hension accuracy based on a set of top-5 candidates
accounts for possible confusion of the target word
form with similar word forms, giving the model
room for multiple answers. The cross-linguistic
comprehension results in Table 3(a) unsurprisingly
replicate the chunk size effect we have seen in
our training models, with 4-gram chunks providing
the best comprehension results. We observe the
best comprehension results for the language pair
Dutch-English with an accuracy of 68% (75% for
an evaluation on top-5 candidates), followed by
German-English and German-Dutch. The worst
comprehension results are given for a training on
English and a test on German cognates (see row
4 of Table 3(a)). Gooskens and Swarte (2017) re-
port a similar result for human participants, indi-
cating that our LDL models show a human-like
performance when assessing comprehension abili-
ties across languages.

Table 3(b) displays the comprehension accura-
cies after applying the trimming procedure. Trim-
ming phonetic alignments results in a substantial
rise of prediction accuracies with Dutch-German,
German-Dutch and German-English providing the
best comprehension results. Again, the language
pair English-German shows the lowest comprehen-

sion accuracy, similar to human results (Gooskens
and Swarte, 2017).

5 Discussion and Conclusion

In this study we presented a computer-assisted
method to mutual intelligibility based on a model
that captures the cognitive processes by which hu-
mans comprehend languages. We expanded the
model with multilingual semantic vectors and mul-
tilingual sound classes. Our multilingual sound
classes were predictive when a combination of at
least 3 sound classes is given, indicating that know-
ing the order of sound classes allows the model
to comprehend languages from the same language
family. However, we observe an effect of the train-
ing language, with English being the least advan-
tageous language in our setting and in the data of
Gooskens and Swarte (2017) with human partic-
ipants. We report a higher accuracy for German-
English than German-Dutch, again in line with the
human data of Gooskens and Swarte (2017). If
sound classes are trimmed, we find the opposite
effect. The pair Dutch-English shows better com-
prehension accuracies than Dutch-German, again
with the opposite picture for the trimmed version.
From a language learning perspective, the change
of direction, i.e. the better prediction for German-
Dutch and Dutch-German after trimming would
imply a certain morphological knowledge of speak-
ers. Speakers of German or Dutch knowing verb
endings and ignoring them purposefully have an
advantage in comprehending English. Our pro-
posed model does not only offer a new method
for automatic testing of mutual intelligibility but
shows clear similarities to data obtained from hu-
man participants, making it a useful cognitive tool
for research on language comprehension.
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Supplementary Material

All data and code needed to replicate the
experiments discussed in this study are cu-
rated on GitHub (https://github.com/
digling/intelligibility) and archived
with Zenodo (https://doi.org/10.5281/
zenodo.10609356). The German cognate
dataset is also curated on GitHub (https:
//github.com/lexibank/germancognates) and
archived with Zenodo (https://doi.org/10.
5281/zenodo.10609476).

Limitations

While our model offers some fruitful results for
further investigation of mutual intelligibility, the
dataset we provided contains a limited amount of
carefully selected historical cognates. It remains
to be seen how the model would deal with a much
larger set of random words. Moreover, we cannot
account for other language families or other lan-
guages than German, Dutch and English. However,
we see our modeling procedure as a starting point
for assessing mutual intelligibility computationally.
For that reason, limiting our data to historical cog-
nates and three languages only is a necessary step.
For a complete picture, more languages from the
Germanic language family need to be tested and the
results need to be compared with comprehension
results for other language families.
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Predicting Mandarin and Cantonese Adult Speakers’ Eye-Movement Patterns in Natural Reading 
Understanding how language knowledge is processed and integrated incrementally has been an 

important question in language science. The reading of Chinese languages provides an interesting 
environment for investigating such inquires as its morphosyntactic nature and writing systems require a 
greater reliance on the lexical context during comprehension (Chen et al., 1992; Jian et al., 2013; Hsu et 
al., 2023), even in the initial stage of processing (Zhao et al., 2019). Chinese languages encompass 
varieties in written forms with nuanced visual complexity of words and morpho-syntactic structures. For 
example, Mandarin and Cantonese differ not only in their grammars and lexicon, but also in their writing 
systems among different Chinese speaking regions. For instance, Mandarin in Mainland China uses 
simplified Chinese characters in writing whereas Cantonese in Hong Kong uses traditional Chinese 
characters. This distinction raises the question of whether the visual complexity of characters influences 
the processing of characters, despite representing the same meanings (e.g., 书 ‘book’ and 書 ‘book’). 
Moreover, simplified characters tend to be more ambiguous than traditional characters, as the former 
often associates multiple meanings with one character (e.g., 后 means either ‘the back’ or ‘the queen’), 
while the traditional characters have more one-to-one correspondence between character and meaning 
(e.g., 后 means ‘queen’ and 後 means ‘back’). Therefore, the contextual influence and predictability of 
words may differ between writing systems using simplified and traditional characters, in addition to 
understanding whether each character co-occurs with other characters to form either a word or a phrase. 
By comparing the processing of Chinese languages, we can gain profound insights into understanding 
linguistic variations as well as the integration of multilevel linguistic processing.  

Eye movement data offer valuable insights into the cognitive processes involved in reading, 
shedding light on how language is processed across various aspects, such as morphology (Clifton Jr et al., 
2007), syntax (Van Schijndel and Schuler, 2015), and semantics (Ehrlich and Rayner, 1981). Many 
studies have shown that certain characteristics of words can impact language processing, and reading 
behavior. These features include word position, word length, word frequency, and the number of syllables 
within the word (Just and Carpenter, 1980). Furthermore, the spillover effect (Rayner et al., 1989) 
suggests that the cognitive load imposed by a word can affect the processing of subsequent words 
(Pollatsek et al., 2008). Another important factor that impacts language comprehension is the 
predictability of a word at the sentence level, based on the preceding context (Kliegl et al., 2004). By 
measuring and examining eyemovement data, we can gain insights into how these factors influence the 
cognitive processes during language comprehension. 

Therefore, the aim of the current study is twofold. First, adopting a computational approach, and 
using matched materials read by mature adult native speakers, we introduce a joint benchmark of eye-
tracking data that capture natural reading patterns of reading Mainland Mandarin and Hong Kong 
Cantonese texts. An example fixation heatmap of the two languages is shown in Fig. 1. 

 
Fig. 1. A fixation heatmap of Mandarin and Cantonese sentences.  

This dataset doubles the size of the dataset introduced in Li et al. (2023) and includes several new eye-
movement metrics that capture initial lexical processing and later integrated structural processing (e.g., 
skipping, saccadic landing position, regression out), in addition to the commonly studied measures in eye-
movement prediction studies (i.e., first fixation duration, and total reading time). Second, using this 
dataset, we examine the efficacy and interpretability of recent large language models in predicting early 
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and late eye-movement metrics during reading Mandarin and Cantonese texts. Fig. 2 shows an example 
that visualizes the distribution of predicted and ground-truth fixations over a Cantonese sentence (left) 
and its corresponding Mandarin sentence (right). 

  
Fig. 2. Distribution of predicted (pred) and ground-true (true) fixations over target sentences. Note: FFD 

refers to first fixation duration, SFD refers to second fixation duration, TFD refers to total fixation duration. 
Moreover, it has been shown that language models can be used to generate features capturing human-like 
behavior in terms of eye-tracking metrics, e.g., surprisal (Hale, 2001; Levy, 2008; Fossum and Levy, 
2012; Hao et al., 2020) and token embeddings (Schrimpf et al., 2020; Hollenstein et al., 2021). Therefore, 
we also focus on whether and to what extent the features generated by language models help to predict 
various levels of cognitive processing during language comprehension. We conduct a comprehensive 
evaluation on the prediction of eye-tracking metrics using regression analysis. First, we target at a 
comparison of features’ predictive power on Mandarin and Cantonese reading patterns. Second, we 
extend the examination to types of language models, specifically, on mono-lingual language model and 
multilingual language model. For each language, we use both incremental, autoregressive and masked 
language models, from which we extract features such as token embeddings and surprisals, and we 
combine them with lexical, orthographic, and syntactic features. In addition to monolingual, pre-trained 
language models for Chinese (Zhao et al., 2019), we also test multilingual models that have been trained 
simultaneously for Mandarin and Cantonese (Yang et al., 2022). 

Our study presents some highlights on how to account for multilinguality by language models and 
how they facilitate in-depth investigation of closely related languages in comprehension. Specifically, 
Mandarin and Cantonese exhibit different advantages in terms of the cognitive effort on word-visual 
processing (for Mandarin) and sentence contextual processing (for Cantonese). Results of our study will 
further inform the performance of different types of language models and metrics’ usefulness in 
predicting eye-movement patterns in reading Mandarin and Cantonese texts. 
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Abstract

Ellipsis constructions are challenging for State-
of-the-art (SotA) Natural Language Process-
ing (NLP) technologies. Although theoretically
well-documented and understood, there needs
to be more sufficient cross-linguistic language
resources to document, study, and ultimately
engineer NLP solutions that can adequately pro-
vide analyses for ellipsis constructions. This
article describes the typological data set on el-
lipsis that we created for currently seventeen
languages. We demonstrate how SotA parsers
based on a variety of syntactic frameworks fail
to parse sentences with ellipsis, and in fact,
probabilistic, neural, and Large Language Mod-
els (LLM) do so, too. We discuss experiments
that focus on detecting sentences with ellipsis,
predicting the position of elided elements, and
predicting elided surface forms in the appro-
priate positions. We show that cross-linguistic
variation of ellipsis-related phenomena has dif-
ferent consequences for the architecture of NLP
systems.

1 Introduction

Ellipsis is a linguistic phenomenon that results in
the omission of words in sentences that are usually
obligatory in a given syntactic context and that the
speaker and hearer can understand and reconstruct
without effort. Simple noun phrase (NP) or For-
ward Conjunct Reduction (FCR), as in example (1),
is common cross-linguistically.

(1) a. My sister lives in Utrecht and ___
works in Amsterdam.

b. My sister lives in Utrecht and she/my
sister works in Amsterdam.

The possibility to elide phrases or words in coor-
dinated constructions has universal and language-
specific aspects to it. Common FCR is possible in
all languages we are aware of. It is not only pos-
sible but the preferred form of presentation in text

or spoken language whenever coordination occurs.
If ellipsis can be applied in unmarked cases, it is
applied. The form in (1b) without ellipsis might be
perceived as emphatic or, in a pragmatic or seman-
tic sense, as specific, in contrast to the unmarked
default in example (1a).

Other variants of ellipsis include so-called gap-
ping, as in (2a) where the verb complex is reading
is elided. In example (2b), a case of VP-Ellipsis,
the entire predicate or Verb Phrase (VP) is elided.

(2) a. Peter is reading a book and Mary ___
a newspaper.

b. She will hi-five Daniel, but I won’t ___

Such ellipsis phenomena are context-
independent and intra-sentential because no
context outside of the sentence boundaries is
necessary to license the ellipsis.

Context-dependent forms of ellipsis can be
found in responses to questions, as in example (3).
In the response (3b), the words each candidate will
talk are elided.

(3) a. Will each candidate talk about taxes?

b. No, ___ about foreign policy.

While English exhibits limited examples with
lexical mismatches of elided word forms, as in ex-
ample (4a), highly inflecting languages like Hindi
or Croatian (4b) show that the elided words do
not have to be homophonous. The words in round
brackets in (4) are preferably elided in unmarked
contexts.

(4) a. John reads a book, but Paul and Mary
(read) a newspaper.

b. Ivan je čitao knjigu a Marija i Petar
(su čitali) novine.
I. be read book but M. and P. be read
newspaper
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Elided elements can also be scattered over mul-
tiple positions in a clause, as in example (5), where
the words will, greet, and first are elided in the
respective slots in the second conjunct.

(5) Will Jimmy greet Jill first, or ___ Jill ___
Jimmy ___ ?

As discussed in Testa et al. (2023) and Hardt
(2023), ellipsis constructions are very common and
often accompanied by specific semantic effects.
While various quantifier scope effects1 can be ob-
served in ellipsis constructions, Common semantic
issues involve so-called zeugma (Sennet, 2016) ef-
fects as in example (6).

(6) a. John stole a book and Peter stole kisses
from Mary.

b. John stole a book and Peter ___ kisses
from Mary.

The second conjunct in example (6a) includes
an idiomatic predicate causing semantic devia-
tion without significantly impacting grammaticality
judgments.

We observed that NLP pipelines fail to provide
appropriate syntactic structures for such sentences
in downstream tasks and for common information
extraction from business reports or medical docu-
ments. Using ellipsis constructions from our cor-
pus, we tested the most recent versions of Stanza
(Qi et al., 2020), spaCy (Honnibal and Johnson,
2015), Benepar (Kitaev and Klein, 2018; Kitaev
et al., 2019), and the Xerox Linguistic Environment
(XLE) (Crouch et al., 2011). None of the parse
trees based on the different grammar formalisms
were adequate in our evaluation. Our team of syn-
tacticians judged the adequacy of parse trees. This
is true for SotA Dependency parsers, neural Con-
stituency parsers, as well as for rule-based systems
like the XLE-based Lexical-functional Grammar
(LFG) parser using the English, German, or Polish
grammar. LLMs are as challenged with such con-
structions as these rule-based, statistical, or neural
syntactic parsers.

Figure 1 shows an example in which the overt
subject of the first conjunct is labeled as the sub-
ject. The same element is the syntactic subject
and semantic object of the second conjunct. These
functional relations are missing in the Dependency

1A discussion of semantic changes caused by quantifier
scope effects in ellipsis constructions would go beyond the
scope of this article.

tree and cannot be easily resolved in a generic way
for any kind of ellipsis construction with multiple
conjoined clauses. While this parse tree might be
argued to result from the Dependency Grammar
framework as such, all parse trees that we have
analyzed were definitely useless for subsequent
information retrieval or semantic analysis that de-
pend on sentential functional relations of clausal
constituents, as for example, the arguments subject
and object of the main predicate in the clause.

Figure 1: Stanza Dependency Tree.

Additional errors emerge when looking at simple
gapping constructions as in Figure 2. While in most
cases, the parser would generate a hypothesis that
indicates that bicycle and Mary are coordinated, in
this case, the parser coordinates the verb of the first
conjunct and the object noun, declaring Mary to be
the subject of the nominal object truck.

Figure 2: Stanza Dependency Tree.

This does not improve when looking at con-
stituency parser outputs, as in Figure 3. The con-
stituency parser assumes the coordination to be lo-
cal, rather than clausal, that is, a bicycle and Mary
is analyzed as the object of buying, and the Noun
Phrase a truck appears to be an orphaned object of
the same predicate, too.

Figure 3: Stanza Constituency tree

For a simple gapping construction XLE using
the English grammar generates a C-structure as in
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Figure 4 corresponding to the constituency parse
tree in Figure 3.

Figure 4: XLE English C-structure

In LFG the F(functional) structure represents
morphosyntactic features of c-structure phrases
and lexical elements, as well as grammatical func-
tions like subject and object. The corresponding
F-structure in Figure 5 provided by XLE shows that
the coordination is wrongly assumed to be local,
implying that John engaged in reading a book and
Mary.

Figure 5: XLE English F-structure

These examples are not rare mistakes that these
parsers make in constructions with ellipsis. These
are the typical mistakes that we observe in the vast
majority of ellipsis constructions.

The following data and corpus creation and ex-
periments were motivated by the fact that document
types like business reports, medical or technical
documentation, as well as social media content,
chat, or spoken language discourse, contain a large
number of sentences with ellipses. Given that com-
mon SotA NLP pipelines fail to provide adequate
syntactic representations as tree structures, higher-

level processing of discourse and semantic proper-
ties is not possible using their output.

Our motivation to create larger data sets for a
larger group of languages was not only driven by
this fact but also by a lack of a comparative typolog-
ical description of ellipses in different languages
and across different language groups.

As the example in (4) shows, morphologically
rich languages allow lexically matching words to be
elided, although the morpho-phonological surface
form does not match. This does not seem to be a
challenge for native speakers of these languages.
However, it is a significant computational challenge
to identify the correct morpho-phonological forms
that were subject to ellipsis.

Scattered ellipsis, as in example (5), does not ap-
pear to be cognitively challenging, either; however,
from a Machine Learning (ML) and NLP perspec-
tive, we expect to see significant errors and issues
in identifying the ellipsis slots and guessing the
elided words.

Other typologically interesting aspects of ellip-
sis and cross-linguistic comparisons are related to
the unmarked underlying word order. While VP-
ellipsis might manifest itself in different ways in
SVO languages, it might result in very different
surface phenomena in SOV languages like Hindi
or German. In the German example (7) the VP
containing the direct object and main verb (Mutter
helfen) can be elided in the first conjunct.

(7) Karl soll seiner (Mutter helfen) und Maria
soll ihrer Mutter helfen.

While we have a good understanding of VP-
ellipsis in English, it must be made clear whether
an elided verb in a transitive predicate construction
in Hindi is similar to gapping or, rather, the result
of partial VP-ellipsis.

There are numerous research questions that we
try to address. On the one hand, syntax internal
constraints license sentence-internal ellipsis. In
gapping constructions, the gapped verb is not nec-
essarily licensed by discourse conditions and pre-
viously mentioned context. On the other hand, the
ellipsis of discourse-introduced and -linked words
and phrases cannot be assumed to be restricted
by purely syntactic constraints. At the same time,
complex gapping constructions seem to indicate
that ellipsis is not restricted by syntactic phrase
boundaries, but rather licensed by phonological
correspondence of word sequences. As example 8
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shows, the repeated word sequence can be elided,
ignoring syntactic phrase structure boundaries.

(8) Jimmy was always dreaming about going
to Paris, and Mary ___ to Tokyo?

One interpretation of 8, the default one, im-
plies that Mary was always dreaming about go-
ing to Tokyo. The elided sequence of words, in
this case, does not match with clear-cut syntactic
phrase boundaries.

The corpus and research presented in this arti-
cle are part of the Hoosier Ellipsis Corpus (HEC)
project at the NLP-Lab. The goal of the HEC
Project is to provide a resource for qualitative and
quantitative typological studies of ellipsis over dif-
ferent language types and groups, as well as to pro-
vide corpora for the evaluation and development of
NLP pipelines that can generate semantically more
adequate syntactic structures for ellipsis construc-
tions.

1.1 Previous Work

There is a rich body of literature covering ellip-
sis in linguistics, as summarized in the Handbook
of Ellipsis (van Craenenbroeck and Temmerman,
2018). Summarizing the data discussed and the
different theoretical approaches presented in these
articles would go beyond the scope of this article.
In the following, we focus on the most recent com-
putational approaches and descriptions of ellipsis
corpora.

Testa et al. (2023) built a dataset of elliptical
constructions, ELLie, and evaluated GPT-2 (Rad-
ford et al., 2019) and BERT (Devlin et al., 2018),
two Transformer-based language models, on their
ability to retrieve the omitted verb in elliptical con-
structions that demonstrate the impact of proto-
typicality and semantic compatibility between the
missing element and its arguments. They found
that while the performances of the two language
models were influenced by the semantic compati-
bility of an elided element and its argument, these
models had an overall limited mastery of elliptical
constructions.

Anand et al. (2021) built the Santa Cruz sluic-
ing dataset. In sluicing constructions as in (9) the
elided word list (John/he can play) is preceded by
an interrogative pronoun (what).

(9) John can play something, but I don’t know
what (he can play).

They compiled a corpus of 4,700 instances of
sluicing in English, with each instance represented
as a short text and annotated for syntactic, seman-
tic, and pragmatic attributes. Most of the data they
used comes from the New York Times subcorpus
of the English Gigaword corpus. The data set was
created by identifying all verb phrases whose final
child was a wh-phrase and then manually culling
false positives. Each of the instances is marked
with five tags, namely, the antecedent, the wh-
remnant, the omitted content, the primary predicate
of the antecedent clause, and the correlate of the
wh-remnant, if available.

Motivated by the assumption that noun ellipsis
is more frequent in conversational settings, Khullar
et al. (2020) compiled NoEl (An Annotated Corpus
for Noun Ellipsis in English), where they anno-
tated the first 100 movies of the Cornell Movie
Dialogs dataset for noun ellipsis. Their annotation
process involved using the Brat annotation tool
to mark ellipsis remnants and their antecedents in
the dataset. The dataset was manually annotated
by three linguists, and an inter-annotator agree-
ment was measured using Fleiss’s Kappa coeffi-
cient, which indicated a high level of agreement
among annotators. Their results show that a total
of 946 cases of noun ellipsis existed in their corpus,
corresponding to a rate of 14.08 per 10,000 tokens.
The models they used included Naive Bayes, Liner
and RBF SVMs, Nearest Neighbors, and Random
Forest. They achieved an F1 score of 0.73 in de-
tecting noun ellipsis using linear SVM and 0.74 in
noun ellipsis resolution using Random Forest.

Droganova et al. (2018a,b) first created tree-
banks containing elliptical constructions for En-
glish, Czech, and Finnish, using the Universal De-
pendencies (UD) (Nivre et al., 2016) annotation
standard by artificially introducing ellipsis to the
sentences. They evaluated several parsers in or-
der to identify typical errors these parsers generate
when dealing with elliptical constructions. Note
that UD v2 used the orphan relation to attach the
orphaned arguments to the position of the omit-
ted element. The authors found that the F1-scores
of most parsers were below 30%. This highlights
how difficult it is for dependency parsers to identify
elliptical constructions and warrants data enrich-
ment for ellipsis resolution to improve dependency
parsers’ performances.

Liu et al. (2016) investigated Verb Phrase El-
lipsis (VPE) and conducted three tasks on two
datasets. The first dataset consists of the Wall Street
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Journal (WSJ) section of the Penn Treenbank with
VPE annotation (Bos and Spenader, 2011), and the
second dataset was compiled from the sections of
the British National Corpus annotated by Nielsen
(2005) and converted by Liu et al. (2016) to the
format used by Bos and Spenader (2011). The
first task consisted of identifying the position of
the element, called target, that is used to represent
the elided verb phrase, called the antecedent. This
first task only treats cases in which such a target is
overtly present in the case of VPE, but this is not
always the case, as shown in example 2b. The sec-
ond and third tasks consisted of correctly linking
the target to its antecedent and identifying the ex-
act boundaries of the antecedent. Liu et al. (2016)
found that the second and third tasks yielded better
results when they were treated separately using two
different learning paradigms rather than when they
were treated jointly. They also found that a logistic
regression classification model worked better for
the first and third task, but that a ranking-based
model yielded better results for the second task.

McShane and Babkin (2016) developed ViPER
(VP Ellipsis Resolver), which is a system that uses
linguistic principles, and more specifically syntac-
tic features, to detect and resolve VP ellipsis. This
system is knowledge-based and does not use empir-
ical data for training. It is not intended to solve all
cases of VP-ellipsis, and instead, it first detects the
cases of VP ellipsis that are simple enough for the
system to treat and then uses string-based resolu-
tion strategies. The system identifies the best string
to fill and replace the elliptical gap (sponsor). The
system, evaluated against a GOLD standard dataset
generated by the authors, had correctly resolved
61% of the VP ellipsis constructions it identified as
simple enough to treat from the Gigaword corpus.

1.2 Summary

The previous work described above was mainly
focusing on isolated ellipsis types or specific lan-
guages. Our goal was to build on the previous
work and expand the data set to more languages
and language types, and to broaden the ellipses
types documented and studied to the full known set
of constructions.

2 The Hoosier Ellipsis Corpus

The Hoosier Ellipsis Corpus V 0.1 consists of data
from seventeen languages. Among those languages
are low-resourced languages like Navajo, a lan-

guage of the Athabaskan branch of the Na-Dené
language family, and Kumaoni, an Indo-Aryan lan-
guage spoken in northern India and parts of western
Nepal, as well as common Slavic languages (Rus-
sian, Ukrainian, Polish), Germanic languages (En-
glish, German, Swedish), as well as Hindi, Arabic,
Japanese, and Korean.

The corpus includes the following ellipsis types:
VP-ellipsis, Sluicing, Gapping, Stripping, For-
ward (FCR), and Backward Coordinate Reduction
(BCR).

The collected data set consists of sentence pairs
and possible contexts that precede or follow the
target sentence in a text or discourse. The exam-
ples in the corpus are collected from linguistic and
typological literature. Example sentences from low-
resourced languages were collected and validated
by native speakers.

We selected a simple Unicode text-based format
to encode the data using separator lines and line
prefixes to indicate the data entry type. In the en-
coded data files, the target sentence with an ellipsis
is followed by a line of 4 dashes. Within the ellip-
sis target structure, three underscores indicate each
canonical position of the elided word sequence.
Complex ellipsis constructions can contain numer-
ous elided slots. The pair of sentences with ellipses
and the full form are optionally accompanied by
meta information indicated by lines that start with
the hash symbol. In the meta-information lines we
provide the opportunity to translate the sentence,
to provide the original source of the example from
publications, and to specify who contributed this
example to the data collection. Each example sen-
tence in the data file is followed by at least one
empty line. Figure 6 shows a sample entry with the
core elements.

Wird sie kommen oder ___ er gehen?
----
Wird sie kommen oder wird er gehen?
# TR eng: Will she come or will he go?
# added by: John Smith
# source: Wolfgang Klein (1981)
# Some Rules of Regular ...

Figure 6: Example entry in the Ellipsis Corpus.

This annotation format allows us to indicate and
study the distribution of elided elements in the
clause. It also provides the ’understood’ or ’im-
plied’ sequence of words as understood by human
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native speakers. From a computational perspective,
this format allows us to train models that detect
the positions of elided elements in sentences. We
can also train models that generate the elided word
forms. We can use the data set to evaluate existing
models and, in particular, LLMs, as discussed in
the following section.

The format allows us to convert most of the el-
lipsis and full-form pairs into the UD 2 format for
encoding ellipsis.2 At the same time, tree structures
based on the different grammar formalisms can be
encoded as bracketed-notation strings, triple sets
for dependencies, or c- and f-structure strings in
the meta-information section of each example.

The Ellipsis Corpus is continuously expanded.
Many languages in the corpus are expanded us-
ing examples from peer-reviewed publications and
theoretical or documentary linguistics publications.
For low-resourced languages, we rely on contribu-
tions from native speakers and their speaker com-
munities. While some of the languages are as of
writing this article under-represented, we describe
the following experiments and results for a couple
of languages that we collected sufficient data on for
training models and evaluating their performance,
or testing the performance of pre-trained LLMs.

3 NLP Experiments: Methods & Results

We designed three main experimental settings to
test the capabilities of current SotA NLP technolo-
gies. The tasks are described as follows:

1. Detection of ellipsis in sentences as a general
binary classification task.

2. Identification of the positions of elided words
or phrases in sentences with ellipsis.

3. Prediction of the correct surface form
(morpho-phonological shape) of elided words
in sentences with ellipsis.

These tasks we compare across three different
NLP-approaches:

1. Logistic Regression classifier

2. Transformer-based classifier and labeler

3. Large Language Models

2See for details https://universaldependencies.
org/u/overview/specific-syntax.html.

We assume that the Logistic Regression ap-
proach represents a baseline for the binary classifi-
cation task but that it is less useful for guessing the
positions of elided words or generating the elided
word forms.

While we expected transformer-based models
to perform well as classifiers, we also expected
that they would be less efficient for guessing the
position of elided elements.

We expected current SotA LLMs to be most
successful in all three tasks, in particular when it
comes to the generation of the elided word forms
since this is the natural task for Generative AI mod-
els.

3.1 Dataset

Using our manually compiled Ellipsis Corpus, we
constructed three datasets. For English, we ex-
panded the data with the ELLie corpus Testa et al.
(2023). We added some corrections and modifica-
tions to the ELLie corpus since some native speak-
ers complained about the naturalness of some sen-
tences. We also used sluicing examples from the
Santa Cruz Sluicing dataset (Anand et al., 2018).

The first dataset was aimed at a simple binary
classification task to detect and label sentences with
1 if they contain ellipsis and with 0 if not. The bi-
nary classification datasets were monolingual and
a balanced mixture of target sentences and distrac-
tors. We generated a 10-fold randomized rotation
of the examples to minimize any kind of sequenc-
ing effect when training classifiers or

Our corpus comprises pairs of examples show-
casing ellipsis constructions, which specify both
the location of the omitted element and the full
form.

At this early stage of the Ellipsis Corpus, the lan-
guages that were represented with sufficient data
were English, Russian, Arabic, and Spanish. The
experiments described in the following thus focus
on these languages. We limit our description here
to English and Arabic, since the format and re-
sults are equivalent to the settings for the other
languages.

3.1.1 English Data

For English, we used 575 examples from ELLie
and 559 examples from our manually compiled En-
glish Ellipsis Sub-Corpus. Combining each of the
datasets with 658 distractor sentences, we gener-
ated a ten-fold randomized rotation of sentences.
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For Task 1, the classification of ellipsis, we gen-
erated sentence and label tuples using the label 1
for ellipsis and 0 for no ellipsis.

For Task 2, we generated pairs of ellipsis and
full-form sentences, leaving the underscore indi-
cators in the ellipsis example sentence to be able
to train labeling algorithms that predict the ellipsis
position or to evaluate predicted ellipsis positions
directly.

3.1.2 Arabic Data
For the experiments on Modern Standard Arabic,
we selected 375 target structures that contain el-
lipses from the manually compiled Arabic Ellipsis
Sub-Corpus and combined those sentences with
500 distractor sentences. The distractor sentences
were a random selection of examples without el-
lipses, as well as the full-form sentences from the
ellipses corpus. To the best of our knowledge, there
is no other such corpus of Ellipsis in Arabic. The
Arabic Ellipsis Sub-Corpus covers various types
of syntactic ellipsis (e.g., NP ellipsis, VP-ellipsis,
gapping, fragment answers, forward and backward
coordinate reduction, and sluicing as in example
10).

(10) ?___
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[We have to stop this crisis but how___?]

3.2 Task 1: Binary Sentence Classification
The goal of task 1 was to evaluate the performance
of baseline approaches with transformer models
and LLMs. As the baseline approach, we speci-
fied a simple Logistic Regression (LR) model that
uses a sentence vectorization approach based on ten
simple cues using linguistic intuition. For the gen-
eration of cue vectors for each sentence, we used
the spaCy3 NLP pipeline with the part-of-speech
tagger and Dependency parser. The classification
vectors for each English sentence were generated
using the following information:

the number of nouns
the number of subject dependency labels
the number of object dependency labels
the number of conjunctions
the number of do so
a boolean whether a wh-word is sentence-final
the number of verbs
the number of auxiliaries
the number of acomp Dependency labels
the number of tokens too

3See https://spacy.io/ for more details.

We trained a binary LR classifier using these ten-
dimensional vectors. The goal was not to optimize
the classifier and achieve the best possible result
but to develop a simple baseline classifier using
just a few linguistic cues for ellipsis constructions.

The transformer-based classifier is based on
BERT for English and the language-specific coun-
terparts for the other languages.

3.3 Task 2: Locate of Ellipsis

In this task, we evaluate Language Models and spe-
cific transformer models with respect to their abil-
ity to predict the precise location of elided words.
The complexity in this task varies from one elided
word, multiple elided words as in example (8), and
scattered multi-slot ellipsis as in example (5).

The data set for this task consists of sentence
pairs. One sentence contains the indicators (3 un-
derscores) for the ellipsis positions, while the other
one does not contain such indications and is used
for testing the models. The models are trained and
tested only using examples that contain ellipses.

Ten-fold random rotations of examples are tested
on BERT-based sequence labeling and GPT-4.

For GPT-4 we used a prompt with a rich context:
"Annotate the following sentence by placing ___
in the position of each ellipsis. Ellipses indicate
gapping, pseudogapping, stripping, and sluicing. If
there are no ellipses, answer with only the original
sentence."

We have not run few-shot experiments for task 2
yet. but will report on those in the near future.

3.4 Task 3: Generate Elided Words

In this task, we evaluate LLMs for their ability to
generate the elided word in the correct positions.
The data set consists of sentence pairs. One of the
sentences contains ellipsis and the other is the "full-
form" of the same sentence with the elided words
spelled out. Only examples with ellipses were used
for training and testing the models.

For the GPT-4-based evaluation, we used a
prompt with a rich context: "Insert any missing
words implied by ellipses. Ellipses indicate gap-
ping, pseudogapping, stripping, and sluicing. An-
swer with only the new sentence. If there are no
ellipses, answer with only the original sentence."

As for task 2, we have not performed few-shot
experiments for task 3 yet, leaving these experi-
ments for future work.
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4 Results

In the zero-shot GPT-4 setting, we used the context
"You are a linguistic expert." The prompt "Classify
the following sentence as containing ellipsis or not
and return a 1 for a sentence with ellipsis and a 0
for a sentence without ellipsis" was preceding each
sentence.

We tested various LLMs, including GPT-4, GPT-
3.5, Falcon, Llama, Zephyr. We decided to focus on
GPT-4 only, since none of the other LLMs turned
out to be useful in any of the three tasks, given accu-
racies below 0.5. For task 1 for English the results
are given in table 1. The results for languages like
Arabic, Russian, or Spanish vary insignificantly.

model accuracy
LR 0.74
BERT 0.94
GPT-4 zero-shot 0.72

Table 1: Task 1 Binary Classifier

It is surprising that the GPT-4 zero-shot classi-
fication is worse than the LR-baseline, and signifi-
cantly worse than the BERT-based classifier. The
precise scores from the zero-shot GPT-4 experi-
ment show a Recall of 0.599, a Precision of 0.756,
and an F1 Score of 0.668.

In task 1, the zero-shot GPT-4 experiment
achieved using the Arabic data resulted in a sur-
prising accuracy of 0.87.

In the default setting, the output from GPT-4 is
not discrete for a given example sentence. With
the temperature set to the default 0.7 when request-
ing a label for a sentence in task 1, 2 of 10 re-
sponses were the opposite label. When we reduce
the temperature to 0, there are no mismatches; the
judgments were deterministic. However, with the
temperature set to 0, the accuracy was 70%. With
the temperature set to 0.7, the accuracy was 75%.

In task 2, we tested an initial BERT-based ellip-
sis position guesser and achieved first test accuracy
of 0.7. The GPT-4-based experiments on task 2
were challenging. The prompt engineering for the
zero-shot experiment resulted in an accuracy of
only 0.15 for the English data.

For task 3, we exclusively focused on the eval-
uation of GPT-4. In this task, using the zero-shot
strategy, we achieved an accuracy of 0.25 with
GPT-4.

5 Conclusion

Ellipsis constructions are obviously still challeng-
ing for all the common SotA NLP pipelines, includ-
ing rule-based systems like the LFG-based XLE.
Use of Dependency or Constituency parse trees, or
even LFG c- and f-structures for syntactic and se-
mantic processing of real-world data from different
genres or registers is limited due to the fact that
ellipsis is a common and widespread phenomenon
in all languages.

The problem can be partially linked to grammar
frameworks like Dependency Grammar or LFG,
which do not necessarily foresee opaque linguis-
tic elements (e.g., elided words or phrases) to be
active rule elements modeled in grammar rules or
descriptive formal annotation frameworks. While
UD provides the instruments for annotating or han-
dling ellipses, those instruments need to be more
extensive to describe the different intra- and cross-
linguistic ellipses types. We also suspect that pars-
ing algorithms and the training of parsers need to
include such opaque elements and potentially new
learning strategies.

The fact that specific models trained on the pre-
diction of ellipses in sentences outperform LLMs
seems to indicate that the lack of explicit data and
pure self-supervised machine learning is not suffi-
cient to handle opaque elements in language, either.
Training LLMs on purely overt data ignores signif-
icant properties of language. Ellipsis phenomena
are grammatical and systematic, and it seems prob-
lematic for current LLMs to guess covert continua-
tions.

Given that there is too little data on ellipsis in
general, and none at all for most languages, it
seems necessary to continue our Ellipsis Corpus
project and provide not only sufficient data for the
different languages, but also a good typological
overview of the different manifestations of ellipsis
phenomena in different languages and language
groups.
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Abstract

LAJaR (Language Atlas of Japanese and
Ryukyuan) is a linguistic typology database
focusing on micro-variation of the Japonic lan-
guages. This paper aims to report the design
and progress of this ongoing database project.
Finally, we also show a case study utilizing its
database on zero copulas among the Japonic
languages.

1 Introduction

Linguistic typology databases have been created for
describing and comparing languages of the world
(e.g. World Atlas of Language Structure Online:
Dryer and Haspelmath 2013; Grambank: Skirgård
et al. 2023) and have been a useful research re-
source for linguistic typologists. However, due to
the large scale of these studies covering the world’s
languages, they have not been able to capture the
fine-grained variations within a single language
family.

The Japonic language family is a language
family comprising the indigenous languages of
the Japanese archipelago (excluding Ainu), i.e.
Japanese and Ryukyuan languages, many varieties
of which are endangered (Moseley, 2010). Signifi-
cant differences exist between the Japanese and the
Ryukyuan languages and within Japanese dialects.
These differences make mutual intelligibility shal-
low (cf. Shimoji, 2022).

Despite Japan’s linguistic diversity, WALS
mainly features Tokyo-Japanese, Shuri-Okinawan,
and Ainu, largely ignoring other dialects. This over-
look suggests a partial portrayal of the diversity
of Japanese languages. Although these languages
have been studied for decades, such studies remain
unincorporated, highlighting a significant gap in
the field due to the lack of a comprehensive dataset.

*ROIS-DS Center for Open Data in Humanities
†National Institute for Japanese Language and Linguistics

In response to this lacuna, the current research
proposes the development of the web platform LA-
JaR: Language Atlas of Japanese and Ryukyuan.
This project aims to contribute to linguistic typol-
ogy by employing tools such as leaflet.js to visu-
alize Japonic and Ryukyuan grammatical features
within a geographic context. We targeted languages
from a specific region, in this case, the Japonic lan-
guage family.

2 Method

In the LAJaR project, we assemble a dataset from
grammatical descriptions and fieldwork, adopting
the WALS model to chart global languages’ traits,
like phonemic inventories, geographically. This
facilitates empirical research into linguistic diver-
sity’s distribution and supports comparative anal-
ysis of linguistic features, revealing potential cor-
relations. This methodology aligns with linguistic
typology’s goals to identify universal language at-
tributes via detailed distribution analysis.

While LAJaR is based on WALS, this project
does not intend to add data to WALS, but to cre-
ate a bespoke dataset. This is to add features that
are not in WALS and that are subject to question
in the study of Japonic languages (e.g., the pres-
ence of dual forms of pronouns). It could also
be based on Grambank, but the difference is that
WALS treats grammatical features as categorical,
whereas Grambank treats almost all features as bi-
nary values. Because of this difference, we decided
that adapting to Grambank’s method was not most
appropriate for depicting grammatical features.

Building on the foundation of the WALS model,
the proposed LAJaR platform intends to incor-
porate the methodologies and tools of the Cross-
Linguistic Linked Data (CLLD) framework. CLLD
is a platform designed to enable the aggregation,
comparison, and visualization of linguistic data
across different languages. It leverages the Cross-
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Linguistic Data Formats (CLDF, Forkel et al.,
2018) to standardize data representation, making it
more accessible and interoperable.

Incorporating CLLD into LAJaR will offer sev-
eral advantages. Firstly, it will allow LAJaR to
benefit from CLLD’s established infrastructure, in-
cluding its robust data formats and visualization
tools. Secondly, by adopting CLLD’s standardized
data formats, LAJaR can ensure consistency in data
representation, facilitating easier comparison and
integration with other linguistic databases. More-
over, CLLD supports the inclusion of a diverse
range of linguistic data, from phonetics to syntax.
This flexibility aligns well with the aim of LA-
JaR to cover a wide array of grammatical features
across the Japonic and Ryukyuan languages.

3 Case study: Zero Copula

We discuss the following as a case study of how
LAJaR can promote linguistic research. We anno-
tated whether a language allows zero copula for
predicate nominals (120A). We examined 25 lan-
guages from 25 sources.

The result shows that some languages of western
Japan and Ryukyuans do not have copula for non-
past declaratives (1a), whereas other languages do
(1b).

(1) a. wan=ja
I=TOP

sinsii
teacher

‘I am a teacher.’(Amami, Kato 2022,
p.38)

b. an
that

hita
person.TOP

sensee=zjad=do
teacher=COP=SFP

‘That person is a teacher.’ (Kagoshima-
Japanese, Hiratsuka 2018, p.115)

WALS simply states that Japanese does not al-
low zero copula, but LAJaR indicates that there is
actually variation within the Japonic language fam-
ily. The result suggests the effectiveness of LAJaR
with more finely grained data extraction.

Since WALS speculate that the non-existence of
copula correlates with the existence of case mark-
ers, we also wanted to examine case markers; how-
ever, we encountered some difficulties. First, differ-
ent sources adopted into LAJaR refer to the region
in various granularities. It is necessary to normal-
ize the level of granularity. Second, case mark-
ers in many languages of Japan are optional. In
such a case, linguists tend to describe only overt

case markers and tend not to mention the possibil-
ity or impossibility of case marker drops, which
makes it challenging to annotate. Third, different
sources contradict each other. This might be due
to language change or individual differences. It
is necessary to decide which source to choose or
to invent a way to represent contradicting results.
The reliability of the descriptions also varies from
one literature to another and must be examined to
determine whether they are worthy of adoption.

While we are “digging deeper” into the Japanese
data, we are essentially taking the same approach
as WALS and are facing the same problems en-
countered by the WALS authors. On this matter,
we are exploring ways to more accurately reflect
the variation within languages while referencing
the approach of WALS. For instance, we are consid-
ering approaches such as allowing multiple values
for a specific feature.

4 Conclusion

This paper presented an overview of our ongoing
project on the linguistic typology database LAJaR.
We have developed a database from existing liter-
ature on Japonic languages, which until now has
largely been overlooked. Additionally, through our
case study, we demonstrated how this database can
facilitate new research in linguistic typology.

The LAJaR project marks a significant advance
in depicting the Japonic language family’s diversity
more fully and accurately. Using sources written in
Japanese includes a broader array of linguistic data,
often overlooked in current databases. Furthermore,
the dataset helps members of the endangered lan-
guage communities know the grammatical diversity
of Japonic languages, aiding in understanding their
own languages’ grammatical features.

Future work will focus on further expanding and
refining the database, particularly on endangered
Japanese dialects and Ryukyuan languages that
have received minimal attention. This expansion
will enhance our understanding of the structural
complexity and variation within the Japonic lan-
guages. Additionally, we aim to utilize the LAJaR
database as a platform for international collabo-
ration and exchange among researchers, further
advancing the field of linguistic typology. Through
this endeavor, we hope to significantly contribute to
the field of language typology and raise awareness
about the importance of preserving and studying
Japonic languages.
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Abstract

This paper lays the groundwork for initiating
research into Source Language Identification;
the task of identifying the original language
of a machine-translated text. We contribute a
carefully-crafted dataset of translations from
a typologically diverse spectrum of languages
into English and use it to set initial baselines for
this novel task. The dataset is publicly available
on our GitHub repository: damiaanr/gtnc.

1 Introduction

In an era of globalisation, the world is becoming
increasingly reliant on machine translation. But
as translation tools find their way into people’s
daily routines, they spark curiosity about previously
unexplored tasks, such as identifying the source
language of a machine-translated text. This is an
emerging challenge that has been referred to as
Source Language Identification (SLI, La Morgia
et al. 2023). The task has a relevant application in
forensics: knowledge of an individual’s native lan-
guage can offer crucial insights into their identity.

The problem of classifying the original language
of a machine-translated text inherently relies on
finding markers in the translation that hint at the
source (i.e., traces of ‘source language interfer-
ence’). In a first exploration of the field, Reij-
naers and Herrewijnen (2023) indicated that such
markers can be related to typological differences
between the languages involved in the translation
process, aligning with theory on human translation
(Teich, 2003, pp. 217–20). Typological features
contribute to the explainability of SLI models (Kre-
dens et al., 2020, pp. 17–19), a quality essential
in forensic contexts (Cheng, 2013, pp. 547–49).
However, owing to the novelty of the task, research
on SLI is hindered by a lack of sufficiently sized
datasets that contain machine translations from a
large number of languages into a single language.

This work aims to fill this gap to propel this
emerging area of research forward. We introduce
Google Translations from NewsCrawl (GTNC):
a unique dataset of state-of-the-art machine transla-
tions from a diverse set of languages into English,
offering a rich typological diversity to facilitate ex-
periments with a wide range of source languages.
The dataset spans 50 languages (listed below), con-
tains 7,500 sentences per language, and is repre-
sentative of real-world data given its domain (news
articles) and the translation engine used (Google
Translate). In addition, we offer initial baselines
for future work on SLI and thereby confirm the
feasibility of the task.

The next section of this paper will discuss exist-
ing datasets that may be used for SLI. In address-
ing their limitations, we propose a novel dataset in
Section 3, which we will then use in a series of ex-
periments in the section that follows. The findings
reiterate the value of a typological approach in SLI.

Included languages Amharic, Arabic, Bengali,
Bulgarian, Chinese, Croatian, Czech, Dutch, En-
glish (untranslated), Estonian, Finnish, French,
German, Greek, Gujarati, Hausa, Hindi, Hungarian,
Icelandic, Igbo, Indonesian, Italian, Japanese, Kan-
nada, Korean, Kyrgyz, Latvian, Lithuanian, Mace-
donian, Malayalam, Marathi, Odia, Oromo, Pashto,
Persian, Polish, Portuguese, Punjabi, Romanian,
Russian, Shona, Spanish, Swahili, Tagalog, Tamil,
Telugu, Tigrinya, Turkish, Ukrainian, and Yoruba.

2 Existing datasets

In the realm of human translation, several corpora
exist that contain translations from multiple lan-
guages into a single language, among which the
most popular is a collection of proceedings of the
European Parliament (Europarl, Koehn 2005). Nu-
merous studies have leveraged this corpus to pro-
vide empirical evidence for distinctions between
original and translated texts (Koppel and Ordan
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2011; Rabinovich and Wintner 2015; Volansky
et al. 2013), while some have explicitly aimed to
identify the European source language of these
documents (Rabinovich et al. 2017; van Halteren
2008). However, machine translations are divergent
from human translations in a systematic (Fu and
Nederhof, 2021) and measurable (van der Werff
et al., 2022) way: machine translations often ex-
hibit less morphological and lexical diversity (Van-
massenhove et al., 2021) and adhere more closely
to the structure of the source text (Ahrenberg,
2017). Moreover, machine translations are more
susceptible to source language interference (Toral,
2019, p. 279), particularly concerning the struc-
tural properties of the source language (Bizzoni
et al. 2020, p. 288; Popovic et al. 2023). As such, a
dataset of purely machine translations is desirable.

A handful of datasets exist that contain ma-
chine translations from multiple languages into
one. An example is DEMETR (Karpinska et al.,
2022), consisting of translations from ten, predomi-
nantly Indo-European languages1 into English. The
dataset was constructed to aid models in detecting
errors in machine translation output. As a result, a
downside is that the authors post-edited the transla-
tions to ensure their correctness, thereby potentially
eliminating valuable hints that pointed to the source
language of these texts. DEMETR is also modest in
size, comprising only 100 sentences per language.

Another example is MLQE-PE (Fomicheva et al.,
2022), containing the translations of 9,000 sen-
tences for each of five, diverse Indo-European lan-
guages2 into English. Apart from the small number
of classes, a drawback of this dataset is that the
samples vary widely in length across languages
(Figure 2a) and are often noisy (e.g., containing
URLs or HTML tags). This could potentially bias
SLI models towards relying on spurious features
instead of learning linguistic patterns purely gov-
erned by typology.

A comparison of the key features mentioned
above can be found in Table 1. Notably, all of
the above-cited datasets were created to evaluate
machine translation models. The mentioned lim-
itations thus only come to light when analysing
their usefulness for SLI, highlighting the need for a
dataset crafted specifically for the task. In the next
section, we will introduce such a dataset.

1DEMETR includes Chinese, Czech, French, German,
Hindi, Italian, Japanese, Polish, Russian, and Spanish.

2The relevant languages in MLQE-PE include Estonian,
Nepali, Romanian, Russian, and Sinhala.

Table 1: Comparison of dataset size characteristics for
usage in a many-to-one context.

Dataset # languages # sentences/lang.
DEMETR 10 100
MLQE-PE 5 9,000
GTNC 50 7,500

3 A dataset for SLI

In the subsections below, we will describe the steps
taken to build GTNC and will provide analyses into
its diversity and characteristics. The data and all
code used to generate them is available on GitHub.

3.1 Selecting the source texts

To enable a fair comparison of translations across
languages, we would ideally obtain a collection of
parallel source texts. Yet, while creating a ‘one-to-
many’ corpus is relatively straightforward, building
a many-to-one variant is practically impossible—it
would require the spontaneous utterance of identi-
cal content in each language. We therefore aimed
to make the data as parallel as possible.

On the presumption that the news genre is both
universal and relatively consistent worldwide, we
selected NewsCrawl (Kocmi et al., 2022) as the
repository for the source texts as it contains sen-
tences scraped from news articles in 59 languages
and is ‘parallel by year’. For GTNC, we sampled
from articles that appeared in 2020, ’21, and ’22,
with equal proportions of each year per language.

To enable analyses on the typological level, be-
yond the prediction of individual language labels,
we aimed to include a large number of languages
in GTNC. Ultimately, we selected 50 languages.3

English sentences were naturally left untranslated,
allowing for experiments with both translated and
original texts. Figure 1 illustrates the data’s diver-
sity, based on the World Atlas of Language Struc-
tures (WALS, Dryer and Haspelmath 2013). WALS
is a resource (wals.info) that contains typological
features for over 2,000 languages in tabular format.

3.2 Filtering the samples

The source sentences from NewsCrawl are already
shuffled and duplicate-free. We additionally re-

3We excluded 9 languages for the following reasons: noise
(Kinyarwanda and Somali), similarity to other languages in
light of dataset diversity (Bosnian, Serbian, Kazakh), lack
of available WALS features to enable effective typological
analyses (Afrikaans), lack of data (Tigre and Bambara), and
incompatibility with Google Translate (South Ndebele).
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Figure 1: Visualisation of language diversity in GTNC. Columns represent typological features and rows correspond
to languages (tagged by ISO 639-1 codes). Hues in columns denote different classes for each feature (overlap in
colour thus hints at languages being similar). White boxes indicate unset features. Blue lines act as indicators of
feature clusters, of which two are exemplified. Note that each row can intuitively be viewed as a language’s unique
‘signature’, with SLI involving the identification of these signatures through the artifacts they leave in a translation.

moved sentences that contained either of:

• A total of < 30 or > 400 characters.

• Non-alphanumerics, excluding ;:()!? and
equivalences in other languages.

• Characters that directly followed a period (.)
and were not a white space, a digit, a question
mark, another period, or an exclamation mark.

• Four consecutive, identical characters.

• Not .!? or equivalences in other languages as
the last character of the sentence.

• Latin alphabet characters for non-Latin-script
languages and vice-versa.

• Russian: Ukrainian-specific characters (as the
Russian corpus also contained Ukrainian text).

Furthermore, samples that were deemed ‘short’ or
‘bad’ by JusText (Pomikálek, 2011) were also left
out.4 JusText is a tool for removing boilerplate
content (i.e., frequently-used and non-unique text).

3.3 Translating and aligning by length
The samples were obtained by using Google Trans-
late.5 To avoid a spurious correlation between
sentence length and language class—which an
SLI-model could potentially exploit—we aimed
at maintaining a consistent average and median

4This step was not available for Amharic, Hausa, Japanese,
Oromo, Odia, Punjabi, Pashto, Shona, Tigrinya, and Chinese.

5The data were translated on June 20th, 2023, using the
v3 Translation API. To support the creation of this dataset,
Google granted the equivalent of USD $1, 000 in API credits.

length of 125 characters across all resulting English
translations. This was accomplished by selecting
sentences of specific lengths, determined by pre-
computed, frequentist character-to-character ratios
for every translation pair. Ultimately, 42, 667, 664
source characters were translated into 46, 460, 290
English characters (µ ≈ 126.42 characters per sam-
ple; not including the original English sentences
from NewsCrawl). The data over all languages is
normal (Figure 2b). As the resulting ratios might be
of interest to other studies in machine translation,
we included them as appendix material in Table 2.

Finally, all translated samples were scored by
Monocleaner (Sánchez-Cartagena et al., 2018) to
denote their ‘fluency’. These annotations are es-
sentially language-model scores, calculated as the
normalised perplexity of character 7-grams.
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(a) MLQE-PE: Separate length distributions per class.
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(b) GTNC: Normally distributed length across all classes.

Figure 2: Sample length across many-to-one datasets.

60



4 Preliminary Experiments

In this section, we will use the English translations
from GTNC to predict the source language of both
individual samples and combinations of sentences.

4.1 Input representation

It is through parts of speech that hints about a lan-
guage’s structure—and thereby its typology—may
be obtained (Cutting et al., 1992, p. 133). Given the
structural nature of source language interference in
machine translation, we opted for part of speech
(PoS) tags as input features for our models.

When discerning between human-translated and
original texts, many studies have achieved good per-
formance by representing input texts as sequences
of PoS tags; generally by training an SVM (Hearst
et al., 1998) on frequency counts of PoS n-grams
(Baroni and Bernardini 2005, p. 268; Rabinovich
et al. 2017, p. 534; Pylypenko et al. 2021, p. 8603).
In a recent study, Popovic et al. (2023) did so for
machine translations and likewise indicated the ef-
ficacy of PoS tags, affirming their relevance in SLI.

Of the above, the work closest to ours is the pa-
per by Rabinovich et al. (2017). Its authors perform
source language identification on human-translated
texts and report an accuracy of 75.61% when con-
sidering samples from 14 source languages.

4.2 Model architecture and training

To enable the model to capture structural patterns
over longer distances, we conducted our experi-
ments using a bidirectional LSTM (Graves and
Schmidhuber, 2005) of 64 hidden dimensions. In
correspondence with the granularity of the data,
the LSTM operates on the sentence level, classi-
fying one sentence at a time. At every timestep,
it takes in a 70-dimensional input vector, consist-
ing of a one-hot encoding of a token’s PoS tag
(fine-grained), concatenated with a multi-hot vec-
tor that additionally encodes grammatical number,
tense, and person, pronominal type, definiteness,
verb form, and whether a word is possessive and/or
reflexive. All PoS and morphological tags were as-
signed by SpaCy (spacy.io) and adhere to the Uni-
versal Dependencies standard (Nivre et al., 2017).

The final hidden state of the LSTM is concate-
nated for every direction and subsequently pro-
cessed by a single feed-forward layer that directly
maps to output classes (i.e., possible source lan-
guages). To obtain a prediction for a group of
sentences, the logits of this layer are averaged over
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Figure 3: Performance over number of sentences.

all individually classified samples within the group.
We trained all LSTMs for 20 epochs and aver-

aged ‘best epoch’-results over three runs. Opti-
misation was done using Adam (Kingma and Ba,
2017) with a learning rate of 1e-3, a weight decay
parameter of 1e-4, and a batch size of 16. Data
was split into train and test fractions of 0.9 and 0.1
respectively.

4.3 Initial baseline results for SLI

Figure 3 illustrates the model’s accuracy as a func-
tion of the number of sentences.6 Individual sam-
ples were classified with an accuracy of 15.68%.
Note that we work with samples of only a few tens
of tokens in size (Figure 2b), while Rabinovich
et al. (2017) use samples of 1,000 tokens. Naturally,
the longer the document, the more opportunity the
source language has to leave its fingerprints. The
positive correlation between document length and
accuracy, as shown in Figure 3, provides evidence
that supports this tendency.

Inspired by the same work, we reconstructed a
phylogenetic tree using hierarchical agglomerative
clustering applied to the averaged confusion scores
for all Indo-European languages in GTNC. The
tree is shown in Figure 4. ‘Ward’s method’ was
used as linkage criterion (Ward, 1963). The model
was trained only on the 24 Indo-European source
languages present in GTNC (excluding English).
The tree provides intuitive evidence that the model
tends to confuse genetically similar languages, in-
dicating that the model exploits language-specific
patterns that align with their typology. This, in turn,
implies that the sentences in GTNC do indeed carry
typological features of their source counterparts,
rendering it a well-suited dataset for SLI. The tree-
figure additionally provides insight into the kind of
errors that the model makes. For example, when
contrasted with the frequently referenced ‘gold tree’
by Serva, M. and Petroni, F. (2008), Greek is be-
ing misclassified as being part of a branch with

6Ideally, the samples would have appeared in natural se-
quence, however, due to lack of data, they were drawn i.i.d.
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Figure 4: Reconstructed phylogenetic tree.

Bulgarian, among other Slavic languages in higher
branches. This suggests that the model mistakenly
relies on similar markers to discern between En-
glish translations from Greek and those from Slavic
languages. A logical next step for future research
would therefore involve a detailed analysis of the
specific markers employed by such models. Based
on the figure, a similar argument could be made for
Farsi, or the East Slavic sub-branch.

5 Conclusion and discussion

We showcased GTNC: a thoughtfully designed
dataset of Google-Translated news articles from
diverse languages into English. Our experiments
provide compelling evidence attesting to the feasi-
bility of SLI and emphasise the dataset’s suitability
for typological approaches—a quality that holds
significant promise on the path to explainable SLI.

As our goal was to introduce a dataset, we de-
liberately avoided a lengthy discussion on the un-
derlying phenomena that enable the identification
of a source language in the first place; i.e., a more
in-depth analysis of how ‘artifacts’ of the typology
of the original language are left behind in a trans-
lation. An exploration of the involved scientific
concepts, particularly ‘translationese’ (Nida and
Taber, 1969) and ‘interlanguage’ (Selinker, 1972),
and how they relate to machine translation, would
demand a thorough examination that is beyond the
scope of this short paper.

While GTNC encompasses a wide array of lan-
guages, the number of samples per language re-

mains limited. We encourage the community to
improve our dataset using the tools that we have
made available. Beyond SLI, the data may also
help other applications, such as evaluating Google
Translate’s performance across languages. We
hope that GTNC will additionally foster explo-
ration in new directions.
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Table 2: Character-to-character ratios of languages in GTNC, relative to English. n = 100.

Source = 100 chrs. Target = 125 chrs.
Length Ratio Realised length

µ σ/µ → ← µ σ/µ

Amharic (am) 155.7 .16 1.56 0.64 124.7 .15
Arabic (ar) 129.9 .15 1.30 0.77 128.1 .15
Bengali (bn) 111.4 .14 1.11 0.90 127.5 .14
Bulgarian (bg) 103.5 .12 1.04 0.97 124.8 .11
Chinese (zh) 421.7 .16 4.22 0.24 123.4 .19
Croatian (hr) 111.1 .12 1.11 0.90 122.6 .11
Czech (cs) 112.9 .15 1.13 0.89 126.3 .12
Dutch (nl) 94.7 .11 0.95 1.06 125.7 .10
English (en) 100.0 1.00 1.00 125.0
Estonian (et) 111.0 .15 1.11 0.90 123.9 .12
Finnish (fi) 104.6 .12 1.05 0.96 125.1 .12
French (fr) 92.0 .11 0.92 1.09 125.9 .10
German (de) 93.6 .11 0.94 1.07 126.3 .11
Greek (el) 91.9 .13 0.92 1.09 126.1 .11
Gujarati (gu) 108.1 .16 1.08 0.92 127.5 .14
Hausa (ha) 100.1 .16 1.00 1.00 123.4 .14
Hindi (hi) 117.1 .16 1.17 0.85 122.2 .13
Hungarian (hu) 106.8 .12 1.07 0.94 122.6 .12
Icelandic (is) 103.1 .12 1.03 0.97 126.8 .12
Igbo (ig) 109.3 .14 1.09 0.92 121.4 .16
Indonesian (id) 100.0 .14 1.00 1.00 125.3 .13
Italian (it) 97.1 .12 0.97 1.03 125.1 .10
Japanese (ja) 236.9 .28 2.37 0.42 142.9 .23
Kannada (kn) 102.3 .17 1.02 0.98 126.8 .15
Korean (ko) 229.0 .24 2.29 0.44 170.9 .18
Kyrgyz (ky) 101.9 .15 1.02 0.98 126.5 .14
Latvian (lv) 110.1 .11 1.10 0.91 124.9 .12
Lithuanian (lt) 107.9 .14 1.08 0.93 125.3 .12
Macedonian (mk) 100.2 .11 1.00 1.00 127.1 .11
Malayalam (ml) 87.6 .17 0.88 1.14 129.5 .14
Marathi (mr) 103.1 .13 1.03 0.97 122.5 .14
Odia (or) 106.6 .16 1.07 0.94 123.6 .14
Oromo (om) 82.3 .17 0.82 1.22 121.0 .17
Pashto (ps) 114.7 .13 1.15 0.87 127.7 .13
Persian (fa) 119.5 .13 1.19 0.84 127.4 .15
Polish (pl) 102.8 .13 1.03 0.97 124.5 .12
Portuguese (pt) 100.6 .11 1.01 0.99 122.4 .10
Punjabi (pa) 102.2 .14 1.01 0.99 125.0 .13
Romanian (ro) 97.3 .12 0.97 1.03 124.7 .11
Russian (ru) 106.7 .14 1.07 0.94 125.5 .13
Shona (sn) 100.5 .14 1.01 0.99 122.7 .14
Spanish (es) 95.2 .11 0.95 1.05 125.4 .10
Swahili (sw) 100.5 .14 1.00 1.00 124.1 .13
Tagalog (tl) 90.6 .12 0.91 1.10 127.0 .11
Tamil (ta) 89.0 .18 0.89 1.12 125.8 .15
Telugu (te) 105.9 .16 1.06 0.94 123.8 .14
Tigrinya (ti) 130.9 .20 1.31 0.76 127.9 .18
Turkish (tr) 104.7 .17 1.05 0.96 127.0 .13
Ukrainian (uk) 111.0 .13 1.11 0.90 123.3 .13
Yoruba (yo) 107.8 .16 1.08 0.93 124.8 .14
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Abstract

Emotion classification is a challenging task
in NLP due to the inherent idiosyncratic and
subjective nature of linguistic expression, es-
pecially with code-mixed data. Pre-trained
language models (PLMs) have achieved high
performance for many tasks and languages,
but it remains to be seen whether these mod-
els learn and are robust to the differences in
emotional expression across languages. Soci-
olinguistic studies have shown that Hinglish
speakers switch to Hindi when expressing neg-
ative emotions and to English when expressing
positive emotions. To understand if language
models can learn these associations, we study
the effect of language on emotion prediction
across 3 PLMs on a Hinglish emotion classi-
fication dataset. Using LIME (Ribeiro et al.,
2016) and token level language ID, we find that
models do learn these associations between lan-
guage choice and emotional expression. More-
over, having code-mixed data present in the pre-
training can augment that learning when task-
specific data is scarce. We also conclude from
the misclassifications that the models may over-
generalise this heuristic to other infrequent ex-
amples where this sociolinguistic phenomenon
does not apply.

Disclaimer: This paper contains some exam-
ples of language use that readers may find of-
fensive.

1 Introduction
An open-ended goal of the NLP community is
to develop language technologies robust to the
vast and various idiosyncrasies of authentic human
communication. Understanding emotion requires
knowledge of the subtleties of linguistic expres-
sion and inherent human subjectivity, making emo-
tion classification a challenging task. It is further
complicated when working with code-mixed ut-
terances. Every language participating in code-
mixed communication comes with its own cultural

Figure 1: Our workflow. We train 3 emotion classification
models, then obtain LIME scores for each token (positive
scores in red, negative scores in blue, and zero scores in grey).
These same samples are then tagged with token-level language
ID, which enables us to examine LIME distributional differ-
ences by language.

and linguistic baggage that oversees the verbaliza-
tion of emotion (Kachru, 1978; Hershcovich et al.,
2022). The adoption of pre-trained language mod-
els (PLMs) has improved performance across the
board for this task, but the PLMs still remain black
boxes. While research in interpretability aims to
address this shortcoming, most analyses remain
centered around English (Ruder et al., 2022). In
this work, we aim to make explicit what associa-
tions are learned when PLMs are trained on code-
mixed data, and whether established differences
in linguistic expression across languages indeed
influence model prediction.

We approach this interpretability problem
through the lens of sociolinguistics. In particular,
we focus on Hindi-English (Hinglish) code-mixing,
prevalent in India and in the Indian diaspora (Orsini,
2015). In a study on Hindi-English bilinguals on
Twitter, Rudra et al. (2016) observed that English
was the language of choice for expression of a posi-
tive emotion and Hindi was more used for negative
emotion. Moreover, Hindi was the preferred lan-
guage for swearing online, a finding also echoed by
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Agarwal et al. (2017). Rudra et al. (2016) explain
the reason behind this to be the fact that bilinguals
prefer to express strong emotions (Dewaele, 2010)
and swear (Dewaele, 2007) in L1, which happens
to be Hindi for most Hinglish speakers. Conversely,
Rudra et al. (2016) speculate that since English is
the language of aspiration in India, it becomes the
preferred language for positive emotion.

In this context, we formulate our main questions
as: (RQ1) Are PLMs likely to associate different
emotions with different languages? (RQ2) Are
English tokens more likely to influence a model
to predict a positive emotion? (RQ3) Are Hindi
tokens more likely to influence a model to predict
a negative emotion, and if so, what is the role of
Hindi swear words? To this end, we fine-tune 3
different PLMs on a Hinglish emotion classifica-
tion dataset and leverage LIME and token-level
language identification for an interpretability anal-
ysis.

2 Related Work
Code-Mixing Previous works in emotion classi-
fication and sentiment analysis have demonstrated
that processing code-mixed text is more difficult
than monolingual text (Sitaram et al., 2019; Za-
haria et al., 2020; Yulianti et al., 2021). This is in
part due to the complexities of processing emotion
from two different languages with varying socio-
cultural and grammatical structures at play (Younas
et al., 2020; Sasidhar et al., 2020; Ilyas et al., 2023).
In this context, Doğruöz et al. (2021) published a
survey on the linguistic and social perspectives on
code-mixing for language technologies. They em-
phasized the importance of incorporating the social
context of a code-mixed language pair into systems
processing code-mixed text.

Interpretability with LIME LIME (Local Inter-
pretable Model-Agnostic Explanations) (Ribeiro
et al., 2016) is a popular tool for interpretability that
is model agnostic and employable for classification
tasks. It learns a linear classifier locally around a
model’s prediction, leveraging token weights (also
learned by the linear classifier) to assign a "LIME
score" between 1 and -1 to each token. A positive
score indicates that the token influenced the model
towards the predicted label, and a negative score
indicates that the token influenced the model to not
predict that label. We leverage LIME due to its
availability and easy-to-use implementations, for
instance in the Language Interpretability Tool (LIT;

Tenney et al., 2020), which we used for this work.
Previous work has also indicated the accuracy of its
approximation of the models and its ability to pro-
vide human-friendly explanations (Madsen et al.,
2022; Hajiyan et al., 2023).

3 Methodology
Dataset We utilize a dataset for sentiment anal-
ysis of code-mixed tweets by Patwa et al. (2020),
later annotated with emotion labels by Ghosh et al.
(2023). Each example is annotated with the six
basic Ekman emotions (Ekman et al., 1999) - joy,
sadness, fear, surprise, disgust and anger. When
an example does not fit any of these emotions, or
expresses no emotion, it is labelled as others. This
dataset contains 14,000 examples in the train set,
3,000 in the validation, and 3,000 in the test set.
For this work, we randomly sample 1,000 exam-
ples from the validation set to enable manual veri-
fication of the automatic token tagging described
below, maintaining the default distribution across
labels (see Appendix B).

Models We fine-tune 3 different PLMs for the
task of emotion classification with the Hinglish
training data:

• XLMR (Conneau et al., 2020), pre-trained on
Common Crawl, spanning 100 languages, in-
cluding English and Hindi, both in the Devana-
gari script and additional romanized Hindi.

• IndicBERT v2 (Doddapaneni et al., 2022),
pre-trained on data from 24 Indic languages,
including Hindi and English that is local to
the Indian subcontinent. For Hindi, this model
has only seen the Devanagari script, and no
romanized Hindi.

• HingRoBERTa (Nayak and Joshi, 2022), an
XLM-R model that has been further pre-
trained on romanized, code-mixed Hindi-
English. Thus, in addition to having seen
romanized Hindi, this model is specifically
intended for code-mixed text.

The full details on model training and performance
are given in Appendix A.

Token Tagging For each of the 1,000 samples
(20,835 tokens in total) drawn from the validation
set, we first obtain LIME scores for each token us-
ing LIT (Tenney et al., 2020). We then run the
samples through CodeSwitch (Sarkar, 2020), a
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Figure 2: Frequencies of Hindi (green), English (purple) and
Other (orange) tokens to be assigned a positive (solid) or a
negative (striped) LIME score for examples predicted as joy
and anger, for all models.

Hinglish language identification tool which tags
each token as Hindi, English, or Other, to get the
language ID tags.1

4 Results and Analysis
First, to answer whether the models learn to mean-
ingfully distinguish between languages for emo-
tion prediction (RQ1), we examine the distribu-
tions of LIME scores across each language ID tag
(English, Hindi, Other). Concretely, we inspect
the frequency with which tokens received a posi-
tive or a negative LIME score in our sample, for
each language. We then conduct a χ2 test of in-
dependence to determine whether these two vari-
ables have some dependency. Table 1 shows the
p-values for the entire sample. For all models, we
find this dependence to be statistically significant
(p < 0.05), indicating that there is some influence

1Besides the Hindi and English labels, CodeSwitch also
tags tokens as "Named-Entity", "Foreign words", and "Other"
for punctuation, emojis, and other non-textual tokens. For this
work, we combine these 3 additional tags into one category.

p-values

Model Entire Sample Joy Anger Sadness

XLM-R 7.06e-12 1.44e-15 6.18e-7 1.78e-3
IndicBERT 1.22e-22 3.28e-4 1.69e-5 3.30e-1
HingRoBERTa 3.30e-7 4.00e-18 1.71e-8 2.18e-5

Table 1: We test the null hypothesis that language ID tags and
LIME scores are independent of each other using χ2. This
table contains the p-values for tests done on the entire sample,
and also on examples predicted as joy, anger, and sadness.

of language over the LIME scores. We also con-
firm this with a 1-Way ANOVA test, which can be
found in Appendix C, along with our entire statisti-
cal analysis.

Next, we examine this dependency on a more
granular level to determine whether the presence of
English tokens influence the Hinglish emotion clas-
sification models to predict more positive emotions
(RQ2), and whether Hindi tokens influence them to
predict negative emotions (RQ3). We observe the
distribution of language ID across LIME scores for
examples that the models predicted as joy, anger,
and sadness. These labels were selected in partic-
ular as they have the most examples in the dataset
(after others), and provide the positive (joy) and
negative (anger and sadness) polarity discussed in
the sociolinguistics literature.

(RQ2) Do English tokens influence models
to predict positive emotions? Figure 2 shows
which languages tend to have more positive and
more negative LIME scores. As observed for joy,
English tokens have the highest frequency with pos-
itive LIME scores. Table 1 shows that there is a
significant dependency between language ID and
LIME score for all models. Thus, English tokens
influence the model significantly more than Hindi
and Others when predicting joy.

(RQ3) Do Hindi tokens influence models to pre-
dict negative emotions? When predicting anger,
Table 1 again shows that there is dependency be-
tween language ID and LIME score for all mod-
els. From Figure 2, we can see that Hindi tokens
influence the model significantly towards predict-
ing anger. When predicting sadness, however, we
only observe significance with the XLM-R and
HingRoBERTa models, but not with IndicBERT.
Moreover, for XLM-R, the p-value is not much
lower than the threshold. Thus, we cannot make
strong conclusions for this label.

68



Token Lang_ID Swear Word?2

Fuck eng Yes
Chutiye hin Yes
Fakeionist eng No
Bsdk hin Yes
Sadly eng No
Bakwas hin No
Kutta hin Yes
Gaddar hin No
Shame eng No
Sala hin Yes

Table 2: Top 10 tokens with the highest LIME scores when pre-
dicting negative emotions, (anger, sadness, disgust andfear)
for all models. They have been mapped to a canonical form
and are in descending order of LIME score.

Swear Words Previous works demonstrate that
Hinglish speakers prefer to swear in Hindi over En-
glish, in a code-mixed setting (Rudra et al., 2016;
Agarwal et al., 2017). To check whether this find-
ing is similarly echoed by our fine-tuned models,
we examine the top 10 tokens with the highest
LIME scores when predicting a negative emotion
(anger, sadness, disgust, fear), across all models
(see Table 2). While the first among these is an En-
glish swear word (owing to it being the most used
swear word by Hinglish speakers online (Agarwal
et al., 2017)) there are 4 Hindi swear words in this
list of tokens. As such, we can see that the models
not only learn the negative connotation of the Hindi
swear words, but also that these Hindi swear words
are the most negative of all other tokens, regardless
of language, thus confirming observations from the
sociolinguistics literature.

5 Discussion
From the section above, it can be concluded that the
models are able to distinguish patterns of speaker
preference detailed by Rudra et al. (2016) when
predicting emotion for code-mixed data. English
tokens influence the models more towards predict-
ing a positive emotion, and Hindi tokens influence
the models more towards predicting a negative emo-
tion. An example of this is provided in Figure 3,
where all the models exhibit a strong degree of in-
fluence from the English tokens in their prediction
of the joy label. At the same time, most of the
tokens assigned a negative LIME score come from
Hindi.

For sadness, we surmise that a shortage of
training data is responsible for models’ failure to

2As decided by a native speaker, and also compared with
the lexicon lists of Hindi and English swear words used by
Agarwal et al. (2017).

Figure 3: An example from the dataset labelled as joy, with
the translation and language ID tags. The 3 tokens with the
highest LIME scores are marked in blue, and the 3 tokens with
the lowest scores are marked in red.

learn meaningful differences across the languages.
About 10% of the entire dataset consists of ex-
amples labelled sadness. In contrast, joy is 30%
and anger is about 20% (see Appendix B). Even
with less data, however, we still observe a depen-
dency between language and LIME score with Hin-
gRoBERTa. It is the only model we examine with
code-mixed data present in the pre-training. Thus,
when there is less data for a model to learn these
associations, it can help to have code-mixed data
in the pre-training.

5.1 Do PLMs overgeneralize these learnt
associations?

McCoy et al. (2019) found that language models
can adapt to heuristics that are valid for frequent
cases and fail on the less frequent ones. In a similar
vein, we investigate whether these sociolinguistic
associations learnt by the models overgeneralise to
the less frequent examples where this phenomenon
is not seen. We examine instances where the mod-
els have misclassified examples labelled as joy and
anger, highlighted in Figure 4.

For both joy and anger, the models generally
either predict another label of the same emotional
polarity (for example, disgust instead of anger), or
they predict them as others. The dataset is highly
imbalanced, and thus we can say that although the
models can discern the polarity difference between
positive and negative emotion labels (as seen in
Figure 4 where the values in the lower left and
upper right quadrants are low), they struggle with
granular distinctions between them.

We also manually look into the few instances
where joy examples were assigned a negative emo-
tion label, and anger examples were assigned a
positive emotion label. Out of the total instances,
15 involve scenarios where either Hindi words with
a negative connotation led the model to attribute a
negative label to joy, or English words with a posi-
tive connotation influenced the model to assign a
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Figure 4: Confusion matrix containing the percentage of cor-
rectly and incorrectly classified examples for each label com-
bination. The blue cells represent correct classifications, and
the pink cells represent incorrect classifications.

Figure 5: An example labelled anger that was misclassified
as joy owing to the English phrase (English - purple; Hindi
- green; Other - orange) in the sentence having a positive
connotation, even though the sentence itself conveys anger.

positive emotion label to anger. This suggests that
examples featuring English words indicating posi-
tive emotions on their own can mislead the model
into predicting a positive emotion label despite an
overall negative tone in the expression (and vice
versa for Hindi words), as illustrated in Figure 5.

On a broader scale, we examine the distribution
of English, Hindi and Other tokens in the misclas-
sified joy and anger examples. As seen in Table 3,
the normalised frequency of Hindi tokens is higher
in the misclassified joy examples than the over-
all distribution. Consequently, more Hindi tokens
have a positive LIME score. Thus, McCoy et al.
(2019)’s conclusions stated earlier are echoed here
as well. While the extreme cases where the mod-
els overgeneralise to predict an emotion label of
the opposite polarity are few, there is a bias learnt
in the models against predicting joy for Hindi to-
kens. For examples labelled anger, although there
is less difference seen in the frequency of English
tokens in the misclassified examples, more English
tokens have a positive LIME score. Thus, a similar
bias against predicting anger for English could be
inferred.

Overall, the fact that these associations are learnt
by the models, to the extent that they can overgen-
eralise them, could also be seen as substantiating

Joy

Distribution of tokens in all examples

All examples Correct Misclassified

English 0.40 0.44 0.32
Hindi 0.34 0.29 0.44
Other 0.26 0.27 0.24

Distribution of tokens assigned a positive LIME score

All examples Correct Misclassified

English 0.43 0.48 0.32
Hindi 0.32 0.28 0.42
Other 0.25 0.24 0.32

Anger

Distribution of tokens in all examples

All examples Correct Misclassified

English 0.15 0.14 0.17
Hindi 0.63 0.65 0.61
Other 0.22 0.21 0.22

Distribution of tokens assigned a positive LIME score

All examples Correct Misclassified

English 0.15 0.13 0.18
Hindi 0.64 0.68 0.60
Other 0.21 0.19 0.23

Table 3: Normalized frequencies of English, Hindi, and Other
tokens for instances labeled joy and anger for correct and
incorrect classification. Additionally, the count of tokens in
each language category assigned a positive LIME score for all
models.

the sociolinguistic phenomena. If speakers tend to
switch to Hindi to express negative emotions, the
ability of language models to detect this reinforces
the existence of such a tendency. This also encour-
ages deeper engagement between sociolinguistics
and interpretability, with both fields offering valu-
able insights to each other.

6 Conclusion
In this work, we use sociolinguistics theories to un-
derstand what PLMs learn when training emotion
classifiers for code-mixed data. We found that the
models indeed learn the differences in language use
and emotional expression detailed in the sociolin-
guistics literature. Concretely, these are the asso-
ciations of English tokens with positive emotions,
and Hindi tokens with negative emotions. Adding
code-mixed data to the pre-training can help aug-
ment this learning when task-specific data is scarce.
However, the models can overgeneralise this learn-
ing to infrequent examples where it does not apply.
In future work, it would be interesting to see if this
understanding can be leveraged to help improve
systems designed for code-mixed languages.
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A Model Details
We used Huggingface to fine-tune the pre-trained
language models described in Section 3 on the emo-
tion classification dataset. Our hyperparameters are
listed in Table 4 and the performance of our models
over the development set are in Table 5, below.

Hyperparameter Value

Dropout 0.2
Learning Rate 2e-05
Number of Epochs 50
Batch Size 32

Table 4: The hyperparameters used to train all three emotion
classification models.

Model Accuracy

XLM-R 0.57
IndicBERT 0.55
HingRoBERTa 0.58

Table 5: Accuracy scores on the test sets of each pre-trained
language model fine-tuned on the Hinglish emotion classifica-
tion dataset.

B Label Distributions
The sample of 1,000 examples used in the analysis
was selected by maintaining the label distribution
from the validation set. The distribution is detailed
in Table 6.

Label Distributions

Our Sample Validation Set

others 347 1048
joy 325 973
anger 204 607
sadness 102 307
disgust 19 55
surprise 2 6
fear 1 4

Total 1,000 3,000

Table 6: Distribution of emotion labels in our random sample
versus the original validation set.

C Statistical Analysis
C.1 χ2

We performed a χ2 test of independence on the
samples for each model to understand the relation-
ship between the two variables - language ID and
LIME score. We constructed the contingency ta-
bles with the frequencies of how many times each
language ID label - eng, hin and other had a pos-
itive or a negative LIME score. We did this for
the entire sample to confirm a dependency between
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those variables. We further examined this depen-
dency on a more granular level by conducting the
same χ2 test for examples that were predicted as
joy, anger and sadness by the models. The contin-
gency table for the entire sample is in Table 7, and
per label is in Table 8.

Contingency Tables - All Samples

XLM-R IndicBERT HingRoBERTa

Positive Negative Positive Negative Positive Negative

English 3658 2264 3840 2082 3728 2194
Hindi 5759 4242 5914 4087 6127 3874
Other 2709 2203 3281 1631 2843 2069

Table 7: χ2 contingency tables for all samples, across all
models

C.2 ANOVA and Tukey HSD

C.2.1 Entire Sample
The p-values from the ANOVA results are in Ta-
ble 9. They confirm χ2 results that for the entire
sample size, there is dependency between language
and LIME score for all models. The key difference
between our ANOVA and the χ2 tests is that, while
the χ2 treats LIME score polarity as a categorical
variable (positive versus negative scores), in our
ANOVA we directly compute over the numerical
values, ranging from -1 to 1.

In order to better understand the relationship be-
tween languages (i.e., Hindi versus English; Hindi
versus Other; English versus Other), we also per-
formed an additional post-hoc Tukey HSD Test to
test which pairs of language ID have means that
are significantly different from each other. Results
for all samples are in Table 10. For all models, the
means for Hindi and English tokens are meaning-
fully different from each other, and thus we can
say that all models are able to distinguish between
these two languages. For XLM-R, we cannot reject
the null hypothesis that hin and other have indepen-
dent distributions, and for IndicBERT, we cannot
reject that eng and other have independent distri-
butions. It is only for HingRoBERTa that we can
reject the null hypothesis for all pairs of language
ID. Thus, HingRoBERTa, having seen code-mixed
data in the pre-training, is the only one that can
meaningfully distinguish across eng, hin and other.

C.2.2 Per Label
We also conduct ANOVA tests for one positive la-
bel (joy) and two negative labels anger, sadness,
to see whether there is agreement with the χ2 re-
sults. Table 11 shows the p-values for each model.

Contingency Tables - Per Label

Joy

XLM-R IndicBERT HingRoBERTa

Positive Negative Positive Negative Positive Negative

English 1730 759 1669 643 1643 639
Hindi 1127 648 974 500 1061 527
Other 876 668 1010 429 849 618

Anger

XLM-R IndicBERT HingRoBERTa

Positive Negative Positive Negative Positive Negative

English 365 173 332 165 482 288
Hindi 1760 689 1487 789 1926 840
Other 473 293 393 307 551 370

Sadness

XLM-R IndicBERT HingRoBERTa

Positive Negative Positive Negative Positive Negative

English 248 139 176 80 233 135
Hindi 596 258 389 187 597 272
Other 187 129 135 49 169 143

Table 8: χ2 contingency tables for examples predicted as joy,
anger and sadness by each model

ANOVA - All Samples

Model p-value

XLM-R 2.09e-31
IndicBERT 3.35e-45
HingRoBERTa 3.97e-20

Table 9: We test the null hypothesis that language ID tags
and LIME scores are independent of each other using 1-Way
ANOVA. This table contains the p-values for tests done on the
entire sample.

Tukey HSD - All Samples

XLMR

group1 group2 meandiff p-adj lower upper reject

en hin -0.013 0 -0.0157 -0.0102 True
en other -0.0156 0 -0.0188 -0.0124 True
hin other -0.0026 0.0854 -0.0055 0.0003 False

p-values: [1.218e-11, 1.218e-11, 8.538e-02]

IndicBERT

group1 group2 meandiff p-adj lower upper reject

en hin -0.0144 0 -0.0169 -0.0118 True
en other -0.0027 0.095 -0.0057 0.0003 False
hin other 0.0117 0 0.009 0.0144 True

p-values: [1.22E-11, 9.50E-02, 1.22E-11]

HingRoBERTa

group1 group2 meandiff p-adj lower upper reject

en hin -0.0069 0 -0.0096 -0.0042 True
en other -0.0126 0 -0.0158 -0.0095 True
hin other -0.0057 0 -0.0086 -0.0029 True

p-values: [4.29E-09, 1.22E-11, 8.12E-06]

Table 10: Results for Tukey HSD for the entire sample size,
for all models, along with the adjusted p-values.

ANOVA - Per Label

Model Joy Anger Sadness

XLM-R 2.09e-31 2.86e-10 1.25e-2
IndicBERT 1.53e-19 3.20e-7 5.57e-1
HingRoBERTa 3.74e-37 1.74e-9 2.14e-3

Table 11: p-values for 1-Way ANOVA on examples predicted
as joy, anger and sadness by each model.
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Both ANOVA and χ2 find dependency between
language and LIME score for the joy and anger la-
bels. Moreover, for sadness, both ANOVA and χ2

also agree that there is a significant dependency of
language and LIME score with HingRoBERTa, and
for IndicBERT there is no dependency. Where they
differ slightly is with XLM-R, where there is no
dependency found with the ANOVA test, but with
χ2, the p-value is slightly below the significance
threshold.

A further fine-grained analysis of these conclu-
sions is presented with Tukey HSD in Tables 12,
13 and 14. To summarise the results per label:

1. Joy For both XLM-R and IndicBERT, hin and
other have no meaningful difference, but do
show significant distinction between hin and
eng. HingRoBERTa, on the other hand, is able
to distinguish between all language ID tags.

2. Anger We see a significant difference be-
tween all language ID pairs and across all
models for anger.

3. Sadness No meaningful difference is ob-
served between hin and eng for both XLM-R
and HingRoBERTa, and for IndicBERT, there
is no meaningful difference across any of the
language ID pairs.

Tukey HSD - Joy

XLMR

group1 group2 meandiff p-adj lower upper reject

en hin -0.0222 0 -0.0281 -0.0164 True
en other -0.0284 0 -0.0345 -0.0223 True
hin other -0.0062 0.0717 -0.0127 0.0004 False

p-values: [0, 0, 0.718]

IndicBERT

group1 group2 meandiff p-adj lower upper reject

en hin -0.0218 0 -0.0277 -0.0158 True
en other -0.0169 0 -0.0229 -0.011 True
hin other 0.0048 0.2004 -0.0018 0.0114 False

p-values: [0, 8.56E-11, 2.00E-01]

HingRoBERTa

group1 group2 meandiff p-adj lower upper reject

en hin -0.0198 0 -0.0257 -0.0139 True
en other -0.0326 0 -0.0387 -0.0266 True
hin other -0.0129 0 -0.0194 -0.0063 True

p-values: [8.54E-13, 8.42E-13, 1.15E-05]

Table 12: Results for Tukey HSD for examples predicted as
joy by each model, along with the adjusted p-values.

Tukey HSD - Anger

XLMR

group1 group2 meandiff p-adj lower upper reject

en hin 0.0076 0.0411 0.0002 0.015 True
en other -0.0103 0.0152 -0.019 -0.0016 True
hin other -0.0179 0 -0.0243 -0.0115 True

p-values: [4.11E-02, 1.52E-02, 1.83E-10]

IndicBERT

group1 group2 meandiff p-adj lower upper reject

en hin -0.0129 0.0003 -0.0207 -0.0051 True
en other -0.0216 0 -0.0308 -0.0124 True
hin other -0.0087 0.0076 -0.0155 -0.0019 True

p-values: [3.23E-04, 1.37E-07, 1.37E-07]

HingRoBERTa

group1 group2 meandiff p-adj lower upper reject

en hin 0.008 0.0184 0.0011 0.0149 True
en other -0.0092 0.0258 -0.0175 -0.0009 True
hin other -0.0172 0 -0.0236 -0.0107 True

p-values: [1.84E-02, 2.58E-02, 1.50E-09]

Table 13: Results for Tukey HSD for examples predicted as
anger by each model, along with the adjusted p-values.

Tukey HSD - Sadness

XLMR

group1 group2 meandiff p-adj lower upper reject

en hin -0.0003 0.9955 -0.0092 0.0085 False
en other -0.0117 0.0323 -0.0227 -0.0008 True
hin other -0.0114 0.0139 -0.0209 -0.0019 True

p-values: [0.996, 0.032, 0.014]

IndicBERT

group1 group2 meandiff p-adj lower upper reject

en hin -0.004 0.5855 -0.0135 0.0055 False
en other -0.0008 0.9868 -0.0131 0.0114 False
hin other 0.0032 0.7648 -0.0075 0.0139 False

p-values: [0.585, 0.987, 0.765]

HingRoBERTa

group1 group2 meandiff p-adj lower upper reject

en hin -0.0011 0.9558 -0.0104 0.0081 False
en other -0.0149 0.0067 -0.0263 -0.0034 True
hin other -0.0137 0.003 -0.0236 -0.0039 True

p-values: [0.956, 0.007, 0.003]

Table 14: Results for Tukey HSD for examples predicted as
sadness by each model, along with the adjusted p-values.
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1 Introduction

In order to draw generalizable conclusions about
the performance of multilingual models across lan-
guages, it is important to evaluate on a set of lan-
guages that captures linguistic diversity. Linguistic
typology is increasingly used to justify language
selection, inspired by language sampling in linguis-
tics (e.g., Rijkhoff and Bakker, 1998). In other
words, more and more papers suggest generaliz-
ability by evaluating on ‘typologically diverse lan-
guages’ (see Figure 1). However, justifications for
‘typological diversity’ exhibit great variation, as
there seems to be no set definition, methodology
or consistent link to linguistic typology. In this
work, we provide a systematic insight into how pre-
vious work in the ACL Anthology uses the term
‘typological diversity’. Our two main findings are:

1. What is meant by typologically diverse lan-
guage selection is not consistent.

2. The actual typological diversity of the lan-
guage sets in these papers varies greatly.

We argue that, when making claims about ‘ty-
pological diversity’, an operationalization of this
should be included. A systematic approach that
quantifies this claim, also with respect to the num-
ber of languages used, would be even better.

2 Systematic Annotation of Claims

We systematically investigate which papers make
claims regarding typological diversity, and which
languages they actually use. First, we retrieve1

all papers in the ACL Anthology that contain the
following search string in either the title or abstract:

* Equal contribution.
1Using the acl-anthology-py package:

https://github.com/mbollmann/acl-anthology-py.
Papers retrieved on December 11, 2023.
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Figure 1: Number of papers in the ACL Anthology
claiming a ‘typologically diverse’ set of languages over
the years.

typological.+?diverse|
typological.+?diversity|
diverse.+?typological

Examples of this are not only typologically di-
verse, but also typologically maximally diverse lan-
guage and typologically and genetically diverse
languages. In total, this retrieves 140 papers, with
the earliest being published in 2002, and the most
recent being published in 2023. It contains papers
from conferences (e.g., *ACL, EMNLP), journals
(e.g., TACL, CL) and workshops (e.g., SIGTYP,
SIGMORPHON).

We manually annotate whether these papers con-
tain a claim regarding the typological diversity of
their language selection. An example of such a
claim is: “we evaluate on a set of ten typologically
diverse languages” (Pimentel et al., 2020). A paper
does not make a claim if it describes related work
that claims to use ‘a diverse typological test set’,
for instance. Our annotation is done separately by
two annotators (the first two authors). We calculate
inter-annotator agreement and retrieve a Cohen’s κ
of 0.64 (‘substantial agreement’). After resolving
the disagreements, we are left with 103 papers that
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contain a claim, which we use for our analysis. For
every such paper, we annotate which languages are
actually included in their selection. We normalize
these to ISO-639-3 codes.

3 Justifications of Typological Diversity

We find that there is great variation in justifications
for typological diversity claims. Some papers ex-
plain typological diversity through genealogy. For
instance, Xu et al. (2022) “select 24 typologically
different languages covering a reasonable variety
of language families” and Zhang et al. (2023) cre-
ate a dataset consisting of “[18] languages that are
both typologically close as well as distant from 10
language families and 13 sub-families”.

Other papers use a selection of typological fea-
tures, for instance, Mott et al. (2020) mention that

“the nine languages in our corpus cover five pri-
mary language families (. . . ), and cover a range
of morphological phenomena including suffixation,
prefixation, (. . . )”. Some papers also mention ty-
pological databases in their language selection, for
instance, Gutierrez-Vasques et al. (2021) choose

“47 languages [from the] WALS 100-language sam-
ple, which aims to maximize both genealogical and
areal diversity”. Similarly, Muradoglu and Hulden
(2022) consider “typological diversity when select-
ing languages (. . . ) [such as] languages that ex-
hibit varying degrees of complexity for inflection.
We also consider morphological characteristics
coded in WALS (. . . )”. The most systematic ap-
proach to typologically diverse language selection
we found is done by Jancso et al. (2020). They
use a clustering algorithm on vectors with features
from two typological databases to find the most
distant clusters to sample languages from.

However, there is no consistent typological dis-
tance measurement for language selection. Thus,
what is commonly meant by typological diverse
language selection is not only inconsistent, but also
often unsubstantiated.

4 Language Analysis

Next, we investigate the actual languages used in
these datasets. Concretely, we aim to answer three
questions: 1) how many languages are commonly
used? 2) which languages are commonly used? and
3) how typologically diverse are these language
selections?

First, we plot the number of languages the pa-
pers use in Figure 2. The number of languages
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Figure 2: Number of papers using N languages.

used ranges from 2 to 77, with a mean of 16 and
a standard deviation of 14. Four of the papers
that contain a claim do not mention the languages
they use. None the papers in our sample mention
whether the number of languages they use relates
to or is influenced by their typologically diversity
claim. Similarly, only some papers, specifically
ones that introduce a dataset, explicitly mention
design choices with regard to the number of lan-
guages used.

Next, we look at the actual languages involved.
The papers use 283 unique languages, of which
147 are used just once. English is the most-used
language, followed by German, Finnish, Turkish,
Russian and Spanish. Here, we observe a skew
towards languages from the Eurasian macroarea.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mean pairwise lang2vec distance

Figure 3: Mean pairwise syntactic lang2vec distance
per paper.

Lastly, we approximate the actual typological
diversity across papers by taking the average syn-
tactic lang2vec (Littell et al., 2017) distance of all
pairwise combinations in each paper’s language
set with coverage in lang2vec (97/103)2. The mea-
sured typological diversity varies across papers,
with outliers on either side (Figure 3). The lowest
mean pairwise distance (0.42) is found in Goel et al.
(2022), who use “3 typologically diverse languages
– English, French and Spanish”. The highest dis-
tance (0.86) is found in (Vania et al., 2019), who
evaluate on North Sámi, Galician, and Kazah.

2Four papers do not mention the languages they use,
two contain languages for which no ISO-693-3 code exists;
Kholosi and Pomak.
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Abstract

In traditional studies on language evolution,
scholars often emphasize the importance of
sound laws and sound correspondences for phy-
logenetic inference of language family trees.
However, to date, computational approaches
have typically not taken this potential into ac-
count. Most computational studies still rely
on lexical cognates as major data source for
phylogenetic reconstruction in linguistics, al-
though there do exist a few studies in which
authors praise the benefits of comparing words
at the level of sound sequences. Building on
(a) ten diverse datasets from different language
families, and (b) state-of-the-art methods for
automated cognate and sound correspondence
detection, we test, for the first time, the per-
formance of sound-based versus cognate-based
approaches to phylogenetic reconstruction. Our
results show that phylogenies reconstructed
from lexical cognates are topologically closer,
by approximately one third with respect to the
generalized quartet distance on average, to the
gold standard phylogenies than phylogenies re-
constructed from sound correspondences.

1 Introduction

Although controversially discussed in the begin-
ning (Holm, 2007), quantitative approaches to phy-
logenetic reconstruction based on Bayesian phylo-
genetic inference frameworks have now become
broadly accepted and used in the field of compara-
tive linguistics. This is reflected by the increasing
number of computer-based phylogenies that have
been proposed for the world’s largest language fam-
ilies – Dravidian (Kolipakam et al., 2018), Sino-
Tibetan (Sagart et al., 2019), and Indo-European
(Heggarty et al., 2023) – and even fully automated
workflows, in which even cognate words are identi-
fied automatically, have shown to be comparatively
robust (Rama et al., 2018). While rarely practiced
in the pre-computational past of historical linguis-

tics, computing detailed, fully resolved phyloge-
nies with branch lengths and at times even esti-
mated divergence times, has now become a routine
tasks in contemporary language evolution studies.

Although traditional scholars have started to ac-
cept computational language phylogenies as a new
tool deserving its place in the large tool chain of
comparative linguistics, scholars still express sub-
stantial skepticism against most language phyloge-
nies that have been inferred so far. One of the ma-
jor arguments typically mentioned in this context
is that phylogenetic approaches are usually based
on cognate sets (sets of historically related words)
that are identified in semantically aligned word
lists. Since these cognate sets reflect lexical data
only, many scholars mistrust them, given that lexi-
cal data are assumed to be substantially less stable
over time than other aspects of languages (Camp-
bell and Poser, 2008). Yet, for being able to infer
stable phylogenetic trees a mix of conserved char-
acters and more variable characters might be more
beneficial.

In classical historical linguistics, the data used
for subgrouping are traditionally composed of
small collections of so-called shared innovations
(Dyen, 1953). What counts as a shared innova-
tion has itself never been clearly defined in the
literature, but the largest amount of data used by
scholars is traditionally taken from sound corre-
spondences or supposed sound change processes
(compare, for example the data in Anttila 1972,
305). Although it is controversially debated in the
field (Ringe et al., 2002; Dybo and Starostin, 2008),
many classical linguists still emphasize that sound
correspondences are largely superior to lexical data
to determine subgrouping.

There have only been few attempts to assess
how well quantitative approaches to phylogenetic
reconstruction perform when using sound corre-
spondences instead of lexical cognates (Chacon
and List, 2015). The main reason is that encoding
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Figure 1: Gain-loss processes derived from binary cognate vectors. A shows a wordlist where cognate words
are encoded as multi-state characters. B shows the corresponding binary encoding. C shows how gain and loss
processes are modeled on a phylogenetic tree.

data to compute phylogenies from sound change
patterns is tedious and labour-intensive even for
a dataset comprising only 20 languages. There-
fore, there have been but a few attempts to assess
how well quantitative approaches to phylogenetic
reconstruction perform when using sound corre-
spondences instead of lexical cognates.

Here we build on state-of-the-art methods for
automatic cognate detection and phonetic align-
ment in historical linguistics (List et al., 2016)
and combine them with novel approaches for in-
ferring sound correspondence patterns in multilin-
gual datasets (List, 2019). Using this machinery
we have devised a new workflow for phylogenetic
reconstruction based on sound correspondence pat-
terns. With a new collection of ten gold standard
datasets, we test our workflow and compare it with
alternative workflows that are exclusively based on
lexical data. Our results indicate that sound corre-
spondence patterns are substantially less suitable
for the purpose of computer-based phylogenetic
reconstruction than postulated.

2 Background

The majority of previous work on phylogenetic
reconstruction using Bayesian phylogenetic infer-

ence (Kolipakam et al., 2018; Sagart et al., 2019;
Rama et al., 2018) is based on cognate sets that
are encoded as binary vectors. The presence or ab-
sence of a language in a cognate set is thus encoded
as 1 or 0, respectively. Subsequently, phylogenetic
trees are inferred by assuming that cognate sets
evolve along a phylogenetic tree via a gain and loss
processes (see Figure 1).

The binary-state encoding is the most frequently
used encoding technique; we deploy it in this study
as well. Once such a dataset has been assem-
bled, binary state data evolution can be modeled
via a time-reversible binary state Continuous Time
Markov Chain model (binary-CTMC, Bouckaert
et al. 2012), which allows for gain and loss events
to occur for an arbitrary number of times. Branch
lengths on these trees reflect the mean number of
expected substitutions (gain/loss events) per binary
character site.

The major contributions of this study are: (1) We
provide an automated workflow that allows to infer
cognates and correspondence patterns and analyze
them with the help of Bayesian phylogenetic infer-
ence methods, (2) we cross-validate the Bayesian
inference results via Maximum Likelihood (ML)
tree reconstructions and thereby discover that de-
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Dataset Words Concepts Languages Distances Sounds Word Length

ConstenlaChibchan 1214 106 24 0.1 21.71 3.86
CrossAndean 2637 150 19 0.03 28.89 4.32
Dravlex 1341 100 20 0.06 36.85 4.53
FelekeSemitic 2412 150 19 0.05 45.32 4.99
HattoriJaponic 1710 197 10 0.03 34.9 4.47
HouChinese 1816 139 15 0.05 43 6.21
LeeKoreanic 1960 205 14 0.01 36.93 4.31
RobinsonAP 1424 216 13 0.03 24.38 4.51
WalworthPolynesian 6113 207 31 0.05 21.03 4.51
ZhivlovObugrian 1879 110 20 0.04 32.65 3.65

Table 1: Datasets and general aspects of the data. Distances refer to the average pairwise distance between all
language pairs in the sample, derived from shared cognate counts (using the LingPy software). Number of sounds
refers to the number of distinct sounds per language (on average), and the word length refers to the average length
of the words observed in each dataset.

fault Bayesian priors that typically work well on
molecular data can induce a prior bias when analyz-
ing language datasets, (3) we show how the quality
of phylogenetic reconstruction approaches based
on sound correspondences can be compared to phy-
logenetic reconstruction based on lexical data, and
in this way, and (4) we put the debate about the
usefulness of sound-based as opposed to cognate-
based phylogenies to the test.

As an early example for sound-based approaches
to phylogenetic reconstruction, Hruschka et al.
(2015) apply a CTMC model that allows for tran-
sitions between a fixed number of sounds for de-
tecting the important sound changes in a dataset
comprising etymologies across Turkic languages.
Hruschka et al. do not infer phylogenies from their
data. Instead, they use an established phylogeny
(such established phylogenies are not readily avail-
able for many language families of the world) to
infer branch lengths and transition probabilities be-
tween sounds in their data in order to detect sound
changes at different time points in a time-calibrated
family tree of Turkic.

Wheeler and Whiteley (2015) start from typical
word lists (that would otherwise be used in phyloge-
netic reconstruction based on lexical data) and ap-
ply a parsimony-based algorithm that aligns words
regardless if they are cognate or not, reconstructs
a hypothetical ancestral word from the alignment,
and seeks to infer the phylogeny that explains the
observed sequences via the minimum amount of
changes/mutations (Sankoff, 1975). In a later study,
Whiteley et al. (2019) apply the same approach
to a dataset of Bantu languages. The method by

Wheeler and Whiteley (2015) is linguistically de-
batable, since words are not assigned to cognate
sets prior to aligning them. It is well known that
there is a strict difference between regular sound
change processes and processes resulting from lex-
ical replacement (Hall and Klein, 2010) and that
even words that are cognate are not necessarily
fully alignable (Schweikhard and List, 2020, 10).

Chacon and List (2015) start from manually ex-
tracted sound correspondence patterns for conso-
nants in a dataset of 21 Tukanoan languages, to
which proto-forms had also been manually added.
Based on these sound correspondence patterns,
they apply—in analogy to Wheeler and Whiteley
(2015)—an algorithm that searches for the tree
that provides the most parsimonious explanation
for sound evolution. In contrast to Wheeler and
Whiteley (2015), however, they added specific con-
straints for the transitions from one sound to an-
other sound, which were based on expert judgments
for the Tukanoan language family. The approach
by Chacon and List (2015), finally, requires an
enormous amount of preprocessing that entails the
risk of inducing circular results, since proto-forms
and major directions of sound change processes
are required to be known in advance. While all
approaches exhibit individual shortcomings, one
of the largest shortcomings lies in the fact that it is
very difficult to apply them systematically. This is
also supported by the observation that no additional
analogous studies have been conducted by other
teams, despite the fact that all of the above methods
have been proposed years ago.
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3 Materials and Methods

3.1 Materials

In order to test whether sound correspondence pat-
terns improve phylogenetic reconstruction or not,
we selected ten datasets from the Lexibank repos-
itory (https://lexibank.clld.org, List et al.
2022) which were previously used to investigate
the regularity of correspondence patterns in com-
parative cognate-coded wordlists (Blum and List,
2023). Lexibank offers published datasets in stan-
dardized formats (so-called Cross-Linguistic Data
Formats, see Forkel et al. 2018). According to these
standards, languages are linked to the Glottolog ref-
erence catalog (offering access to expert phyloge-
nies and geolocations, https://glottolog.org,
Hammarström et al. 2023), concepts are linked to
the Concepticon reference catalog (offering fun-
damental definitions of semantic glosses and fur-
ther information on concept properties, https:
//concepticon.clld.org, Concepticon), and
sounds are provided in the phonetic transcrip-
tion underlying the Cross-Linguistic Transcrip-
tion Systems initiative (a reference catalog on
speech sounds, offering a dynamic system that
defines transcriptions for more than 8000 stan-
dard speech sounds observed in linguistic datasets,
https://clts.clld.org, List et al. 2021; Ander-
son et al. 2018).

Data were preprocessed by first computing the
phonetic alignment of all cognate sets in the data
using the multiple alignment method proposed by
List (2014). In a second step, these alignments
were automatically trimmed, using the method pro-
posed by Blum and List (2023), which identifies
alignment columns with many gaps and ignores
them, assuming that these result from morpholog-
ical variation that would confuse cognate judg-
ments.For phylogenetic inferences on molecular
sequence data Tan et al. (2015) suggest that filter-
ing worsens phylogenetic inference accuracy. The
study by Blum and List (2023), however, shows
that – for linguistic data – the overall regular-
ity among cognates increases substantially, when
trimming alignments systematically. Since regu-
lar sound correspondences provide the basis for
the identification of classical sound laws that lin-
guists typically use for the traditional subgrouping
by shared innovations, we therefore consider the
use of trimmed data as advantageous over using
untrimmed alignments. Using trimmed phyloge-
nies also has the advantage of reducing the noise,

as can be seen from a rather drastic drop in the
number of divergent sites in phylogenetic datasets
that have been trimmed. However, it is beyond
doubt that a closer investigation of the effects of
trimming should be carried out in follow-up stud-
ies. In a third step, the method by List (2019) was
used to compute correspondence patterns of the
data. Phonetic alignments were conducted with
LingPy (2.6.11, List and Forkel 2023a, https:
//pypi.org/project/lingpy). Trimming and
correspondence pattern detection were carried out
with LingRex (1.4.1, List and Forkel 2023b, https:
//pypi.org/project/lingrex).

Having identified correspondence patterns from
the data, both the information on cognate sets and
the information on correspondence patterns were
converted into binary presence-absence matrices in
Nexus format (Maddison et al., 1997), suitable for
subsequent phylogenetic analysis.

3.2 Methods

Different methods for phylogenetic reconstruction
have been described in the literature and have
been controversially discussed among scholars
for some time. Here we test two very basic ap-
proaches, Bayesian Inference and Maximum Like-
lihood. Since the data that we use for the inference
of phylogenies comes in two flavors, derived as bi-
nary presence-absence matrices from cognate sets
and from sound correspondence patterns, we test
the methods on three different character matrices,
namely the cognate matrix, derived from cognate
judgments, the sound correspondence matrix, de-
rived from sound correspondence patterns, and a
combined matrix, in which we combine (concate-
nate) the cognate and the character matrix within a
single new matrix.

In our experiments, we test three basic hypothe-
ses. The first hypothesis assumes that phylogenetic
inference on cognate sets is more accurate than phy-
logenetic inference based on sound correspondence
patterns. The second hypothesis assumes that phy-
logenetic inference based on sound correspondence
patterns is more accurate than phylogenetic infer-
ence based on cognate sets. The third hypothesis
assumes that both character types do not differ sub-
stantially regarding their phylogenetic signal.

3.2.1 Bayesian Inference
Phylogenetic inferences were conducted using Mr-
Bayes (Ronquist and Huelsenbeck, 2003), version
3.2.7. For the final inferences presented here we
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used the following prior settings for all datasets:
(1) Dirichlet(1.0, 1.0) prior for base frequencies,
(2) gamma-distributed rates, approximated by 4
discrete categories, with standard exponential prior
for the shape of the gamma distribution that mod-
els among site rate heterogeneity, (3) uniform prior
over tree topologies, and (4) strict clock model of
branch lengths.

We initially used an an exponential distribution
with a rate of 1.0 as prior for the Γ model of rate
heterogeneity. This prior constrains the α shape
parameter of the Γ distribution to relatively small
values. As a consequence, MrBayes obtains α val-
ues below 10 for almost all data sets and posterior
samples it draws. This indicates a high to moderate
degree of rate heterogeneity. However, our ML
analyses (see below) yielded substantially higher
ML estimates for α on some datasets. To investi-
gate this discrepancy, we repeated the Bayesian in-
ferences, now using Uniform(0.01, 100) as a prior
for the Γ distribution of rate heterogeneity. As a
consequence, we obtained a different distribution
of the α values that better reflects the correspond-
ing ML estimates.

The more informative default exponen-
tial prior in MrBayes has presumably been
developed for molecular datasets, which
usually exhibit a high degree of rate hetero-
geneity. In other words, ML estimates of
α exhibit a small variance (see, e.g., https:
//github.com/angtft/RAxMLGroveScripts/
blob/main/figures/test_ALPHA.png and the
corresponding paper by Höhler et al. (2021)).
When executing inferences on language datasets,
using this default molecular prior can hence
bias the results. That is, had we not conducted
complimentary ML analyses, this surprising
dataset-dependent bi-modal distribution of α
values on language datasets (see Table 2) would
have gone unnoticed. We thus strongly advocate
that all default priors for molecular datasets
should be carefully and critically re-assessed
when conducting Bayesian inferences on language
datasets and that ML analyses should always
complement Bayesian Inferences.

Motivated by this observation, the Bayesian anal-
ysis was repeated, now using a uniform prior over
the interval [0.01, 100.0] for α.

We sampled the state of the Markov chain ev-
ery 1,000th generation. We stopped MCMC chains
when the average standard deviation of split fre-

quencies (ASDSF) was below 0.01 after discarding
the first 25% of the samples.1

The median posterior value for α are shown in
Table 3. From the remaining 75% of the recorded
samples from the two cold chains, 1,000 trees were
drawn at random and used for further evaluation.

If one of the two individual character types pro-
vides the best results, this would be evidence for
Hypothesis 1 or Hypothesis 2. If the combined
dataset provides the best results, this would be evi-
dence for Hypothesis 3.

To evaluate the quality of the inferred phyloge-
nies, we used the classifications from Glottolog
(Hammarström et al., 2023). The topological dis-
tance or degree of consistency of an inferred strictly
binary (fully bifurcating) phylogeny and a (poten-
tially polytomous/multi-furcating) Glottolog tree
was measured as the generalized quartet distance
(GQD), as proposed in (Pompei et al., 2011).2

3.2.2 Maximum Likelihood Tree Inferences
To exclude any potential bias by the selected
tree inference method, we also conducted in-
dependent Maximum Likelihood (ML) tree
inferences. For ML tree inference we used
RAxML-NG (Kozlov et al., 2019), version
1.2.0. For each dataset and character matrix type
(cognate/sound/concatenated) we executed 20
independent ML tree searches using the default tree
search configuration of RAxML-NG (10 searches
starting from random trees and 10 searches
starting from randomized stepwise addition order
parsimony trees) under the BIN+G model of
binary character substitution with ML estimated
base frequencies. We approximate the Γ model of
rate heterogeneity via four discrete rates. Thus,
each inference includes the ML estimate of the
α ∈ [0.0201, 100] shape parameter that determines
the shape of the Γ distribution. The smaller the
estimate of α, the higher the rate heterogeneity in
the respective dataset will be (Yang, 1995). For
three matrices containing cognate data and for two
matrices encoding sound correspondences, we

1Note that convergence diagnosis metrics such as ASDSF
can only serve to diagnose the failure of an MCMC chain to
converge, but can never confirm its convergence.

2The GQD is a generalization of the well-known quartet
distance (Estabrook et al., 1985) that allows to compare fully
bifurcating trees with multi-furcating trees. The GQD is de-
fined as the number of quartets that are not shared between
the two trees, divided by the number of all possible quartets.
The GQD is a number between 0 and 1, where 0 means that
the two trees are identical, and 1 means that the two trees are
completely different.
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Dataset Cognates Sound Correspondences Combined

ConstenlaChibchan 0.592 99.871 4.178
CrossAndean 1.243 6.334 1.154
Dravlex 0.702 4.301 2.234
FelekeSemitic 1.062 7.430 2.693
Hattorijaponic 99.848 99.897 99.890
HouChinese 2.357 6.120 4.195
LeeKoreanic 8.316 8.420 3.284
RobinsonAP 99.869 15.269 3.486
WalworthPolynesian 1.333 4.233 1.624
ZhivlovObugrian 99.850 4.244 3.134

Table 2: ML estimates of the alpha shape value of the Gamma model for among site rate heterogeneity for all
languages and all character matrices. Values indicating an extremely low rate heterogeneity (all sites evolve at the
same rate) are highlighted in bold.

Dataset Cognates Sound Correspondences Combined

ConstenlaChibchan 1.758 53.115 1.138
CrossAndean 1.620 19.558 0.400
Dravlex 0.749 23.613 0.814
FelekeSemitic 0.932 41.669 0.727
HattoriJaponic 58.012 60.602 0.268
HouChinese 3.011 27.476 0.933
LeeKoreanic 52.045 39.354 0.058
RobinsonAP 56.928 51.818 0.373
WalworthPolynesian 1.480 4.348 0.800
ZhivlovObugrian 58.652 51.280 0.507

Table 3: Median Bayesian estimates of the alpha shape value of the Gamma model for among site rate heterogeneity
for all languages and all character matrices. Values indicating an extremely low rate heterogeneity (all sites evolve
at the same rate) are highlighted in bold.

obtain an estimate for α > 99.8, which means
that all sites evolve at the same rate and that there
is essentially no rate heterogeneity. Hence, trees
on these datasets could also be inferred without
correcting for rate heterogeneity. For the remaining
datasets, the ML estimates of α are below 20,
indicating a moderate to high degree of rate
heterogeneity. This extreme bi-modal distribution
of α estimates differs substantially from the
distribution we observe on tens of thousands of
empirical (i.e., non-simulated) molecular datasets
(Höhler et al., 2021) (also see the respective
distribution of alpha values plot at https:
//github.com/angtft/RAxMLGroveScripts/
blob/main/figures/test_ALPHA.png where
alpha values range approximately between 0.01
and 1.5).

We have currently not been able to identify
which intrinsic dataset properties cause this sur-

prising and extreme bi-modal distribution of alpha
values in language datasets. For the given datasets,
we examined the number of concepts and languages
under study, the dimensions of the MSAs and the
average branch lengths in the trees inferred. We
determined the difficulty score using Pythia (Haag
et al., 2022) and the number of species using the
method for species delimitation implemented in
mPTP (Kapli et al., 2017). For none of these prop-
erties we were able to find a clear connection to the
value estimated for α. One path to explore in anal-
ogy to molecular biology is whether some language
datasets should be regarded as representing individ-
uals from a population of the same species while
others represent distinct species. In fact, for molec-
ular data we have thus far only observed such high
estimates of α values (i.e., low or no rate hetero-
geneity) for population genetic datasets comprising
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sequences of individuals of the same species or
closely related sub-species.

3.3 Implementation

Methods for data handling and preprocessing are
implemented in Python (with specific requirements
and software packages indicated above), R and Ju-
lia. For the phylogenetic analyses, dedicated third
party packages are used. All information on how
to replicate our study and how to inspect individual
analyses are provided in the supplementary mate-
rial accompanying this study.

4 Results

4.1 Bayesian Inference

We computed the GQD to the goldstandard tree for
each of the 1,000 samples from the posterior and
computed the median for each dataset and character
type. The results of our evaluation are shown in Ta-
ble 4. As can be seen from the table, phylogenetic
inferences based on cognate class data and on con-
catenated cognate/sound data provide results that
are about equally good, with a slight advantage for
concatenated data. Phylogenetic inference based
on sound correspondences alone yields results that
are clearly worse. The concatenated dataset pro-
vides the best results for seven out of ten datasets,
while in three cases, the cognate class dataset pro-
vides the best results. The sound correspondence
dataset never yields the best results. These results
provide clear evidence in favor of Hypothesis 1 and
against Hypothesis 2. The decision about Hypothe-
sis 3 is somewhat equivocal.

4.2 Maximum Likelihood

Table 5 shows the evaluation results for the ML
based inferences. Note that we obtain slightly dif-
ferent results when calculate the average distance
to all 20 inferred ML trees or when using the BIN
model (without accounting for among site rate het-
erogeneity). The corresponding GQ distances can
differ by up to 0.17, although differences of > 0.05
only occur for 7 of the 30 MSAs under study. How-
ever, the following observations apply in all cases.
First, there is no dataset where the tree inferred on
the sound correspondences is substantially closer
to the gold standard than the trees inferred on the
cognate or concatenated data. On the other hand,
there are three datasets (CrossAndean, HouChi-
nese, LeeKoreanic) for which inferences on sound
correspondence data yield trees with a substantially

higher GQ distance to the gold standard. Inferences
on the cognate and combined datasets yield com-
parable distances to the gold standard. Hence, the
results of our ML analyses are consistent with the
Bayesian inference results.

5 Discussion and Conclusion

While our results are less conclusive than one
might expect, we think that they show clearly
enough that sound-correspondence-based phylo-
genies should be taken with care. As we show,
sound-correspondence-based phylogenies do rarely
substantially outperform cognate-based phyloge-
nies. Instead, we observe that cognate-based phy-
logenies are topologically much closer to the gold
standard on average. At this point, we cannot say,
whether combined approaches significantly outper-
form phylogenies purely inferred from cognate sets.
Future studies that expand the data we used in this
study are needed to clarify this question.

Given the prior bias we observed for default pa-
rameter priors that work well for Bayesian infer-
ence on molecular data, we advocate for a critical
re-assessment of all priors that are being routinely
used in Bayesian analyses of language data. This re-
assessment can be conducted by routinely execut-
ing analogous ML analyses and carefully inspect-
ing all ML parameter estimates (branch lengths,
tree length, base frequencies, α shape parameter)
and not only focusing on the resulting tree topol-
ogy. We also cross-checked the estimates for the
base frequencies, but did not observe any discrep-
ancies between ML and Bayesian Inference as a
flat default (β(1, 1)) prior was used. The reasons
for the extreme bi-modal distribution of α values
we observed remain unclear, despite the fact that
we have assessed 30 different dataset characteris-
tics and summary statistics that are, however, all
uncorrelated with the α estimate. Using machine
learning techniques to predict α values for datasets
and thereby potentially understand the dataset prop-
erties responsible for this bi-modal distribution is
not feasible due to an insufficient amount of avail-
able data. Investigating this issue hence remains
subject of future work.

Supplementary Material

The supplementary material including data and
code necessary to replicate the experiments
discussed in this study along with instruc-
tions on how to run the code are curated
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Dataset Cognates Sound Correspondences Concatenated

ConstenlaChibchan 0.245 0.414 0.212
CrossAndean 0.148 0.523 0.189
Dravlex 0.336 0.351 0.320
FelekeSemitic 0.083 0.146 0.113
HattoriJaponic 0.585 0.431 0.362
HouChinese 0.240 0.494 0.377
LeeKoreanic 0.224 0.358 0.157
RobinsonAP 0.424 0.281 0.259
WalworthPolynesian 0.179 0.252 0.146
ZhivlovObugrian 0.330 0.356 0.316

median 0.251 0.358 0.240

Table 4: Generalized quartet distances (posterior medians) for Bayesian inference. The best result for each dataset is
highlighted in bold.

Dataset Cognates Sound Correspondences Combined

ConstenlaChibchan 0.335 0.360 0.283
CrossAndean 0.246 0.470 0.088
Dravlex 0.358 0.472 0.307
FelekeSemitic 0.126 0.103 0.126
HattoriJaponic 0.532 0.681 0.559
HouChinese 0.224 0.529 0.186
LeeKoreanic 0.178 0.386 0.204
RobinsonAP 0.355 0.321 0.348
WalworthPolynesian 0.139 0.188 0.192
ZhivlovObugrian 0.322 0.356 0.360

median 0.284 0.373 0.243

Table 5: Generalized quartet distances between the gold standard trees and the the best-scoring ML tree inferred
under the BIN+G model. The best result for each dataset is highlighted in bold.

on GitHub (https://github.com/lingpy/
are-sounds-sound-paper) and archived with
Zenodo (https://doi.org/10.5281/zenodo.
10610428).

Limitations

The ongoing debate of what evidence phylogenetic
reconstruction should be based on cannot be con-
sidered as conclusively solved with this study, al-
though we are confident that our contribution mer-
its the attention of all scholars participating in the
debate. One crucial weakness of our approach,
which we cannot overcome completely at the mo-
ment, is the way we operationalize “sound laws as
evidence for phylogenetic reconstruction”. Here,
we use sound correspondence patterns which we
infer automatically from the data sets. One may

criticize that this procedure is not identical with
the way in which experts do cladistic subgrouping.
In response to such criticism, we emphasize, how-
ever, that every attempt to arrive at a useful way to
compare evidence based on sound correspondence
patterns (and sound laws) with evidence based on
cognate sets, must start at some point, and that
we are convinced that this approach comes quite
close to the evidence traditional scholars defending
phylogenetic reconstruction by innovation have in
mind.
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Abstract

In Universal Dependencies, compounds, which
we understand as words containing two or more
roots, are represented according to tokeniza-
tion, which reflects the orthographic conven-
tions of the language. A closed compound
corresponds to a single word in Universal De-
pendencies (e.g. waterfall) while a hyphenated
compound (father-in-law) and an open com-
pound (apple pie) to multiple words. The aim
of this paper is to open a discussion on how to
move towards a more consistent annotation of
compounds. The solution we argue for is to
represent the internal structure of all compound
types analogously to syntactic phrases, which
would not only increase the comparability of
compounding within and across languages, but
also allow comparisons of compounds and syn-
tactic phrases.

1 Introduction

Compounding, as a word-formation process in
which two or more words (bases, roots, or stems)
are combined to form a new word (Lieber, 2010,
p. 43), is used across languages (Štekauer et al.,
2012, pp. 51–100). However, the term compound
is not only used to refer to words that result from
the combination of two words (cf. flowerpot) or are
outputs of recursive compounding (e.g. German
Jahresabschlussprüfung ‘end-of-the-year audit’),
but also to words that are results of compound-
ing happening in conjunction with derivation or
conversion (e.g. the German adjective blauäugig
‘blue-eyed’),1 and to words that are both direct and
indirect derivatives of these compounds (German
Blauäugigkeit ‘blue-eyedness/naiveté’); cf. Bauer
et al. (2013, p. 442).

1The compound cannot be traced back to blau ‘blue’ and
*äugig ‘*eyed’, because the latter item does not exist in isola-
tion. It is rather analysed as being formed by combining the
adjective blau ‘blue’ and the noun Auge ‘eye’ and simultane-
ously adding the -ed suffix to get the compound adjective.

The criteria for defining compounds (and espe-
cially distinguishing them from syntactic phrases)
vary from language to language, but features with
cross-linguistic validity include, besides the re-
quirement of at least two roots, syntactic and
semantic compactness. What is not decisive,
on the other hand, is spelling. Compounds are
spelled as a single word (closed compounds;
e.g. waterfall), or as several orthographic words
joined by hyphens (hyphenated compounds; e.g.
cyan-magenta-yellow-key) or separated by spaces
(open compounds; e.g. apple pie).

The present paper surveys how compounds
are treated in Universal Dependencies (UD; ver-
sion 2.12, Zeman et al. 2023). Five languages,
namely English, German, Czech, Latin, and Rus-
sian, have been chosen for this pilot survey based
on the working criteria that for each of the lan-
guages (a) at least one treebank is available in
UD, (b) a lexical database exists that contains a
non-negligible number of compounds (and can be
used to identify compounds in the treebanks), and
(c) the authors have a sufficient command of it.
We show that the current treatment of compounds
in UD, which is determined by the languages’ or-
thographic conventions and by UD’s tokenization
rules, renders compounds difficult to identify in the
data, hindering their comparison within and across
languages. However, this paper is not limited to
the mere unification of compound annotation ac-
cording to the existing guidelines. Our proposal is
to annotate the relations between the compound’s
component parts by using the syntactic relations
already implemented in UD, making the analogy
between compounds and multi-word expressions
and syntactic phrases explicit, which has already
been pointed out in the literature.

The paper is structured as follows. Section 2
briefly summarizes those aspects of the linguistic
discussion on compounding that are necessary for
understanding the issues presented. An overview
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of the language data resources that contain com-
pounds and are used in the paper is also provided.
In Section 3, we describe how compounds are cur-
rently handled in UD, exemplifying the general and
language-specific problems of compounds. In Sec-
tion 4, we discuss steps that can be taken to make
the annotation of compounds more coherent and to
bring it closer to the way syntactic relations are an-
notated, but without losing the difference between
compounding and syntax. Future directions regard-
ing the automation of compound identification and
annotation are outlined to some extent. Section 5
concludes the paper.

2 Background

2.1 Compounds in the linguistic literature

Besides the spelling differences mentioned above,
the debate over compounding and compounds has
been centered around the following topics:

– boundary between compounding vs. deriva-
tion, with a special focus on neo-classical forma-
tions (cf. ten Hacken 1994, Bauer 2005, among oth-
ers), and between compounds vs. syntactic phrases
and multi-word expressions in particular (Olsen,
2001; Schlücker, 2019);

– part-of-speech (POS) category of the com-
pound and its components: if the components ob-
tained by splitting the compound do not correspond
to independently existing words, the POS of the
component is determined according to the closest
word; if this applies to the head, the compound’s
POS is different from its head’s POS (cf. the dis-
tinctions below; for examples, see Section 2.2);

– headedness: if one of the components plays
a prominent role, it is considered the head; left-
headed compounds and right-headed compounds
are distinguished;

– endocentricity vs. exocentricity: the head de-
termines the POS and meaning in endocentric com-
pounds; an exocentric compound is headless or,
as Bauer (2001, p. 70) puts it, it is “a compound
which is not a hyponym of its own head element”;

– relations between the compound’s components:
in the literature cited below, the compound’s inter-
nal structure is indicated by brackets, in analogy to
syntactic constituent trees;

– syntactic type of the relation between the com-
pound parts: the crucial distinction is whether the
components are independent of each other (coordi-
nate, coordinative, additive or copulative are some
of the terms used) or whether one depends on the

other (subordinate, determinative, etc.).
These features, assigned varying degrees of

importance and priority, have been employed
to classify compounds. The classifications pro-
posed by Bloomfield (1933), Bally (1944), Marc-
hand (1969), Spencer (1991), Fabb (1998), Olsen
(2001), Haspelmath (2002), Bauer (2001), and
Booij (2005) are compared by Bisetto and Scalise
(2005), who come up with yet another classifica-
tion, where the relation between the components is
used as the first-level criterion2 and it is followed
by the distinction between endocentric and exocen-
tric compounds. Bisetto and Scalise’s classification
was implemented in annotation scheme of the Mor-
boComp database, which is one of the resources
reported on below.

2.2 Compounds in language data resources

The selective list presented here contains language
data sources that include a substantial number of
compounds along with annotations reflecting vari-
ous features discussed in the literature.

MorboComp is a multilingual database of com-
pounds covering 20 languages, including the ones
in scope except for Czech (Guevara et al., 2006).
In Table 1, the annotation provided in MorboComp
is exemplified by three nominal Italian compounds
composed of words from different POS categories
(cf. 2nd and 3rd column). While the first compound
(madrelingua ‘mother tongue’) is endocentric with
the right component playing the role of head, the
latter two are exocentric (and headless). The com-
ponents are listed as they occur in the compound
(8th and 9th column), they may not be existing
words (cf. the third compound in the table). While
potentially highly useful for the purposes of this
paper, as of 2023 the project seems to have been
discontinued and the data are not publicly avail-
able.

Compounds are also covered by CELEX2, which
is a lexical database of English, German, and Dutch
(Baayen et al., 2014). Out of all the linguistic an-
notations provided in this resource, delimitation of
the components (and the linking element, interfix,
if present), POS of the components, and annota-
tion of the internal structure using nested brackets
(cf. (1) to (3)) were the most important for our sur-
vey. In the bracketed structures in German, some

2The authors speak of grammatical relations: “The gram-
matical relations holding between the two constituents of a
compound are basically the relations that hold in syntactic
constructions: subordination, coordination and attribution”.

89



Compound POS Struc Class End Head-C Head-S 1st-C 2nd-C Gloss
madrelingua N [N+N] SUB Tru right right madre lingua mother+tongue
mano lesta N [N+A] ATT Fal none none mano lesta quick+hand

= thief
dormiveglia N [V+V] CRD Fal none none dormi veglia sleep+be awake

= dozing

Table 1: Annotation of Italian compounds in the MorboComp database. The compound’s lemma (1st column)
is followed by its POS category (2nd column), the POS categories of the components (column Struct[ure]),
syntactic relation between the components (Class: subordinate/attributive/coordinate), endocentricity (End[ocentric]:
True/False), placement of the semantic head (Head-C), placement of the syntactic head (H-S), the form of the first
component (1st-C) and of the second one (2nd-C), and the gloss.

morphs are replaced with a representative form
(cf. gang substituted by geh, which occurs in the
infinitive gehen ‘to go’ in (1); but in the English
example (3) woman is not used instead of women).
Based on these features, 19, 304 compounds were
extracted from the German section of CELEX and
6, 267 compounds from the resource’s English sec-
tion.

(1) Umgangssprache ... Umgang+s+Sprache NxN ...

((((um)[V|.V],(geh)[V])[V])[N],

(s)[N|N.N],((sprech)[V])[N])[N] ...

(2) Grossmachtpolitik ... Grossmacht+Politik

NN ... (((gross)[A],(Macht)[N])[N],

((polit)[R],(ik)[N|R.])[N])[N] ...

(3) womenfolk ... women+folk NN

((women)[N],(folk)[N])[N] ...

The GermaNet compound list (Henrich and Hin-
richs, 2011) contains more than 120,000 com-
pounds in its 2023 edition. This source lists for
each compound the lemmas of two immediate an-
cestors from which it was composed ((4) to (6)).
The ancestors provided are existing words, not just
strings occurring in the compound (cf. (5) where
the verb abbiegen ‘to turn’ is given, because *Ab-
biege is not a separate word in German). Com-
pounds with more than two roots are split in suc-
cession; see (6) where the second ancestor is a com-
pound which is analyzed in a separate entry in the
resource. For the first component, two possibilities
are given, if both are equally relevant (cf. the action
noun Umfrage ‘survey’ and the verb umfragen ‘to
survey’ in (6)).

(4) Umgangssprache Umgang Sprache

(5) Abbiegeassistent abbiegen Assistent

(6) Umfrageteilnehmer

Umfrage|umfragen Teilnehmer

DeriNet is a lexical database of Czech where
words that share a common root are arranged
into tree-like graphs according to their morpho-
logical structure – from the morphologically sim-
plest words (unmotivated words) to the most com-
plex. The database contains over a million en-
tries, of which less than a half are corpus-attested
(432 thousand; only this subset is used in this
study). While derivatives are linked to a single
ancestor, compounds are connected to two or more
ancestors. Additional compounds were identified
based on heuristics and lexical lists of compound
parts. When the compounds both with and with-
out the links to their ancestors are counted (all of
them having the explicit Boolean compoundhood
flag set to true) together with the derivatives of all
these compounds, the number totals to 45 thousand
corpus-attested compounds available in DeriNet 2.1
(Vidra et al., 2021). The left graph in (7) shows
the unmotivated nouns dům ‘house’ and rod ‘kin’
as ancestors of the adjectival compound domorodý
‘native’, from which the noun domorodec ‘native
man’ and the adverb domorodě ‘in a native way’
are derived. All of domorodý, domorodec and do-
morodě are counted as compounds.

(7)

domorodý

dům rod

domorodec domorodě

magnus animus

magnanimitas

magnanimus

More than 3 thousand Latin compounds and their
derivatives are part of the Word Formation Latin
database (Litta et al., 2016). The database is or-
ganized in a way similar to DeriNet; cf. the right
graph in (7) modeling the Latin adjective magnan-
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Dataset Language Compounds Total entries
CELEX (Baayen et al., 2014) English 6,267 52,447
CELEX (Baayen et al., 2014) German 19,304 51,728
GermaNet (Henrich and Hinrichs, 2011) German 121,655 215,000
Derinet 2.1 (Vidra et al., 2021) Czech 45,473 431,857
Word Formation Latin (Litta et al., 2016) Latin 3,198 36,258
Golden Compound Analyses (Vodolazsky and Petrov, 2021) Russian 1,699 1,699

Table 2: The databases employed in the present survey for identification of compounds in the Universal Dependencies
treebanks of the five languages. The last two columns specify the number of lemmas (types).

imus ‘high-spirited’ as being formed by combining
the adjective magnus ‘high’ and the noun animus
‘spirit’, and giving rise to the noun magnanimitas
‘high-spiritedness’.

Golden Compound Analyses (Vodolazsky and
Petrov, 2021) is a database of Russian compounds
compiled for training of a compound splitter. It
contains 1, 699 compounds that a re directly traced
back to two or more ancestors. The annotation
includes the POS category of each compound, the
lemmas and POS of each of the components; cf.
полувсерьёз ‘half serious’ in (8).

(8) полувсерьёз,adv,половина,noun,всерьёз,adv

The sources introduced in this section are, with
the exception of MorboComp, further used in this
survey to gain preliminary quantitative insights into
how many compounds are found in the UD tree-
banks; cf. Table 2 for a summary.

3 Current annotation of compounds
in Universal Dependencies

3.1 The annotation guidelines

We start by introducing how words considered as
compounds in the literature are treated according
to the UD annotation principles (de Marneffe et al.,
2021).3 The application of these rules to each of
the languages under survey is described in the fol-
lowing subsections. Syntactic annotation in UD is
based on tokenization, which in turn follows the
spelling conventions of individual languages. Since
the term compound covers words spelled in several
ways, compounds are not annotated uniformly in
UD:

– Closed compounds, appearing in the text as
continuous orthographic words, are handled as
discrete, internally unstructured (= atomic) items
which enter into relations with other items of the

3See also https://universaldependencies.org/guidelines.html

sentence structure. Although the compound’s com-
ponents are linked by similar relations as the con-
stituents of syntactic phrases, these intra-word rela-
tions are not captured in UD because “there is no
attempt at segmenting words into morphemes”.4

– Open compounds, which are spelled as two
(or more) separate words, are treated as two (or
more) items that are arranged into a subtree with the
head component as the root and the less prominent
item(s) as dependent node(s). The relation between
the head and the other component is labeled with
the dedicated syntactic relation compound. This
relation is assigned to open compounds regardless
of the semantic relation between the components
(cf. apple pie = “pie made from apples” vs. coffee
cup = “cup for coffee” vs. water mill = “mill pow-
ered by water”, etc.). Besides the bare compound
relation, there are 22 subtypes of this relation in-
tended for language-specific phenomena,5 of which
only compound:prt is used in some languages un-
der analysis, namely in English and German. The
compound:prt is used for “[p]article verbs where
the particle is realized as a separate word (which
may alternate with affixed particles), for exam-
ple Swedish byta ut (‘exchange’; cf. utbytt ‘ex-
changed’)”.

– Hyphenated compounds are treated in the same
way as in open compounds. The hyphen is attached
to the head, with the relation label punct.6

Annotation of compounds is explored for each
language based on all treebanks available in the
UD collection (i.e. ten treebanks for English with a
total of 46K sentences, four German treebanks con-
taining 208K sentences, six treebanks for Czech
with 208K sentences, five Latin treebanks with

4
https://universaldependencies.org/u/overview/tokenization.html

5
https://universaldependencies.org/ext-dep-index.html

6This is the case for the languages in scope, but the claim
does not hold for all languages in UD. Swedish hyphenated
compounds are for instance handled the same way as closed
compounds.
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Language compound Sentences with compound:prt Sentences with Total Total
relations compound relations compound:prt words sent.

English 22,017 (3,03%) 13,459 (29.27%) 2,485 (0.34%) 2,313 (5.0%) 726K 46K
German 1,787 (0.05%) 1,418 (0.68%) 22,349 (0.59%) 21,897 (10.5%) 3,810K 208K
Czech 2,690 (0.12%) 1,356 (1.06%) 0 (0.00%) 0 (0.0%) 2,222K 128K
Latin 85 (0.01%) 82 (0.1%) 0 (0.00%) 0 (0.0%) 983K 59K
Russian 1,973 (0.11%) 1,812 (1.6%) 0 (0.00%) 0 (0,0%) 1,830K 111K

Table 3: The number of sentences containing a compound relation (assigned to open and hyphenated compounds)
and sentences with the compound:prt label (with particle verbs) in the Universal Dependencies treebanks of the five
languages. The percentage indicates the proportion of sentences with the labels in all sentences of the language’s
treebanks.

59K sentences, and five treebanks for Russian with
111K sentences). The number of sentences contain-
ing the compound relation in the languages’ UD
treebanks is listed in Table 3. The compound:prt
relation is used only in English and German; it will
not be further commented upon.

3.2 The UD treebanks for English

Out of the languages analyzed, English treebanks
contain the highest number of compound relations,
both in absolute numbers and in percentages, ow-
ing to the fact that in this language, NOUN+NOUN

sequences are analyzed as compounds. English is
also a language where these NOUN+NOUN com-
pounds can alternatively be spelled with a hyphen
or even without a space as a single graphical word
(cf, Table 4), resulting in different tree structures;
cf. the textbook example flower pot as an open
compound with the hyphenated (flower-pot) and
closed spelling alternative (flowerpot) annotated in
line with the UD guidelines in (9).

(9)

flower pot
NOUN NOUN

compound

root

flower - pot
NOUN PUNCT NOUN

compound

punct

root

flowerpot
NOUN

root

The compound relation is also assigned to
NOUN+ADJ phrases (emerald green, labour inten-
sive), as well as complex open numerals such as
twenty one.

Even though the relationship between the com-
ponents of the open compound stone wall, which
can be paraphrased as “wall of stones”, is the same
as the relationship between the adjective wooden
and the noun wall (“wall of wood”), the syntactic
relations within these sequences are labeled differ-
ently, namely compound in the first sequence while
amod in the second; cf. (10).

(10)

stone wall
NOUN NOUN

compound

root

wooden wall
ADJ NOUN

amod

root

If there were an adjective to the noun stone (*sto-
nen) or if stone were considered also as an adjective
in English, the annotation would have been no dif-
ferent from wooden wall. This is encountered in the
phrase west side, where west is interpreted as an ad-
jective (while the formally identical noun west and
the formally different adjective western exist) and
therefore handled as an adjectival modifier (amod)
of the nominal governor.

3.3 The UD treebanks for German

German is a language where compounding is
widely used, but compounds are typically spelled
as compact strings. Nevertheless, both hyphenated
compounds (cf. the Anglicism Trackpad-Click) and
open compounds (NOUN+NOUN sequences, often
with proper names; e.g. Präsident Franjo ‘Presi-
dent Franjo’) are documented in the treebanks, both
types assigned the compound relation.

In German we also find cases of (here, closed)
compounds with the components’ relations analo-
gous to those between words in syntactic phrases,
but these analogies are not obvious in the current
annotation; cf. the compound altbekannt ‘well-
known’, which is represented by a single node, and
the phrase älteste bekannt ‘oldest known’, which
is represented as a tree headed by the second word
with the first element linked by the amod relation
in (11).

(11)

altbekannt
ADJ

root

älteste bekannt
ADJ ADJ

amod

root
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3.4 The UD treebanks for Czech
Also in Czech, compounds are commonly written
as continuous strings, still a hyphen may connect
the components in coordinate compounds. In the
data, however, the compound relation appears not
only with hyphenated compounds (indo-australský
‘Indo-Australian’), but also with numeral expres-
sions, which in Czech are separated by spaces.7

The rightmost component is taken as the head and
the other parts are depending on it as modifiers; cf.
the right structure in (12). When a numeral con-
struction enters derivation, the output is a closed
compound and it is represented by a single node; cf.
the adjective dvacetitisícový ‘twenty-thousand’ on
the left in (12) which is traced back to the phrase
dvacet tisíc ‘twenty thousand’.

(12)

dvacetitisícový
ADJ

root

dvacet tisíc
NUM NOUN

compound

root

Similarly, nouns modified by adjectival mod-
ifiers can give rise to adjectives with two roots
and closed spelling. Cf. the noun phrase pravý
úhel ‘right angle’ and the adjectival compound
pravoúhlý ‘right-angled’ in (13), which is close to
the German adjective blauäugig ‘blue-eyed’ men-
tioned in the introductory section in that the right
component does not exist as a separate adjective
(*úhlý ‘angled’ similar to *äugig ‘*eyed’).

(13)

pravoúhlý
ADJ

root

pravý úhel
ADJ NOUN

amod

root

3.5 The UD treebanks for Latin
Latin treebanks contain the lowest number of
compound relations, as documented in Table 3. Its
current usage is limited to numeral expressions if
they are spelled as separate words in a way de-
scribed above for Czech, with the addendum that
sometimes one of the words is unus ‘one’ labeled
as a determiner and not a numeral. Example (14)
is also analogous to Czech, documenting an adjec-
tival compound (magnanimus ‘high-spirited’) that
is based on a noun phrase (here, more specifically,
on a phrase with the head noun preceding the ad-
jectival modifier: animus magnus lit. ‘spirit high’
= ‘high spirit’).

7The interpretation of numerals as compounds, though,
does not conform to the Czech linguistic tradition.

(14)

magnanimus
ADJ

root

animus magnus
NOUN ADJ

amod

root

3.6 The UD treebanks for Russian

In the Russian treebanks, the compound relation is
– unlike in Czech – applied to “noun compounds
(e.g., стресс менеджмент ‘stress management,
Жар птица ‘Fire bird’), but also adjective com-
pounds (e.g., бэд блоки ‘bad blocks’, мини
колонка ‘mini speaker’, Гранд отель ‘Grand
hotel’) and some other types ("+ 1", "№ 1")”.8

Such NOUN+NOUN compounds and ADJ+NOUN

compounds are often loanwords or direct transla-
tions of foreign expressions.

In addition, now similarly to Czech and also
Latin, the compound relation appears also with
numerals (две тысячи ‘two thousand’) and hy-
phenated constructions (город-государство; ‘city-
state’).

Noteworthy are compounds which are analyzed
as NOUN+VERB structures in the Golden Com-
pound Analyses database. Since they are closed
compounds, they are currently represented by a
single node in the treebanks, but the relationship
between the components resembles the obj relation
of the object noun to its governing verb; cf. руко-
мойник ‘washbasin’ and the phrase мыть руки
‘to wash hands’ in (15), or короед ‘bark beetle’
traced back to есть кору ‘to eat bark’ and траво-
сеяние ‘grass sowing’ related to сеять траву ‘to
sow grass’.

(15)

рукомойник
ADJ

root

мыть руки
VERB NOUN

obj

root

4 A proposal of a syntax-based
annotation of compounds

4.1 Covering all types of compounds and
annotating their internal structure

As we have tried to show, the current annotation
does not allow to get a complex picture of com-
pounds (as multi-root items) either within one lan-
guage or across languages. On the one hand, the
compound relation only applies to open and hy-
phenated compounds while closed compounds are

8
https://universaldependencies.org/ru/dep/compound.html

93

https://universaldependencies.org/ru/dep/compound.html


not marked in any way. On the other hand, the
compound relation is underspecified, without cap-
turing the different relations observed between the
components in individual compounds – the exact
same label is used for English NOUN+NOUN com-
pounds, which themselves document a variety of
internal relationships, and for relations between
numerals in Czech, for example.

We now roughly outline a preliminary proposal
for a new annotation of compounds in UD that
should overcome these issues. Rather than offering
an ultimate solution to each individual aspect of
compound annotation, we present in our proposal
one or more possible solutions based on what we
have encountered in the literature or in existing
language resources, with our primary goal being to
initiate a discussion on this topic.

Compounds with all types of spelling should
be approached as complex structures that consist
of components which are linked by a relationship
that is often similar to syntactic relations between
words in syntactic phrases:

(a) Closed compounds should be split into their
respective constituents for this purpose, and fur-
ther handled in the same manner as open and hy-
phenated compounds. Compounds with three and
more components will be divided into individual
parts (e.g. the above German example Umfrageteil-
nehmer ‘survey participant’ into Umfrage+ Teil+
Nehmer) and their relationships will be captured
by arranging them into a tree structure (see the
next points). As illustrated, in closed compounds
a “+” sign may be used on the first (or on all non-
final) components to indicate the original morpho-
logical boundary, so that the information on their
orthography is retained. An interfix, if contained
in a compound, will be part of the preceding com-
ponent (cf. Umgangssprache ‘colloquial language’
as Umgangs+ Sprache).

(b) Since such an approach would yield strings
that do not exist as separate words (cf. *Abbiege
in Abbiegeassistent), we propose – in accordance
with the fact that the words in syntactic phrases
are treated in this way – to assign a lemma to each
component. It can be a full word that is identi-
cal with the component (i.e. Umgang ‘dealing’
or umgehen ‘to deal’ and Sprache ‘language’ for
Umgangs+ Sprache) or close to it (abbiegen ‘to
turn’ and Assistent ‘assistant’ for Abbiege+ Assis-
tent). Derivatives of compounds would share this
lemmatization with their ancestors, e.g. domorodec
‘native man’ would be lemmatized as domo+ rodý

‘native’ (i.e. dům ‘house’ and rod ‘kin’).
(c) All types of compounds should be orga-

nized into subtrees in a way analogous to syntactic
phrases in UD, making a distinction between sub-
ordinate compounds (with the compound’s head
as the governor and its modifier as its dependent;
cf. bohapustý ‘godless’ in (16)) and coordinate
compounds (with the first component as the root of
the subtree and all the other conjuncts depending
on it; cf. černobílý ‘black-and-white’ in (17)).

(16)

boha+ pustý
NOUN ADJ

compound:nmod

root

pustý boha
ADJ NOUN

nmod

root

(17)

černo+ bílý
ADJ ADJ

compound:conj

root

černý a bílý
ADJ CCONJ NOUN

conj
cc

root

(d) Though the subtree modeling the syntac-
tic structure of a compound’s components is pro-
posed to be as close an analogy as possible to the
subtrees of syntactic phrases, the relation may re-
tain the compound/phrase distinction. As bare
compound relations are not informative, the rela-
tions within compounds could be tagged with a
compound:<relation> label, where <relation>
is an already-existing UD syntactic relation. This
restriction regarding forcing compound subtypes
into established relations should pertain solely to
a) currently bare compound relations and b) closed
compounds currently treated as atomic units, not to
established, already-subtyped relations such as the
compound:prt mentioned in Section 3.1. These
should not be overwritten, their further usage is
neither blocked nor discouraged by our proposal.

How these individual pieces of annotation could
be brought into the data is discussed in the next
section.

4.2 Steps towards the proposed annotation
Identification of closed compounds. To get a pre-
liminary idea of which part of the treebank data
for individual languages would be affected by the
proposed annotation, the number of closed com-
pounds in the UD treebanks needs to be estimated
in addition to the number of the compound relations
(which are in Table 3). In this study, we used the
lists of compounds contained in the language re-
sources discussed above in Section 2.2. The figures
in Table 4 are heavily conditioned by the size of
the resources used. The figures represent a lower
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Language Closed compounds Total words Sentences with closed compounds Total sentences
English 5,934 (0.82%) 726K 5,286 (11.57%) 46K
German 156,629 (4.11%) 3,810K 87,104 (50.14%) 208K
Czech 47,103 (2.11%) 2,222K 34,775 (27.27%) 128K
Latin 26,271 (2.62%) 983K 18,353 (31.27%) 59K
Russian 4,803 (0.27%) 1,830K 4,460 (4.00%) 111K

Table 4: A lower bound estimate of the amount of closed compounds (tokens) in Universal Dependencies, based on
searching for the known compounds (and their derivatives) extracted from the data sources listed in Table 2.

bound for the actual amount of closed compounds
contained in UD, since none of the data sources
list the compounds from their respective languages
exhaustively.

With these limitations in mind, Table 4 sug-
gests that the influence of such a change would
be substantial, especially in German, where more
than 156 thousand closed compounds were identi-
fied, which are part of 87 thousand sentences (i.e.
50% of all sentences). The least affected language
by our current estimate would be Russian with less
than 5 thousand closed compounds distributed over
4 thousand (4%) sentences; this is due to the rela-
tively low coverage of the Golden Compound Anal-
yses database used as the Russian compound data
source in this study (see Table 2). The utilization
of resources with higher coverage or another more
sophisticated approach could render these numbers
substantially higher.

For splitting of compounds and lemmatiza-
tion of the components, the language data sources
reviewed above can be taken as a starting point,
because they contain high-quality, linguistically ad-
equate material. Whereas CELEX both divides the
compounds into substrings and assigns representa-
tive forms to its individual parts (cf. geh for gang
above), the other resources provide full-fledged an-
cestors for compounds that would fit our idea of
components’ lemmas. Even if the resources for
some languages are limited, the existing data can –
after unifying the annotation according to the pro-
posal – be used for training automatic tools. A
prototype of such a tool, PaReNT (Svoboda and
Ševčíková, 2022), performs both compound split-
ting and component lemmatization with decent re-
sults on Czech.

Specifying the syntactic structure and assign-
ing syntactic relation labels is another impor-
tant step for which existing sources provide only
very limited data (cf. the bracketed structure in
CELEX). Since the pilot manual annotation was

based around a mostly mechanical process of find-
ing compound-associated phrases, feeding them
into UDPipe (Straka et al., 2016), and observing
the relation within the phrase, a semi-automatic
procedure is being developed that follows this ap-
proach. For example, the German compound Zitter-
gras ‘quaking-grass’ encodes the phrase das Gras
zittert. The syntactic annotation provided for this
phrase by UDPipe is then replicated in the com-
pound, cf. the structures of the compound and of
the underlying phrase both with Gras as nsubj in
(18). The English example killjoy with the obj re-
lation follows in (19).
(18)

Zitter+ gras
VERB NOUN

compound:nsubj

root

Gras zittert
NOUN VERB

nsubj

root

(19)

kill+ joy
VERB NOUN

compound:obj

root

kill joy
VERB NOUN

obj

root

In addition to the examples provided in this sec-
tion ((16) through (19)), the envisioned annota-
tion scheme is applied to the examples that were
presented above in Section 3 – see the Appendix,
where the annotation according to the current UD
guidelines is shown on the left-hand side and the
proposed annotation on the right.

5 Concluding remarks

In this paper, we explored the current treatment of
compounds in UD in five languages. We observed
that the handling of open and hyphenated com-
pounds varies widely according to the particular
language in question, and that closed compounds
are taken into account in none of them. Based on
these observations and also the long-standing tra-
dition of describing compounds from a syntactic
perspective present in the linguistic literature, the
objective of the paper was to open a discussion
on whether a multilingual annotation scheme for
compounds in UD that employs the dependency
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relations already in use is useful and what features
it should have.

The proposed scheme is currently being imple-
mented in the data of the languages under study,
and the aim is to extend it to other languages, which
will inevitably result in modifications to individual
aspects of the scheme.
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Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4290–
4297.

Emil Svoboda and Magda Ševčíková. 2022. Word For-
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Bjarnadóttir, Rogier Blokland, Victoria Bobicev,
Loïc Boizou, Emanuel Borges Völker, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Anouck Braggaar, António Branco,
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Bernadeta Griciūtė, Matias Grioni, Loïc Grobol, Nor-
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fano Lusito, Andry Luthfi, Mikko Luukko, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Menel
Mahamdi, Jean Maillard, Ilya Makarchuk, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
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Balkız Öztürk Başaran, Teresa Paccosi, Alessio

97



Palmero Aprosio, Anastasia Panova, Hyunji Hayley
Park, Niko Partanen, Elena Pascual, Marco Passarotti,
Agnieszka Patejuk, Guilherme Paulino-Passos, Giu-
lia Pedonese, Angelika Peljak-Łapińska, Siyao Peng,
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Appendix: Compounds annotated according to the current Universal Dependencies
guidelines (left) vs. in line with the proposed annotation scheme (right)

flowerpot
NOUN

root

flower pot
NOUN NOUN

compound

root

flower - pot
NOUN PUNCT NOUN

compound

punct

root

flower+ pot
NOUN NOUN

compound: nmod

root

flower pot
NOUN NOUN

compound: nmod

root

flower - pot
NOUN PUNCT NOUN

compound: nmod

punct

root

wooden wall
ADJ NOUN

amod

root

stone wall
NOUN NOUN

compound

root

wooden wall
ADJ NOUN

amod

root

stone wall
NOUN NOUN

compound: nmod

root

altbekannt
ADJ

root

älteste bekannt
ADJ ADJ

amod

root

alt+ bekannt
ADJ ADJ

compound: amod

root

älteste bekannt
ADJ ADJ

amod

root

dvacetitisícový
ADJ

root

dvacet tisíc
NUM NOUN

compound

root

dvaceti+ tisícový
NUM ADJ

compound: nummod

root

dvacet tisíc
NUM NOUN

compound: nummod

root

pravoúhlý
ADJ

root

pravý úhel
ADJ NOUN

amod

root

pravo+ úhlý
ADJ ADJ

compound: amod

root

pravý úhel
ADJ NOUN

amod

root

magnanimus
ADJ

root

animus magnus
ADJ NOUN

amod

root

magn+ animus
ADJ NOUN

compound: amod

root

animus magnus
NOUN ADJ

amod

root

рукомойник
ADJ

root

мыть руки
VERB NOUN

obj

root

руко+ мойник
NOUN ADJ

compound: obj

root

мыть руки
VERB NOUN

obj

root
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Abstract
While massively multilingual speech models
like wav2vec 2.0 XLSR-128 can be directly
fine-tuned for automatic speech recognition
(ASR), downstream performance can still be
relatively poor on languages that are under-
represented in the pre-training data. Continued
pre-training on 70–200 hours of untranscribed
speech in these languages can help — but what
about languages without that much recorded
data? For such cases, we show that supple-
menting the target language with data from a
similar, higher-resource ‘donor’ language can
help. For example, continued pretraining on
only 10 hours of low-resource Punjabi supple-
mented with 60 hours of donor Hindi is almost
as good as continued pretraining on 70 hours of
Punjabi. By contrast, sourcing data from less
similar donors like Bengali does not improve
ASR performance. To inform donor language
selection, we propose a novel similarity metric
based on the sequence distribution of induced
acoustic units: the Acoustic Token Distribution
Similarity (ATDS). Across a set of typologi-
cally different target languages (Punjabi, Gali-
cian, Iban, Setswana), we show that the ATDS
between the target language and its candidate
donors precisely predicts target language ASR
performance.

1 Introduction

For developing automatic speech recognition
(ASR), ‘low resource’ languages are typically clas-
sified as such based on the availability of tran-
scribed speech. Untranscribed speech, texts, or reli-
able metadata about the language are often assumed
to be easily obtainable. This assumption may not
hold true for under-described languages with little
digital representation. For such languages, we are
interested in two questions: 1) does leveraging un-
transcribed speech from a similar, higher-resource
‘donor’ language for pre-trained model adaptation
help improve speech recognition in the target lan-
guage, and 2) how do we select the best donor?

These questions are of interest as ASR system
development with little transcribed speech has be-
come viable with multilingual pre-trained trans-
former models for speech (e.g. wav2vec 2.0 XLSR-
128: Babu et al., 2022). Yet, as most languages are
under-represented in the pre-training data, directly
fine-tuning these models for ASR in the target lan-
guage can yield lower performance compared to
their well-represented counterparts (Conneau et al.,
2023). While recent studies have shown the effec-
tiveness of continued pre-training to adapt these
models to the target language (Nowakowski et al.,
2023; Paraskevopoulos et al., 2024), they involved
using 70–200 hours of target language data. For
some languages, it may be quite difficult to source
this much speech data — even untranscribed.

Thus, in our first set of experiments, we investi-
gated whether supplementing target language data
with data from another language could be a vi-
able approach for model adaptation via continued
pre-training (CPT). We selected Punjabi as our
target language to establish top-line performance
when sufficient data is available (70 hours, approx-
imating the setup in Paraskevopoulos et al., 2024),
along with a limited data baseline (when only 10
hours of Punjabi is available). We compared this
baseline to supplementing the 10 hours of Punjabi
with 60 hours of data from 8 other Indic languages
(Indo-Aryan: Hindi, Urdu, Gujarati, Marathi, Ben-
gali, Odia; Dravidian: Malayalam, Tamil). We fine-
tuned each CPT-adapted model using the same 1
hour of transcribed Punjabi speech.

Results indicated that adding data from unre-
lated Dravidian languages (Malayalam, Tamil) or
dissimilar Indo-Aryan languages (Bengali, Odia)
yielded no better than baseline performance, 25%
word error rate (WER). By contrast, we observed
improved WERs from adding more similar lan-
guages (Marathi, Urdu, Gujarati, Hindi), with
adding Hindi coming close to the 70-hour Punjabi
top-line: 23.2% vs. 22.2%, respectively.
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In our second set of experiments, we investigated
how well measures of similarity between the tar-
get and donor languages predicted target language
ASR performance. We found that commonly used
measures based on external typological databases
such as lang2vec (Littell et al., 2017) were not suffi-
ciently fine-grained for our use case and, crucially,
also varied with the quality/completeness of the
available metadata for a given target language.

To sidestep these issues, we propose the Acous-
tic Token Distribution Similarity (ATDS), which
measures the degree of similarity for two un-
transcribed speech corpora based on frequencies
of occurrence of recurring acoustic-phonetic se-
quences. This measure extends Token Distribution
Similarity (Gogoulou et al., 2023), shown to corre-
late with positive transfer in continued pre-training
for text-based language models. To account for
the text-/token-less nature of untranscribed speech
corpora, we induce them in a bottom-up manner
using wav2seq (Wu et al., 2023), a method for
inducing pseudo-tokens using pre-trained speech
embeddings. We compared the ASR performance
from the Indic language experiments to various
similarity measures and found that ATDS offered
the most accurate ranking. Furthermore, ATDS cor-
rectly predicted the best donor language between
two options for three non-Indic low-resource lan-
guages (Galician, Iban, and Setswana).1

In sum, the main contributions of this paper
are: 1) a systematic study of pairwise transfer be-
tween languages in continued pre-training and its
effects on target language ASR performance, and
2) the development, analysis, and first validation
of ATDS — a fine-grained, bottom-up measure of
acoustic-phonetic similarity to predict this ASR
performance. To facilitate reproducibility and fur-
ther research, we make available all our code,
model checkpoints, and experimental artefacts.2

2 Background: wav2vec 2.0

In this section, we provide a high-level overview
of the wav2vec 2.0 model and highlight specific
details about its architecture and training objectives
that will be relevant to our later discussions. De-
veloped by Baevski et al. (2020), wav2vec 2.0 is
a type of self-supervised pre-trained transformer
model. In machine learning, supervised learning in-

1Appendix B provides an overview of the languages.
2https://github.com/fauxneticien/

w2v2-cpt-transfer

volves the use of human-generated labels (e.g. tran-
scriptions), which can be time- and cost-intensive
to create. In self-supervised pre-training, the goal
is to first train the model on a proxy task for which
it can derive its own labels, before the resulting
model is adapted or ‘fine-tuned’ to the target task
(e.g. ASR). Leveraging self-supervised pre-training
has shown remarkable success across a variety of
tasks when combined with a transformer-based
model (Vaswani et al., 2017), which excels at learn-
ing how various units in a sequence co-occur (e.g.
words in a sentence). Naturally, this has spurred
on much experimentation for leveraging such mod-
els for low-resource ASR (e.g. Coto-Solano et al.,
2022; Guillaume et al., 2022; Macaire et al., 2022;
Bartelds et al., 2023).

As illustrated below in Figure 1, the wav2vec
2.0 architecture consists of three parts: 1) a con-
volutional feature extractor that extracts learnable
features from strided frames in the audio input, 2)
a quantiser which clusters the audio features into
into a set of discrete code vectors (q1, ..., q5), and 3)
a transformer attention network that learns context-
enriched representations (h1, ..., h5). For self-
supervised pre-training, the model is optimised us-
ing a joint contrastive loss and a diversity loss. The
contrastive loss requires the model to use the neigh-
bouring context to distinguish each masked frame
amongst a set of negative distractors.3 The diversity
loss requires the model to make equal use of all
code vectors, preventing the model from relying on
a small subset which can lead to trivial/sub-optimal
solutions.

Feature extractor (49 Hz)

Quantiser
q5q1 q2 q3 q4

Transformer

Contrastive Loss + Diversity Loss
ℒ

Masked

[ k æ t ]

h1 h2 h3 h4 h5

Figure 1: Illustration of the wav2vec 2.0 architecture.
Adapted from Baevski et al. (2020).

We highlight here two important details relevant
for our later discussions on acoustic tokens. The
first is that the representations learned by the trans-

3A speech variant of a Cloze test: e.g. given “The big ___
chased the small rat.”, select the correct answer from {cat, rat,
small}.
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former network are particularly useful for speech
applications requiring fine-grained comparisons of
acoustic-phonetic content, e.g. speech information
retrieval (San et al., 2021), second language pro-
nunciation scoring (Bartelds et al., 2022; Richter
and Guðnason, 2023), spoken dialect classifica-
tion (Bartelds and Wieling, 2022; Guillaume et al.,
2023) — particularly those learned by the middle
layers of the transformer network (e.g. layers 12–
16 of a 24-layer network).

The second detail is that these representations
are encoded as vectors in a high-dimensional latent
space and emitted at a rate of 49 Hz. Combined
with the diversity loss that requires exploration of
this space, there is a many-to-many relationship
between phonetic categories and these vectors —
both in the latent space and in time. For example,
as illustrated in Figure 1, a single speech sound
such as [æ] may last for three time steps (yielding
h2, h3, h4). The first two vectors (h2, h3) may be
very close in the latent space, as they map to the
start of [æ] sounds while the third h4 may map to
[æ] sounds preceding [t] and is thus located in a
different part of the latent space. Thus to derive
phone-like tokens from these representations, we
must group them in the latent space (e.g. using k-
means clustering) and then again in time according
to how the grouped units themselves routinely co-
occur (e.g. using subword modelling).

In this way, the goal of tokenisation for both
text and speech is driven by the need to derive units
of a practical granularity based on the nature of the
input: from coarser-grained words to finer-grained
sub-words in text and, inversely, finer-grained sub-
phones to coarser-grained phones in speech. We
return to these two details in our development of
the Acoustic Token Distribution Similarity measure
for comparing the acoustic-phonetic similarity of
two untranscribed speech corpora.

3 A systematic study of pairwise transfer

3.1 Motivation

Since the release of the original English wav2vec
2.0 model pre-trained on the 960 hour LibriSpeech
corpus (Panayotov et al., 2015), additional mas-
sively multi-lingual variants have also been devel-
oped: XLSR-53, pre-trained on 56k hours from 53
languages (Conneau et al., 2021); XLSR-128, pre-
trained on 436k hours from 128 languages (Babu
et al., 2022); and MMS, pre-trained on 491k hours
from 1,406 languages (Pratap et al., 2023). In each

case, the vast majority of the pre-training data is
drawn from European language sources.

Given the under-represented nature of most lan-
guages in these wav2vec 2.0 models, several stud-
ies have investigated continued pre-training (CPT)
to adapt them for target languages (e.g. Javed et al.,
2022; DeHaven and Billa, 2022; Nowakowski
et al., 2023; Bartelds et al., 2023; Paraskevopoulos
et al., 2024). Nowakowski et al. (2023) adapted the
XLSR-53 model using 200 hours of Ainu. Using
the same 40 minutes of transcribed Ainu for ASR
fine-tuning, they found that the adapted model re-
sulted in a 8.8% absolute word error rate (WER) de-
crease over the off-the-shelf XLSR-53 model. For
many low resource languages, however, obtaining
200 hours of speech data may not be feasible.

In their study of unsupervised domain adapta-
tion for Greek, Paraskevopoulos et al. (2024) found
adapting the XLSR-53 model via CPT using a
small 12-hour dataset of Greek read speech to be
ineffective. However, they found that successful
CPT-based adaptation could be achieved with the
use of multi-domain data, e.g. 12 hours of read
speech mixed with 70 hours of newscasts. Given
these findings, we were motivated to investigate
whether comparable results could be achieved by
supplementing target language data with data from
another language.

3.2 Method

3.2.1 Model training
As our primary interest was in examining how
downstream ASR performance is affected by the
dataset(s) used in continued pre-training (CPT), we
carried out nearly identical experiments as those in
Nowakowski et al. (2023) by obtaining their con-
figuration file for wav2vec 2.0 pre-training using
the official fairseq library.4 Similarly, we follow
the official fine-tuning recipe suitable for 1 hour
of transcriptions. For both procedures, we made
modifications to suit our hardware configuration
and compute budget, as detailed in Appendix A.

3.2.2 Data
For a systematic investigation of how downstream
ASR performance in a given target language varies
with the choice of donor language added during
CPT, we required a dataset with some specific char-
acteristics: a) contains a variety of both similar
and dissimilar languages with, b) at least 60 hours

4https://github.com/facebookresearch/fairseq
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per language, c) and collected in relatively similar
acoustic conditions, and d) not have already been
used in the original pre-training process. Accord-
ingly, for this set of experiments, we sourced data
from IndicSUPERB (Javed et al., 2023), a dataset
of 12 Indic languages containing 65–180 hours of
read speech per language (Indo-Aryan: Bengali,
Gujarati, Hindi, Marathi, Odia, Punjabi, Sanskrit,
Urdu; Dravidian: Kannada, Malayalam, Tamil, Tel-
ugu).

Amongst these 12 IndicSUPERB languages, we
selected Punjabi as our target language as it is rel-
atively low-resourced (cf. Hindi, Tamil), its geo-
graphical and typological location (yielding a va-
riety of closer and farther geographic/typological
distances to the others), and also native speaker-
linguist expertise on our research team for data
validation and error analysis.

As illustrated below in Figure 2, we began by
selecting for our top-line condition a random 70h
subset of Punjabi from the total 136h available in
IndicSUPERB, and then from this subset a random
10h selection for our baseline, and again a random
1h subset for fine-tuning. We also selected a ran-
dom 1h validation and 2h test set both disjoint from
each other and any data to be used for pre-training.

1h Valid

Punjabi (136h) (e.g. Hindi, 150h)

70h

10h2h Test

1h Fine-tune
Audio only
Audio + Transcriptions

*Bengali, Gujarati, Hindi, 
Malayalam, Marathi, Odia, 

Tamil, Urdu

Target language Donor language*

60h 60h60h

3 x random 60h subsets

Figure 2: Data selection for transfer experiments

Additionally, for each donor language (Bengali,
Gujarati, Hindi, Malayalam, Marathi, Odia, Tamil,
Urdu), we created three random 60h subsets. Given
the total amounts of data available in IndicSU-
PERB for each language (e.g. 87h for Urdu but
129h for Gujarati), there is however some unavoid-
able overlap between these subsets for each lan-
guage (i.e. they are not disjoint 60h splits). Using
each of the 60h subsets, we conducted 3 separate
CPT runs per language to obtain estimates for both
within- and between-donor language differences
on downstream ASR performance.

3.3 Results and discussion
Compared to directly fine-tuning the XLSR-128
model, adapting the model first via continued pre-
training (CPT) with 70 hours of Punjabi yields
a large improvement in downstream ASR perfor-
mance (unadapted 30.8% vs. 22.2% CPT-adapted,
70h). This constitutes an absolute WER difference
of 8.6% and is consistent with improvements re-
ported in previous CPT experiments (Nowakowski
et al., 2023; Paraskevopoulos et al., 2024). We
found that model adaptation with only 10 hours
of Punjabi still yielded an appreciable improve-
ment over the unadapted model: 5.8% absolute
(unadapted 30.8% vs. 25.0% CPT-adapted, 10h).

We now turn to our experiment conditions in
which 10h of Punjabi is supplemented with 60h of
data from another language. As summarised below
in Table 1, the effects of donor language on Punjabi
ASR performance can be divided into roughly three
strata. In the bottom stratum (E3), we find unrelated
Dravidian languages (Tamil, Malayalam) or dissim-
ilar Indo-Aryan languages (Bengali, Odia). When
data from these languages are added during CPT,
we find no meaningful difference compared to us-
ing only 10 hours of Punjabi (WERR: -0.8–0.0%).

In the middle stratum (E2), we find relatively
similar Indo-Aryan languages (Marathi, Gujarati,
Urdu). When data from these languages are added,
we find modest improvements over using only 10
hours of Punjabi (WERR: 1.6–2.4%). In the top
stratum (E1), we find Hindi — the most simi-
lar Indo-Aryan language amongst our candidate
donors. When data from Hindi is added, we find
a large improvement over using only 10 hours
of Punjabi (WERR: 6.0%). In fact, adding the
60h of Hindi results in ASR performance that
is in absolute terms close to the 70h Punjabi
topline: 23.5% vs. 22.2%, respectively.

We have established that there are observable
differences in target language ASR performance
that vary with the donor language added during
continued pre-training and that these differences
appear to align with qualitative notions of language
similarity. In the next section, we investigate quan-
titative measures of similarity and evaluate their
correlations to these observed differences.

4 A bottom-up approach to similarity

4.1 Motivation
A common method for calculating similarities be-
tween languages is to use language vectors from the
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Condition
Test set WER (WERR)

Data for continued pre-training
Median Range

T. In-domain top-line 22.2 (11.2%) - 70h Punjabi

E1. Most similar 23.5 (6.0%) 23.4–23.8 10h Punjabi + 60h Hindi

E2. Similar

24.4 (2.4%) 24.3–24.5 10h Punjabi + 60h Urdu

24.4 (2.4%) 24.2–24.4 10h Punjabi + 60h Gujarati

24.6 (1.6%) 24.5–24.7 10h Punjabi + 60h Marathi

B. Only target data baseline 25.0 - 10h Punjabi

E3. Unrelated/dissimilar

25.0 (0.0%) 25.0–25.2 10h Punjabi + 60h Odia

25.1 (-0.4%) 25.0–25.4 10h Punjabi + 60h Tamil

25.1 (-0.4%) 25.0–25.3 10h Punjabi + 60h Malayalam

25.2 (-0.8%) 25.1–25.2 10h Punjabi + 60h Bengali

U. Unadapted XLSR-128 30.8 (-23.2%) - -

Table 1: Automatic speech recognition (ASR) results from fine-tuning wav2vec 2.0 XLSR-128 (Babu et al., 2022)
with and without adaptation via continued pre-training (CPT). CPT-adapted models were trained for 10k updates
using 70 hours of Punjabi for the topline (T), 10 hours of Punjabi for the baseline (B), and 10 hours of Punjabi
combined with 60 hours of data from another language for the experiment conditions (E1, E2, E3). All models were
fine-tuned with the same 1 hour of Punjabi data. ASR performance reported in word error rate (WER) and relative
word error rates (WERR), relative to the 10 hour CPT baseline (B). For each experiment condition, median and
range were obtained from 3 CPT runs per language with different donor data in each run.

lang2vec database (Littell et al., 2017), which itself
draws on other databases (e.g. phonological infor-
mation from WALS: Haspelmath, 2009). Wu et al.
(2021) investigated how well measures based on
lang2vec and other data sources correlated with suc-
cessful transfer learning for ASR. Of the lang2vec
similarity metrics, they found that genetic and ge-
ographic measures correlated highly with better
ASR performance but, surprisingly, inventory and
phonological measures did not. Acoustic similar-
ities as derived from embeddings of a pre-trained
spoken language identification model were also
found to correlate strongly with better ASR perfor-
mance. In the context of continued pre-training, we
questioned whether the to-be-adapted model could
be used for this purpose.

Investigating an analogous question in the text
domain, Gogoulou et al. (2023) evaluated various
measures for predicting transfer characteristics for
transformer language models initially pre-trained
on one language (e.g. English) and subsequently
adapted to another (e.g. Icelandic), and how these
characteristics varied according to the distributions
of data in the respective language corpora. They
propose a novel metric: the Token Distribution Sim-
ilarity (TDS), which correlated with positive trans-

fer. As illustrated below in Figure 3 (a), the TDS
is derived by 1) using the pre-trained model’s to-
keniser to process a sample of data from each lan-
guage, 2) then generating a token frequency vector
for each language, and 3) taking the cosine similar-
ity between these two vectors. Given these promis-
ing results for predicting positive cross-lingual
transfer for continued pre-training on text, we in-
vestigated whether they extended to the speech do-
main.

4.2 Induction and analysis of acoustic tokens

In order to compute token distribution similarity
for two untranscribed speech corpora, we first need
to ‘tokenise’ the corpora. For this purpose, we can
leverage speech representations extracted using a
middle transformer layer (e.g. Layer 12 of 24) of
a pre-trained wav2vec 2.0 model such as XLSR-
128. As previously highlighted above (in §2), these
representations are useful for fine-grained compar-
isons of acoustic-phonetic content and, to make
use for these representations for inducing phone-
like tokens, they must first be grouped in the high-
dimensional latent space and then again in time
based on their co-occurrences.
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Figure 3: Derivation of the Acoustic Token Distribution Similarity (ATDS) measure for predicting positive transfer
between two languages resulting from continued pre-training (CPT) of a pre-trained speech model (e.g. XLSR-
128). ATDS extends to the speech domain the concept of Token Distribution Similarity (TDS: Gogoulou et al., 2023),
shown to predict positive transfer for CPT in the text domain. To account for the token-less nature of untranscribed
speech, pseudo-tokens are derived using the wav2seq process proposed by Wu et al. (2023). As is the case for
text tokenisation, the goal is to derive units of practical granularity based on the raw input. While typical text
tokenisation sub-divides words into sub-words (e.g. eating→ eat,ing), the analogous process for raw speech data
involves grouping sub-frames into more phone-like units: first based on featural similarity (e.g. using a k-means
model on embeddings) then again based on distributional similarity (e.g. using a sub-word modelling).

Accordingly, we use the wav2seq procedure
proposed by Wu et al. (2023).5 As illustrated be-
low in Figure 3 (b), the first step is using a pre-
trained model (e.g. XLSR-128) to extract speech
embeddings from a transformer layer. The second
step involves training a k-means model to cluster
these embeddings (i.e. group similar sounds to-
gether). The cluster indices are converted to charac-
ters (by a simple Unicode table lookup, e.g.10→k,
19→t, etc.) and then deduplicated. To discover fre-
quently occurring sound sequences, the third step
involves using these character strings to train a
subword model (e.g. via sentencepiece: Kudo and
Richardson, 2018). Once these models are trained
on a subset of the corpus, they are used to derive
pseudo-tokens for the rest of the corpus and, in our
application, also for candidate donor corpora.

To discover whether these pseudo-tokens exhib-
ited both within- and cross-language consistency,
we conducted an analysis using the Punjabi and
Hindi datasets of the CommonVoice corpus (Ardila
et al., 2019), for which forced-aligned phoneme
labels are available in the VoxCommunis corpus

5Originally developed for inducing pseudo-tokens for use
in a self-supervised pseudo speech recognition task for jointly
pre-training a speech encoder and text decoder.

(Ahn and Chodroff, 2022). For this analysis, we
trained the k-means and subword models on Pun-
jabi (the target language) and then induced pseudo-
tokens for both Punjabi and Hindi.6

Results of our analyses revealed that the most
frequent pseudo-token in Punjabi, t1, consistently
corresponded to the /A/ label, i.e. P (/A/|t1) =
0.69. Similarly, we found that t2 consistently cor-
responded to high-back vowels: i.e. P (/o/|t2) =
0.56, P (/u/|t2) = 0.18, P (/U/|t2) = 0.09. For Hindi,
we found that t2 also consistently corresponded to
the same vowel labels, while t1 consistently corre-
sponded to /a:/ — also a low vowel. Such minor
differences are likely attributable to VoxCommunis
labels being automatically derived via grapheme-
to-phoneme conversion and thus do not represent
narrow phonetic transcriptions. Given their broad
categorical consistency, these tokens may be useful
for cross-language comparisons.

4.3 Acoustic Token Distribution Similarity

We propose the Acoustic Token Distribution Simi-
larity (ATDS) measure, which, as illustrated above
in Figure 3 (c), is a straightforward composition of

6Appendix A details the analysis procedure.
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Punjabi (PAN)

Donor
Lang.

Median
WERR
(of 3 runs)

Similarity Measure 

ATDS SB
lang2vec

Syn. Geo. Feat. Inv. Gen. Phon.
E1. Hindi 6.0 0.96 0.96 0.67

1.0*
0.6

0.67 0.38 0.41

E2.
Gujarati 2.4 0.93 0.82 0.46 0.72

0.43 1.0*Urdu 2.4 0.93 0.88 0.51

0.9

0.67
Marathi 1.6 0.92 0.89

0.47
0.65

E3.

Bengali -0.8 0.90 0.81

0.5

0.66 0.38 0.38
Malayalam -0.4 0.89 0.83

0.32
0.64 0.00

1.0*Odia 0.0 0.87 0.71 0.65 0.43
Tamil -0.4 0.86 0.76 0.47 0.59 0.00

Correlation of measure to WERR: 0.89 0.78 0.79 0.77 0.83 0.55 0.48 -0.31

Table 2: Acoustic Token Distribution Similarity (ATDS) measure between Punjabi and donor language predicts
downstream speech recognition performance as measured by relative word error rate (WERR) when fine-tuning
the wav2vec 2.0 XLSR-128 model adapted using continued pre-training (CPT) on 10 hours of target and 60 hours
of donor language speech. Other similarity measures for comparison are derived embeddings of the SpeechBrain
language identification model and from the lang2vec database (syntactic, geographic, featural, inventory, genetic,
and phonological). * indicate erroneous similarity scores resulting from identical, imputed vectors within the
database. Correlations (Pearson’s r) calculated using 24 data points (8 donor languages x 3 CPT runs per language
with different donor data in each run).

wav2seq (Wu et al., 2023) and Token Distribution
Similarity (TDS: Gogoulou et al., 2023). We pro-
vide two analyses showing that the ATDS between
a target language and its candidate donors precisely
predicts downstream ASR performance in the tar-
get language resulting from continued pre-training
of a speech model on target and donor data.

In our first analysis, we examined how well
ATDS can account for the results of the Indic lan-
guage experiments and how ATDS compares to
other measures. Accordingly, for ATDS, we trained
the relevant wav2seq models on Punjabi (the target
language), induced tokens on Punjabi and all donor
languages, then calculated the token frequency vec-
tors and computed the pairwise cosine similari-
ties. Similar to Wu et al. (2021), we also computed
similarities using lang2vec and corpus-level means
of utterance-level embeddings extracted using a
pre-trained spoken language identification model
(SpeechBrain: Ravanelli et al., 2021).

Results of this analysis revealed that the two
bottom-up acoustic measures provide overall a
finer-grained ranking than top-down lang2vec mea-
sures. For example, as shown above in Table 2 Feat.
(a combination of all lang2vec data sources), the
featural similarity, splits the four languages into
two groups: similar (0.6: Hindi–Marathi) and dis-
similar (0.5: Bengali–Tamil). Additionally, we also
found erroneous, perfect similarity values (1.0),

resulting from identical language vectors for the
category (e.g. Phon.: Marathi-Punjabi), likely an
artefact of data imputation. These results demon-
strate that while top-down data may be suitable for
more noise-tolerant applications (e.g. large-scale
typological comparisons), they may not be well
suited for helping select donors for a specific under-
described target language if the relevant metadata
is unavailable or inaccurate.

While both acoustic measures accurately select
Hindi as the most suitable donor, ATDS provides a
better ranking of the donor languages. As shown in
Table 2 (SB), the measure based on SpeechBrain
embeddings ranks Gujarati as being as dissimilar
to Punjabi as Bengali/Malayalam. We make a sim-
ilar observation as above that using embeddings
from a different pre-trained model than the one to
be adapted via CPT risks adding unwanted noise
to an inherently hard task. Leveraging the repre-
sentations of the pre-trained model to be adapted
reduces this risk, reflected in ASR improvement
being most correlated with ATDS (r = 0.89).

In our second analysis, we examined whether
the ATDS measure generalised beyond the Indic
languages through identical CPT experiments on a
typologically varied set of target languages. We se-
lected triplets of languages consisting of 1) a target
language, 2) a language more similar to the target
as measured by ATDS, and 3) another language
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Galician (GLG) Iban (IBA) Setswana (TSN)

E1. SPA (0.96)
10h GLG + 60h SPA

13.7 (8.7%) ZSM (0.91)
7h IBA + 60h ZSM

15.9 (4.2%) SOT (0.96)
10h TSN + 56h SOT

11.6 (7.9%)

E2. POR (0.89)
10h GLG + 60h POR

13.9 (7.3%) IND (0.88)
7h IBA + 60h IND

16.4 (1.2%) NSO (0.88)
10h TSN + 56h NSO

12.0 (4.8%)

B. 10h GLG 15.0 7h IBA 16.6 10h TSN 12.6

U. - 15.4 (-2.7%) - 21.4 (-28.9%) - 20.8 (-65.1%)

WER (WERR) WER (WERR) WER (WERR)

Table 3: Validation of the Acoustic Token Distribution Similarity (ATDS) measure for predicting target language
automatic speech recognition (ASR) performance as a result of continued pre-training (CPT) of the wav2vec 2.0
XLSR-128 model using mix target and donor language data. For each target language (Galician, Iban, Setswana),
U. indicates ASR performance from using the unadapted XLSR-128 model, B. indicates performance from CPT
adaptation with only target language data (7–10 hours), and E1–E2 using target language data supplemented
with 56–60 hours of donor language data. Parentheses next to donor language names indicate ATDS to the target
language. Percentages within parentheses indicate relative word error rate (WERR), relative the baseline word error
rate (B) within the same column. Donor language codes are: Spanish (SPA), Portuguese (POR), Malay (ZSM),
Indonesian (IND), Sesotho (SOT), Sepedi (NSO).

relatively farther. As summarised below in Table 3,
the target languages were Galician (West-Iberian),
Iban (Malayic), and Setswana (Sotho–Tswana). For
Galician, ATDS predicted that Spanish (SPA: 0.96)
was more similar than Portuguese (POR: 0.89);
for Iban, Malay (ZSM: 0.91) more than Indonesian
(IND: 0.88); and for Setswana, Sesotho (SOT: 0.96)
more than Sepedi (NSO: 0.88).

Results of these CPT experiments are sum-
marised below in Table 3. We first note the large dif-
ference between Galician and the other languages
in the improvement yielded by CPT baselines
(B) compared to fine-tuning the unadapted XLSR-
128 (U). As we sourced Galician data from Com-
monVoice (on which XLSR-128 was already pre-
trained), CPT yields little further gain (U. 15.4%
vs. B. 15.0%). By contrast, ASR performance was
much improved via CPT adaptation for both Iban
(U. 21.4% vs. B. 16.6%) and Setswana (U. 20.8%
vs. B. 12.6%). These results constitute further evi-
dence that directly fine-tuning massively multilin-
gual models can yield sub-optimal performance
for under-represented languages and that continued
pre-training can help close this performance gap.

We found that the ATDS predictions are borne
out for all three target languages (even for Gali-
cian in spite of relatively reduced benefits). As
shown above in Table 3 for each of the target lan-
guage columns (Galician, Iban, Setswana), larger
improvements in target language ASR performance
are observed as a result of continued pre-training on
target language data supplemented with data from
a more similar language as measured by ATDS

than a less similar one (respectively, rows E1. vs.
E2). Combined with results for Punjabi above, our
findings altogether provide strong evidence for the
effectiveness of ATDS for predicting positive trans-
fer between target and donor languages for CPT-
based model adaptation.

5 Limitations and future directions

We limited the scope of this paper to exploring the
transfer between languages and as such used the
standard wav2vec 2.0 pre-training recipe for model
adaptation. We acknowledge that this requires a
large compute budget beyond what is affordable in
many low resource scenarios. In future, we hope to
investigate whether or to what extent transfer learn-
ing can be combined with more compute-efficient
adaptation methods.

To conduct a systematic study of pairwise trans-
fer, we used domain-matched, high-quality ASR
datasets containing mostly read speech and only
examined sourcing data from a single donor lan-
guage. Questions relating to multi-donor and multi-
domain transfer and how such interactions affect
downstream performance in the target language
will need to be addressed in future research.

6 Conclusion

For developing automatic speech recognition
(ASR) systems for languages with very few re-
sources, we demonstrated that massively multilin-
gual pre-trained models for speech can be suc-
cessfully adapted via continued pre-training us-
ing a mix of data from the target language and
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supplemental data from a similar, higher-resource
‘donor’ language. Additionally, we motivate and
propose the Acoustic Token Distribution Similarity
(ATDS) — a novel measure of similarity to predict
positive transfer between a donor and target lan-
guage. Across a set of typologically different target
languages (Punjabi, Galician, Iban, Setswana), we
show that the ATDS between the target language
and its candidate donors precisely predicts target
language ASR performance.

We attribute this predictive capability of ATDS
to leveraging the knowledge of the pre-trained
model to be adapted, its inductive biases and train-
ing objectives, and the distributions within the can-
didate datasets that will be used to adapt it. It
is indeed expected that this measure then is able
to predict downstream task improvements better
than measures based on other models or exter-
nal information — the latter of which is not al-
ways available or reliable for under-described lan-
guages. Given the high cost associated with con-
tinued pre-training, however, we argue that using
a well-calibrated, task-specific measure minimises
the chance of costly, unexpected outcomes.

We make a final observation here that various
target-donor language pairs where we observed suc-
cessful transfer exist in linguistic situations with
significant, sustained contact. For example, Gali-
cian is a minoritised language in Spain and virtu-
ally all Galician speakers are bilingual in Spanish
(de la Fuente Iglesias and Pérez Castillejo, 2020).
Similarly, Macaire et al. (2022) report that fine-
tuning a model pre-trained on French was particu-
larly successful for Gwadloupéyen and Morisien,
two French-based creole languages. These findings
suggest that to develop truly inclusive speech tech-
nologies in a resource efficient manner, what will
be required is a nuanced understanding of what fac-
tors linguistic and non-linguistic yield sufficiently
high levels of cross-lingual similarity which in turn
permit positive transfer.
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A Materials and methods

A.1 Data

Galician, Spanish, Portuguese, and Indonesian
data were sourced from CommonVoice (Ardila
et al., 2019); Setswana, Sesotho, and Sepedi from
NCHLT (Barnard et al., 2014); Malay from MASS
(Tan et al., 2009); and Iban from Juan et al.
(2015). For Iban only 7 hours of target data was
available and for Sesotho/Sepedi only 56 hours per
language of donor data was available. Experiments
were otherwise identical to the Indic experiments.

A.2 Continued pre-training

We carried out nearly identical experiments as the
single-language experiments in Nowakowski et al.
(2023) for Ainu, as we obtained their configura-
tion file for wav2vec 2.0 pre-training using the
fairseq library.7 We made approriate modifications
to suit our hardware configuration (4 x A100 40GB
GPUs), setting the batch size to 1.5M samples per
GPU and gradient accumulation to 16 steps, yield-
ing an effective batch size of 100 minutes.

As in other wav2vec 2.0 multilingual pre-
training configurations (Conneau et al., 2021; Babu
et al., 2022; Javed et al., 2023), we form multi-
lingual batches (specifically, bi-lingual in our
case).8 We set our sampling alpha to 0.0, which
results in data being drawn uniformly from the
two languages (i.e. target is over-sampled). We
make this modification based on the CPT method
in Paraskevopoulos et al. (2024), where in- and out-
of-domain Greek data were evenly sampled in each
batch. In this way, we consider this method akin to
“similar-language regularisation” (Neubig and Hu,
2018), as we are more concerned with preventing
over-fitting rather than learning about the donor
data.

For each CPT run, we start from the official
XLSR-128 model checkpoint and update the model
for 10k steps. We determined this value based on
our pilot runs. We found that 10k updates were
sufficient to observe improved downstream ASR
performance comparable to previous results (e.g.
Nowakowski et al., 2023). This choice permitted us
to maximise the number of languages compared in
this paper, as each run required on average 15 hours
(for 10k steps). For select runs, we also verified

7https://github.com/facebookresearch/fairseq
8Specifically, we use the implementation adapted from

https://github.com/AI4Bharat/IndicWav2Vec/
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that no further improvements could be obtained
with additional updates (up to 20k).

A.3 ASR fine-tuning and evaluation
For ASR fine-tuning, we follow the official
wav2vec 2.0 fine-tuning recipe suitable for 1
hour of transcriptions, modified for our hardware
setup. We use a single A6000 48 GB GPU with
a batch size of 5.6M samples per GPU and accu-
mulate gradients for 2 steps, yielding an effective
batch size of 11.6 minutes. As standard, the feature
extractor is kept frozen across all updates and the
transformer is frozen for the first 10k of 13k total
updates, optimised using a CTC loss. Each fine-
tuning run required on average 3.5 hours. For our
findings to be applicable for languages with little
external text data, we use Viterbi decoding without
a language model to obtain transcriptions from the
fine-tuned model for evaluation.

A.4 ATDS analyses
For all analyses, we trained the necessary k-means
and sentencepiece models on a random 5-hour sub-
set of target language data (except for Common-
Voice Punjabi, which had in total 4 hours available
in the latest 15.0 release). We adopted hyperparam-
eters based on previous findings: extracting embed-
dings from the mid-point layer (12 of 24) of the
XLSR-128 model (e.g. San et al., 2021; Bartelds
et al., 2022), and k=500 for k-means and V=10k
for the subword model which were reported as op-
timal values in Wu et al. (2023). Using a 12GB
3060 GPU, embedding extraction required about
10 minutes per data subset. The k-means models
trained in about 8 minutes and subword models in
less than a minute.

For CommonVoice (CV) Punjabi and Hindi, we
conducted similar analyses as those reported by
Baevski et al. (2020, Appendix D) for analysing
correspondences between the wav2vec 2.0 code
vectors and hand-aligned phone labels from TIMIT
(Garofolo et al., 1993). In our case we used the
labels for CV Punjabi and Hindi via grapheme-
to-phoneme conversion, forced-aligned to the au-
dio, and released as Praat TextGrids in the Vox-
Communis corpus (Ahn and Chodroff, 2022). We
then added tiers containing the wav2seq-induced
labels. We hand-inspected several TextGrids for
data validation then compiled the correspondences
between the wav2seq induced tokens and phoneme
labels. We make available all TextGrids as well as
the aggregated data.

B Languages

B.1 Indo-Aryan and Dravidian

Punjabi (PAN) is a Northwestern Indo-Aryan lan-
guage spoken by over 100 million people along the
five major tributaries of the Indus river, spanning
the state of Punjab in India and the province of
Punjab in Pakistan. Hindi (HIN) and Urdu (URD)
are mutually-intelligible yet sociolinguistically dis-
tinct registers of one Central Indo-Aryan language
(usually termed Hindi–Urdu), spoken across the
Indian subcontinent and by a majority in the north-
ern part. Gujarati (GUJ) is a Central Indo-Aryan
language and Marathi (MAR) is a Southern Indo-
Aryan language, spoken in the western Indian states
of Gujarat and Maharashtra, respectively. Bengali
(BEN), spoken in Bangladesh and the Indian state
of West Bengal, and Odia (ORI), spoken in the In-
dian state of Odisha, are both Eastern Indo-Aryan
languages. Finally, Tamil (TAM) and Malayalam
(MAL) are both Dravidian languages spoken in the
Indian states of Tamil Nadu and Kerala, respec-
tively. The Indo-Aryan and Dravidian language
families are phylogenetically unrelated but have a
long history of contact and cross-family bilingual-
ism.

B.2 Malayo-Polynesian

Iban (IBA) is a Malayo-Polynesian language spo-
ken by over 2 million people in Brunei as well as
the Indonesian and Malaysian parts of the island
of Borneo. Iban has some use as a medium of edu-
cation in the Malaysian state of Sarawak but does
not possess official status. It is related to Indone-
sian (IND) and Malay (ZSM), which are the official
languages of Indonesia and Malaysia, respectively.

B.3 Sotho-Tswana

Setswana (TSN) is a Bantu language spoken by
over 8 million people Botswana, South Africa,
and Zimbabwe, where it is an official lan-
guage. Setswana also possesses minority language
status in Namibia. Two other languages of the
Sotho-Tswana subgroup of Bantu are Sesotho
(SOT, also known as “Southern Sotho”) and Sepedi
(NSO, “Northern Sotho”). Sesotho is an official lan-
guage of South Africa, Lesotho, and Zimbabwe,
and Sepedi is an official language of South Africa.

B.4 West Iberian

Galician (GLG) is a Romance language spoken in
Galicia, an administrative division of northwestern
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Figure 4: Family trees of the languages studied in this paper. Language families are in red and languages are in blue.

Spain bordering Portugal where it is the official
language and spoken by over 2 million people. It
is closely related to Spanish (SPA) and Portuguese
(POR), and all three are classified under the West
Iberian subgroup of Romance languages. Gali-
cian and Portuguese split in the late Middle Ages
(c. 15th century) and thus are the most closely re-
lated pair of the three. Sociolinguistically, Galician
speakers use Spanish in literary contexts and thus
the two languages have a diglossic relationship.
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1 Introduction

Large language models (LLMs) perform well on
(at least some) evaluations of both few-shot mul-
tilingual adaptation (Lin et al., 2022) and reason-
ing (Bubeck et al., 2023). However, evaluating
the intersection of these two skills—multilingual
few-shot reasoning—is difficult: even relatively
low-resource languages can be found in large train-
ing corpora, raising the concern that when we in-
tend to evaluate a model’s ability to generalize to a
new language, that language may have in fact been
present during the model’s training. If such lan-
guage contamination (Blevins and Zettlemoyer,
2022) has occurred, apparent cases of few-shot rea-
soning could actually be due to memorization.

Towards understanding the capability of mod-
els to perform multilingual few-shot reasoning,
we propose MODELING, a benchmark of Rosetta
stone puzzles (Bozhanov and Derzhanski, 2013).
This type of puzzle, originating from competitions
called Linguistics Olympiads, contain a small num-
ber of sentences in a target language not previously
known to the solver. Each sentence is translated
to the solver’s language such that the provided
sentence pairs uniquely specify a single most rea-
sonable underlying set of rules; solving requires
applying these rules to translate new expressions
(Figure 1). MODELING’s languages are chosen
to be extremely low-resource such that the risk of
training data contamination is low, and unlike prior
datasets (Şahin et al., 2020), it consists entirely of
problems written specifically for this work, as a
further measure against data leakage. Empirically,
we find evidence that popular LLMs do not have
data leakage on our benchmark (Section 2.1).

2 Dataset

MODELING comprises 48 Rosetta Stone puzzles
based on 19 extremely low-resource languages
from diverse regions. All problems were written by

Here are some phrases in Ayutla Mixe:
Ëjts nexp. → I see.

Mejts mtunp. → You work.

Juan yë’ë yexyejtpy. → Juan watches him.

Yë’ë yë’ uk yexpy. → He sees the dog.

Ëjts yë’ maxu’unk nexyejtpy. → I watch the baby.

Now, translate the following phrases.
Yë’ maxu’unk yexp. → The baby sees.
The baby watches the dog. → Yë’ maxu’unk yë’ uk
yexyejtpy.

Figure 1: A representative sample puzzle (based on
Ayutla Mixe, which is spoken in Oaxaca, Mexico). Pro-
viding the answers (in bolded red) requires using the
labeled pairs to reason about word meanings, morphol-
ogy (the -y suffix), and word order—all in an extremely
low-resource environment (there appear to be fewer than
3 pages in Ayutla Mixe on the Internet, so models are
unlikely to have had substantial experience with the
language beyond the examples shown here).

authors familiar with linguistics problems and were
test-solved and rated for difficulty by two Interna-
tional Linguistics Olympiad medalists (Table 2).
It includes 272 questions falling into four types,
each testing a model’s ability to handle a distinct
element of linguistic typology:

1. noun-adjective order problems, which re-
quire determining the relative ordering of
nouns and adjectives;

2. word order problems, which require deter-
mining the relative ordering of subject (S),
verb (V), and object (O);

3. possession problems, which require reasoning
about possessive morphology;

4. semantics problems, which require aligning
a set of non-English semantic compounds to
their English translations (e.g. En. “alcohol”
= Wik-Mungkan ngak way, lit. “bad water”).
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2.1 Data leakage

Because all the problems that we designed were
newly written, models could not have encoun-
tered these puzzles in their training data. Nonethe-
less, it is possible that they may have encountered
the specific words and phrases that we evaluate
on.1 To address this concern, we ran a base-
line in which we evaluated all models without
any target/reference pairs, prompting them to use
“existing knowledge of the language” to
translate the statements. Answering such questions
is impossible without prior knowledge of the target
language, so nonzero accuracy would suggest the
presence of data leakage (Huang et al., 2022). The
performance of all models in this setting is 0%, sug-
gesting that the use of very low-resource languages
successfully avoids data leakage.

3 Experiments

We evaluated six GPT models (GPT-3 {Ada, Bab-
bage, Curie, Davinci}; GPT-3.5; and GPT-4) on our
dataset on August 13, 2023 (Brown et al., 2020;
OpenAI, 2023). We evaluated under the follow-
ing conditions: minimal prompt (a brief, basic
prompt specifying the task); hand-tuned prompt
(a prompt fine-tuned by an International Linguis-
tics Olympiad medalist); basic chain-of-thought
(Kojima et al., 2022) (which encourages models
to think step-by-step); and full chain-of-thought
(Wei et al., 2022) (which provides an example of
reasoning step-by-step). We report exact-match
accuracies taken over all individual questions.

We observe strong performance from Davinci,
GPT-3.5, and GPT-4 (Table 1). Across prompting
approaches, we observe roughly similar accuracies.
However, smaller models (Ada, Babbage, Curie)
perform much worse, with accuracies near 0. All
three of the large, accurate models (GPT-3-Davinci,
GPT-3.5, GPT-4) struggle with particular problem
categories, with possessive and semantic problems
being harder than noun/adjective ordering and ba-
sic word order (Figure 2a). Finally, model per-
formance closely follows human difficulty ratings
(Figure 3a), suggesting that as large models con-
tinue to improve, we can scale our benchmark by
producing more challenging problems (even the
hardest problems in our benchmark are relatively
easy by Linguistics Olympiad standards).

1e.g., perhaps their training data included the Ayutla Mixe
sentence Yë’ maxu’unk yexp shown in Figure 1.

Model Minimal
prompt

Hand-tuned
prompt

Basic
CoT

Full
CoT

Ada .000 .004 .011 .000
Babbage .011 .011 .004 .018
Curie .015 .018 .015 .022
Davinci .496 .485 .490 .514
GPT-3.5 .404 .412 .401 .397
GPT-4 .588 .591 .589 .607

Table 1: Accuracy (exact match) of several large lan-
guage models (LLMs) on MODELING. CoT stands for
chain of thought.

ada babbage curie davinci gpt-3.5 gpt-4
Model Class
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(a) Accuracy across different language models on our dataset,
reporting average score across all prompts.
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Human-rated difficulty
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(a) LLM accuracy on our dataset, bucketed by difficulty. The
3 larger models (Davinci, GPT-3.5, GPT-4) display relatively
high accuracy, while the smaller models are close to zero.

4 Conclusion

We have introduced MODELING, a dataset de-
signed to evaluate LLMs’ capacity to reason an-
alytically in unseen languages. We believe that
the approach used to develop MODELING—given
its use of languages that occur very rarely on the
Internet and its capacity to be extended to more
challenging cases—has a strong potential to serve
as a durable approach for evaluating reasoning.
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A Dataset

A.1 Overview

Category # Problems # Questions % Questions

Noun/Adj. 19 112 41%
Order 19 102 37%
Possessive 5 26 10%
Semantics 5 32 12%

Total 48 272 100%

Table 2: Dataset split by problem type (Section 2). We
have 48 problems and a total of 272 questions.

A.2 Difficulty

Difficulty # Problems # Questions % Questions

1 2 9 3%
2 16 91 34%
3 12 63 23%
4 6 31 11%
5 12 78 29%

Total 48 272 100%

Table 3: Distribution of difficulty levels over the dataset,
as jointly evaluated on a Likert scale by two expert
evaluators who have received medals at the International
Linguistics Olympiad.

A.3 Orthography

B Prompts

Our four different prompting styles are illustrated
inFigures 4 through 7.

C Data sources

Minimal-prompt
Here are some expressions in Language (a never-

seen-before foreign language) and their translations

in English:

Language: ...

English: ...

Given the above examples, please translate

the following statements.

Figure 4: Minimal prompt.

Hand-tuned prompt
This is a translation puzzle. Below are example

phrases in Language (a never-seen-before foreign

language) as well as their English translations. Some

test phrases follow them. Your task is to look closely

at the example phrases and use only the information

from them to translate the test phrases.

Language: ...

English: ...

Given the above examples, please translate

the following statements.

Figure 5: Hand-tuned prompt.

Basic chain-of-thought
This is a translation puzzle. Below are example

phrases in Language (a never-seen-before foreign

language) as well as their English translations. Some

test phrases follow them. Your task is to look closely

at the example phrases and use only the information

from them to translate the test phrases.

Language: ...

English: ...

Given the above examples, please translate

the following statements. Let’s think step by step in

a logical way, using careful analytical reasoning to

get the correct result.

Figure 6: Basic chain-of-thought prompt.
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Full chain-of-thought
This is a translation puzzle. In a moment, you will
use logic and analytical reasoning to translate from a
never-seen-before language (Language) to English.
As a training example, here are some expressions in
Spanish and their translations in English.

1. Spanish: ventana roja
English: red window

2. Spanish: ventana azul
English: blue window

3. Spanish: manzana azul
English: blue apple

Using the above examples, translate the following.
Spanish: manzana roja

ANSWER: English: red apple

EXPLANATION: The first step we notice is that the

word “ventana” must mean window because (1) the

word “ventana” appears twice between sentences 1

and 2, and (2) the only word that appears twice in

the English translation is “window.” Next, we infer

that “roja” must be “red” and “azul” must be “blue”

by process of elimination. Next, we guess that in

Spanish, the noun precedes the adjective because

“ventana” comes before “roja” and “azul.” Therefore,

the noun in sentence 3 (“apple”) must correspond to

the word preceding the adjective (“manzana”) in the

Spanish translations. Putting this together, “manzana

roja” must mean “red apple” in English.

Do you see how we’re using logical and analytical

reasoning to understand the grammar of the foreign

languages step by step?

Figure 7: Full chain-of-thought prompt.

Language Original New

Ayutla Mixe ë eu
Bangime ç ch

Seri ö w
Rapa Nui ā aa

Table 4: Sample orthographic conversions.
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Language Family ISO # Type Source

Abun West Papuan kgr 1 POSS Berry et al. (1999)
Ainu Ainuic ain 1 ORDER Bugaeva (2022)
Ayutla Mixe Mixe-Zoque mxp 1 ORDER Romero-Méndez (2009)
Bangime Isolate dba 7 NOUN-ADJ, Blench and Dendo

ORDER
Chimalapa Zoque Mixe-Zoque zoh 1 ORDER Knudson (1975)
Toro-tegu Dogon Niger–Congo dtt 2 POSS Heath (2015)
Engenni Niger–Congo enn 5 ORDER Thomas (1969)
Guugu Yimithirr Pama-Nyungan kky 1 SEM Haviland (1998); Levinson (1997)
Kalam Kalam kmh 1 SEM Pawley (2006); Lane (2007),

Scholtz (1967)
Komi-Zyrian Permic kpv 1 SEM Bubrikh (1949)
Kutenai Isolate kut 1 SEM Dryer et al. (1994)
Mapudungan Araucanian arn 4 NOUN-ADJ Smeets (2008)
Misantla Totonac Totonacan tlc 1 NOUN-ADJ MacKay (1994)
Mixtepec Zapotec Oto-Manguean zpm 4 NOUN-ADJ Hunn et al.
Ngadha Malayo-Polynesian nxg 2 NOUN-ADJ Tryon (1995)
Niuean Malayo-Polynesian niu 3 NOUN-ADJ Tregear and Smith (1907)
Rapa Nui Malayo-Polynesian rap 7 NOUN-ADJ, Kievit (2017)

ORDER
Seri Isolate sei 4 NOUN-ADJ, Moser and Marlett (2005)

ORDER,
POSS, SEM

Filomeno Mata Totonac Totonacan tlp 1 POSS McFarland (2009)

Table 5: Problem Data Sources: sentences in MODELINGwere either taken directly from or written according to
rules contained within the sources.
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Figure 8: The 19 distinct languages included in the MODELING benchmark. Note that some languages have more
than one problem.
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Abstract

We present our submission to the unconstrained
subtask of the SIGTYP 2024 Shared Task on
Word Embedding Evaluation for Ancient and
Historical Languages for morphological anno-
tation, POS-tagging, lemmatization, character-
and word-level gap-filling. We developed a sim-
ple, uniform, and computationally lightweight
approach based on the adapters framework us-
ing parameter-efficient fine-tuning. We applied
the same adapter-based approach uniformly
to all tasks and 16 languages by fine-tuning
stacked language- and task-specific adapters.
Our submission obtained an overall second
place out of three submissions, with the first
place in word-level gap-filling. Our results
show the feasibility of adapting language mod-
els pre-trained on modern languages to histori-
cal and ancient languages via adapter training.

1 Introduction

The application of natural language processing
techniques and pre-trained language models to anal-
ysis of ancient and historical languages is a com-
pelling subject of research that has been so far over-
looked. While there exist a number of benchmarks,
such as GLUE (Wang et al., 2018), SuperGLUE
(Wang et al., 2019), or XGLUE (Liang et al., 2020),
for evaluating the quality of embeddings and lan-
guage models for modern languages, such bench-
marks are lacking for ancient and historical lan-
guages. Thus, the SIGTYPE 2024 Shared Task
on Word Embedding Evaluation for Ancient and
Historical Languages contributes to filling this gap.

In the current transformer-based language mod-
els paradigm, one of the common approaches to
solving the tasks present in such benchmarks is
to use the task data to fine-tune an encoder trans-
former model. The approach was first in intro-
duced in Devlin et al. (2019) and was shown to
yield superior results compared to the alternatives
on the GLUE benchmark. Additionally, the pro-

posed pre-training method is very similar to the
word-level gap-filling problem in the shared task.
Consequently, the model can be applied to solving
the problem directly. This motivates our choice to
use a transformer model in the shared task.

Large pre-trained language models, however,
are predominantly trained on corpora of modern
languages, with few exceptions such as Latin-
BERT (Bamman and Burns, 2020). Ancient and
historical languages generally lack sufficient data to
perform full pre-training of large language models
or to continue training from a checkpoint trained on
some different language. Full fine-tuning of mod-
ern language models on a relatively small amount
data in an ancient/historical language might lead
to overfitting and catastrophic forgetting. These
considerations are also common in context of other
low resource tasks or domains.

Several approaches have been proposed to alle-
viate these issues. For instance, the supplementary
training approach proposed by Phang et al. (2018)
involves first fine-tuning a pre-trained model on
an intermediary labeled task with abundant data,
and then on the target task which may have limited
data. This approach showed gains over simply fine-
tuning on the target task. Pfeiffer et al. (2020b) de-
veloped a cross-lingual transfer-learning approach
based on the adapters framework for parameter ef-
ficient fine-tuning of language models (Houlsby
et al., 2019; Bapna and Firat, 2019). Their ap-
proach involves fine-tuning a language adapter and
a task adapter stacked on top of each other. This
adapter-based method is expanded by Pfeiffer et al.
(2021) by adopting a custom tokenizer and an em-
bedding layer. Several ways of initializing the
new embedding layers are compared on underrep-
resented modern languages. Since ancient and his-
torical languages are underrepresented, the same
techniques should be applicable in this context as
well.

A useful feature of both the supplementary train-
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Figure 1: An illustration of the Bottleneck Adapter from (Houlsby et al., 2019). The left side demonstrates how a
bottleneck adapter is added to a single transformer layer, while the structure of an individual adapter layer is on the
right. Only elements in green are trained, while the rest remains frozen.

ing approach of Phang et al. (2018) and the adapter-
based training of Pfeiffer et al. (2020b) is that they
provide a uniform framework that can be applied to
different languages and tasks in a similar manner.
While previous related works mainly focused on
modern languages, we aim to assess the feasibility
of this unified approach for ancient and historical
languages.

Our submission to the SIGTYP 2024 Shared
Task on Ancient on Word Embedding Evaluation
for Ancient and Historical Languages adopts the
methods described by Pfeiffer et al. (2020b, 2021)
by stacking fine-tuned language and task adapters,
and customizing the tokenizer and the embedding
layers. Our system is implemented as a unified
framework, where various pre-trained models, lan-
guages, and tasks can be plugged in. The system
was evaluated on POS tagging, morphological an-
notation, lemmatization, and filling-in both word-
level and character-level gaps for 16 ancient and
historical languages. We participated in the un-
constrained subtask, which allowed using any ad-
ditional resources, such as pre-trained language
models. Out of 3 participants on the leaderboard
we took a close second place, with the first place
on the word gap-filling task. Our main contribution
is showing that by adopting the parameter-efficient

adapter training methodology, the large language
models pre-trained on modern languages are appli-
cable also to low-resource ancient and historical
languages.

2 Adapters

There exist a number of approaches to parameter ef-
ficient fine-tuning. In our submission to the shared
task the focus is on adapters exclusively.

Houlsby et al. (2019) propose a parameter effi-
cient fine-tuning strategy that involves injection of
a number of additional trainable layers into the orig-
inal architecture. The architecture of the proposed
strategy is illustrated on Figure 1. In each trans-
former layer an adapter layer is added twice: after
the attention sub-layer and after the feedforward
sub-layer. To limit the number of trainable parame-
ters, the authors propose a bottleneck architecture
of adapter layers: the adapter first projects the in-
put into a smaller dimension, applies non-linearity,
then projects back to the original dimension. This
is known as the bottleneck adapter.

Pfeiffer et al. (2020b) extend on the strategy in
context of cross-lingual transfer learning in two
ways. First, the adapter stack technique is intro-
duced (illustrated on Figure 2), which is primarily
used to separate language adaptation training and
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Figure 2: An illustration of an adapter stack as presented
on the AdapterHub documentation page1. Blue and
green blocks represent different adapter layers stacked
on top of each other.

task-specific training. In the technique a language
adapter is first trained, then a task-specific adapter
is stacked on top of it and trained (while the lan-
guage adapter is frozen). Secondly, the bottleneck
adapter is expanded upon to include the embedding
layer as well—the invertible adapter is introduced
that transforms both input and output token repre-
sentations to further improve language adaptation.

3 Methodology

Our approach in this work is based on training lan-
guage adapters and task specific adapters for XLM-
RoBERTa (Conneau et al., 2020)—the multilingual
variant of RoBERTa (Zhuang et al., 2021) trained
on 100 different languages. Since many of the
languages in the shared task have related modern
languages in the training data of XLM-RoBERTa,
or are even included themselves (such as Latin), we
expect to benefit from knowledge transfer.

3.1 Data

The dataset provided by the organizers is a com-
pilation of various resources (Bauer et al., 2017;
Doyle, 2018; Ó Corráin et al., 1997; HAS Research
Institute for Linguistics, 2018; Zeman et al., 2023;
Acadamh Ríoga na hÉireann, 2017; Simon, 2014)

and comprises 16 languages in total spanning sev-
eral historical epochs and upper bounded by 1700
CE. The information on the languages in the dataset
is presented in Table 1.

3.2 Adapter Training
Full fine-tuning of language models has several
difficulties such as the possibility of catastrophic
forgetting and the necessity to train and maintain
a full copy of the model weights for each individ-
ual task. When applying the technique first pro-
posed in (Phang et al., 2018) in a multi-lingual and
multi-task setting, the scale of the mentioned dis-
advantages is magnified. Training and maintaining
a separate copy of the model for each combination
of language, target task, and intermediate task can
become computationally expensive. Meanwhile,
each copy of the model is narrowly specialized in
a single task, with generalization capabilities being
potentially limited. This highlights the practicality
of parameter efficient fine-tuning in comparison.

The overall approach is, in general, the same
for every language. First, we train a language
adapter for every language individually. A lan-
guage adapter is comprised of a bottleneck adapter
and masked language modeling prediction head.
Accordingly, the training objective is masked lan-
guage modeling. This is based on the assumption
that a significant portion of the model’s parameters
is not actually language-specific, and thus does not
need changing. We simply need to adapt the model
to a new language. The language adapter is trained
for 10 epochs regardless of the size of the data. The
unmasked part of the training data for the word-
filling task is used, while the masked part is not uti-
lized for training. Secondly, we train task-specific
adapters for each language. In this setup we use the
adapter stack: the language adapter is loaded, but
frozen, and we add a task-specific adapter on top
of it, and train said adapter. We have two tasks per
language: morphological tagging, which combines
both POS-tagging and morphological annotation,
and lemmatization, which is also implemented as
sequence tagging problem. Similarly to language
modeling, in both tasks the adapters are trained for
10 epochs.

3.3 Custom tokenizers and embeddings
Some of the languages in the shared task are
not covered by the model’s tokenizer. In other

1https://docs.adapterhub.ml/adapter_
composition.html
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Language Code Train Sentences Valid Sentences Test Sentences

Ancient Greek grc 24,800 3,100 3,101
Ancient Hebrew hbo 1,263 158 158
Classical Chinese lzh 68,991 8,624 8,624
Coptic cop 1,730 216 217
Gothic got 4,320 540 541
Medieval Icelandic isl 21,820 2,728 2,728
Classical and Late Latin lat 16,769 2,096 2,097
Medieval Latin latm 30,176 3,772 3,773
Old Church Slavonic chu 18,102 2,263 2,263
Old East Slavic orv 24,788 3,098 3,099
Old French fro 3,113 389 390
Vedic Sanskrit san 3,197 400 400
Old Hungarian ohu 21,346 2,668 2,669
Old Irish sga 8,748 1,093 1,094
Middle Irish mga 14,308 1,789 1,789
Early Modern Irish ghc 24,440 3,055 3,056

Table 1: Language statistics in the Shared Task.

words, a significant portion of the tokenizer’s out-
put includes <unk> tokens. This is possible be-
cause XLM-RoBERTa’s employs subword tok-
enization (Sennrich et al., 2016). A subword tok-
enizer is a trained model that learns a vocabulary of
a certain size. The trained model transforms text in-
put into individual tokens by looking for the longest
character sequences in the text that are present in
its vocabulary. When attempting to tokenize a text
that includes symbols that did not appear in the
training data (and consequently, are not in the tok-
enizer’s vocabulary), each unrecognized symbol is
replaced by the <unk> token.

For each language not covered by the model’s to-
kenizer a new tokenizer is initialized. In addition to
that, a new embedding layer is also initialized. The
initial weights are copied from the original embed-
dings for tokens that overlap with the multilingual
tokenizer.

To decide whether the model requires a custom
tokenizer, two checks are made:

1. The percentage of unknown tokens > 5%

2. <unk> token is in top 10 by frequency

If either of these conditions is true, a custom to-
kenizer is created. Refer to Table 2 for detailed
statistics. Based on these conditions, 5 languages
need a separate tokenizer: Old Church Slavonic,
Coptic, Classical Chinese, Old Hungarian, and Old
East Slavic. When selecting the vocabulary size,

the aim was to have as many full words as possi-
ble in the vocabulary, but at the same time allow
for morphological variation. Thus, the number of
items in the vocabulary should be neither too high
nor too low. For that reason, we selected the size to
be 3000 for all languages, except Classical Chinese.
For Classical Chinese the size was insufficient, so
it was increased to 10000.

Pfeiffer et al. (2021) suggest several possible op-
tions of initializing the weights of the custom em-
bedding layer corresponding to the new tokenizer.
These include random initialization, copying the
weights of tokens that overlap between multilin-
gual and language-specific tokenizers, as well as
a matrix factorization-based approach that aims to
identify latent semantic concepts in the original
embedding matrix that are useful for transfer. It is
noted, however, that the latter approach shows less
gains when used with languages with underrepre-
sented scripts. For this reason and for the sake of
simplicity, with settled on using the lexical overlap
approach for all affected languages.

3.4 Tasks
Filling Word-level Gaps Having trained a
masked language modeling adapter for each lan-
guage, we already have a suitable model to perform
word-level gap filling. However, the fact XLM-
RoBERTa, as well as most modern language mod-
els, is based on subword tokens rather than full
words becomes a significant hurdle. The reason is
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Figure 3: A schematic illustration of the decoding process for word-level mask filling. Blue boxes represent current
tokens in the sentence, while orange boxes represent the probability distribution of tokens at the position of the mask
token. The upper half represents the first step of decoding. We start with predicting the most likely replacement for
the leftmost masked token that starts with _ symbol representing the beginning of a new word. Then, we replace the
mask with that token and append a new mask token to the right of it, as represented in the middle part. We predict
the most likely replacement for the new mask token. If it starts with _ symbol, we discard the mask token, consider
the word predicted, and move to the next masked word if it’s present. Conversely, if there’s no _ in the predicted
token, we append it to the previously predicted token. We repeat this process k times, or until we encounter a
token starting with _. k is a hyperparameter that may be tuned, however increasing k increases the decoding time
significantly. For this reason we set k to 1 for all languages. At the bottom of the figure the final result with no mask
tokens is demonstrated. Note that this description is specific to XLM-RoBERTa tokenizer, other model’s tokenizers
may have different behaviour.

lang # tokens % unknown <unk> rank

chu 495612 15.31% 1
cop 39771 45.61% 2
fro 55448 0.00% -
ghc 1282852 0.00% -
got 98874 1.05% -
grc 1079457 0.47% -
hbo 124063 0.36% -
isl 688580 0.00% -
lat 296770 0.00% -
latm 897209 0.00% -
lzh 408259 1.40% 4
mga 492894 0.00% -
ohu 352811 5.05% 1
orv 592890 5.00% 2
san 59349 0.01% -
sga 190711 0.00% -

Table 2: Tokenizer coverage statistics. <unk> ranks not
present in top 10 are not reported.

the we can not know in advance whether the target
word we want to predict is comprised of one or
more subword units, and that makes the decoding

more complicated. To address this issue, for each
sentence with masked words in it, we follow the
steps (see Figure 3):

1. Locate the first <mask> token

2. Use the model’s prediction to determine the
most likely token that starts with the whites-
pace prefix

3. Replace the <mask> token with the prediction,
and look ahead up to k steps: does the next to-
ken start with the whitespace token? If it does,
we break the cycle, and continue processing
the remaining <mask> tokens in the sentence,
otherwise we append the next predicted token
to our previous prediction, and repeat the look
ahead.

For Classical Chinese, the process is simplified,
and we simply predicted the most likely token.

Filling Character-level Gaps The approach to
character-level mask filling is purely algorithmic.
We start with building a vocabulary of masked
word candidates. We consider a sequence of charac-
ters with no whitespaces to be a suitable candidate.
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The vocabulary is populated with such candidates.
For each masked word a look up among all the
words of the same length as the masked word is per-
formed: a regular expression built from the masked
word by replacing "[_]" with "." is matched against
these words. If there are matches, up to the first
3 matches are returned. For each match character
replacements are extracted from each candidate. If
there are no matches, and the masked word con-
tains only one "[_]", the masked word is split in two
parts, and each part is matched against the dictio-
nary. If there is at least one match, the whitespace
is returned as the replacement.

The described algorithmic method could be ex-
tended in two ways:

1. Multiple candidates could be reranked using
the trained language model

2. If there are no candidates, a suitable word
could be generated using the trained model,
similarly to the word-level gap-filling task

However, the extensions were not developed for
the shared task for the following reasons. Each
sentence may contain multiple masked words, and
in addition the whitespace symbol may be masked
as well. This significantly increases the solution’s
complexity, yet the magnitude of the benefit is un-
clear.

Finally, for Classical Chinese the following ap-
proach was applied. First, the symbols in the origi-
nal dataset were decomposed into the lowest pos-
sible forms which are mostly strokes and small
indivisible units using the Hanzipy library2, then
a masked language model adapter was trained on
that decomposed data. The model achieved rela-
tively high masked language modeling evaluation
accuracy—about 40%—on the validation set, as
measured the by the Trainer class in the transform-
ers library. The trained model was then used to pre-
dict the most likely replacement for each masked
symbol. The ground truth data provided by the
organizers, however, remained in the original com-
posed form. This proved to be a significant prob-
lem. An attempt was made to compose the symbols
back into their original form algorithmically, since
the library used for decomposition doesn’t have the
option to reconstruct the original symbol from its
constituents, to our best knowledge. However, this
attempt was unsuccessful given that our submission
attained score of 0 on the test set.

2https://github.com/Synkied/hanzipy

POS-tagging & Full Morphological Annotation
We frame both POS-tagging and full morphologi-
cal annotation as a single token classification task.
For each token we collect all available morpho-
logical features and the POS tag from the annota-
tion. Then we concatenate them as a single string,
which is then used as the class to predict. Then we
employ the adapter stack technique: we load the
corresponding language adapter, and create a task
specific adapter with token classification prediction
head. We only train the task specific adapter. For
inference we decompose the predicted class strings
back into individual tags. The approach is the same
for every language.

Lemmatization Similarly to the previous task,
we frame lemmatization as token classification task.
To achieve that we generate transformation rules
for each lemma/form pair based on the technique
first introduced in (Straka, 2018) and expanded
upon in (Dorkin and Sirts, 2023). The rules are
comprised of individual edits that need to be made
to transform the given form into its lemma. The
edits are represented as a single string. We use
that string as the label to predict. Consequently,
inference is done in two steps: first the rule for
each token is predicted, then that rule is applied to
the form and the resulting lemma is returned. The
approach is the same for all language except for
Classical Chinese. For Classical Chinese we do not
train a model, but rather use a simple dictionary
look up which results in nearly 100% accuracy.

3.5 Technical Implementation Details
The implementation is primarily based on the
Adapters3 (Poth et al., 2023) library and the pro-
vided training script examples. The most signifi-
cant change in the training scripts is the addition
of custom embedding layer initialization. Some
aspects of lemmatization as a token classification
task were adopted from our previous work. For lan-
guages not utilizing custom tokenizers we employ
the invertible bottleneck adapters (Pfeiffer et al.,
2020b), while for the languages that do require cus-
tom tokenizers we employ the regular bottleneck
adapters (Houlsby et al., 2019). The motivation
is that when we have a custom embedding layer,
there is no need to adapt it additionally. In all exper-
iments we use the base version of XLM-RoBERTa
due to time constraints, however we can well expect
that the large version would show improved perfor-

3https://github.com/adapter-hub/adapters
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Overall
results

POS-
tagging

Lemmatization Morphological
analysis

Character
gap-filling

Word gap-
filling

Ancient Greek 0.70 0.96 0.94 0.97 0.61 0.03
Ancient Hebrew 0.61 0.94 0.97 0.95 0.19 0.00
Classical Chinese 0.57 0.83 1.00 0.89 0.00 0.10
Coptic 0.52 0.61 0.75 0.75 0.45 0.02
Gothic 0.70 0.93 0.93 0.92 0.67 0.03
Medieval Icelandic 0.73 0.97 0.98 0.96 0.57 0.17
Classical and Late
Latin

0.73 0.96 0.97 0.96 0.66 0.11

Medieval Latin 0.76 0.99 0.99 0.99 0.70 0.14
Old Church
Slavonic

0.50 0.66 0.60 0.67 0.54 0.02

Old East Slavic 0.56 0.76 0.69 0.80 0.48 0.06
Old French 0.69 0.95 0.92 0.98 0.52 0.07
Vedic Sanskrit 0.66 0.84 0.88 0.86 0.65 0.05
Old Hungarian 0.52 0.75 0.63 0.76 0.46 0.00
Old Irish 0.19 - - - 0.35 0.03
Middle Irish 0.22 - - - 0.39 0.04
Early Modern Irish 0.28 - - - 0.50 0.06

Table 3: Results of our submission on the leadearboard. For the variants of Irish, training and test data was only
provided for gap-filling tasks.

mance. The code and the instructions to reproduce
are available on the project’s GitHub repository4.

XLM-RoBERTa uses SentencePiece (Kudo and
Richardson, 2018) for tokenization. SentencePiece
is a trainable tokenization model limited by a to-
ken vocabulary of a specific size. To be able to
process languages with scripts which are under-
represented by XLM-RoBERTa’s tokenizer, we
train a new tokenizer for each language in ques-
tion. The new tokenizer has to remain compatible
with original model—it has to retain all the special
tokens and their indices. To achieve that we use
the train_new_from_iterator method of the To-
kenizer class instance in HuggingFace transformers
associated with model. We supply it with the same
data we use for the masked language modeling
training.

For training we used a single NVIDIA Tesla
V100 GPU on the University’s High Performance
Cluster (University of Tartu, 2018). The training
time for a single task (including masked language
modeling) on average was about 10-20 minutes,
ranging from 2 to 40 minutes depending on the
amount of data, which is notably less than it would
take for full fine-tuning.

4https://github.com/slowwavesleep/
ancient-lang-adapters/tree/sigtyp2024

Initially, an error was present in our code that
resulted in our models not having trainable lan-
guage modeling prediction heads. In other words,
during the language adaptation stage the models
retained the original masked language prediction
head of XLM-RoBERTa, rather than training a new
language specific prediction head. To our surprise,
after fixing the error, the difference turned out to
be quite negligible, except for languages that relied
on custom embeddings. For these languages, the
effect of the fixing the error was most noticeable
on the word-level gap-filling task—before that the
models were using the prediction head which was
mismatched in size with the custom embeddings.

4 Results

According to the results on Table 3, our approach
seems to generally underperform on languages that
require custom tokenizers and embeddings: Clas-
sical Chinese, Coptic, Old Church Slavonic, Old
East Slavic, Old Hungarian. This can be explained
by the amount of data being too limited to be able
to train meaningful input representations, while
the lexical overlap technique failed to provide ben-
efit due to significant differences in their scripts.
We hypothesize that a more sophisticated approach
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to embedding initialization and tokenizer training
could result in considerable benefits.

We note a surprisingly strong performance of our
algorithmic approach to character-level gap-filling
with the exception of Classical Chinese where the
approach is simply not applicable. We expect the
extensions to the approach outlined in Section 3.4
could improve the results further. However, in con-
text of the shared task, we do not believe that the
possible improvements would be worth the effort.
Due to the whitespaces appearing as masked char-
acters there is no way to know in advance how
many individual words in the sentence in total have
masked characters in them. In addition to that, a
single word may contain several masked charac-
ters. The combination of these two factors makes
improvements based on language model rescoring
quite computationally expensive. For Classical Chi-
nese, however, we hypothesise that the score would
be considerably higher if the ground truth was also
in the decomposed form, because to the best of our
understanding, reconstructing the original charac-
ters from individual strokes is not a straightforward
task.

Despite taking the first place in the word-level
gap filling task, the absolute scores are still very
low. This is to be expected, because the difficulty
of the task is compounded by the presence of multi-
ple masked words per sentence, as well the reliance
on subword tokenization of our approach. Addi-
tionally, the implementation may not be suitable
at all for certain languages due to differences in
the writing systems. Finally, we surmise that due
to the amount of training being quite small for the
masked language modeling problem, we cannot
expect to be able to correctly predict completely
new words, however we can, in theory, predict
previously unseen word forms due to subword tok-
enization. This means that experimenting with the
k parameter used to limit the number of times the
look ahead for word continuation is performed in
the word-level gap filling problem could improve
the results somewhat.

The pattern-based approach to lemmatization
also performs reasonably well in most languages.
The approach is restricted by the set of patterns
derived based on the training set. If the evaluation
set contains many words for which a suitable pat-
tern is missing, the system simply cannot make a
correct prediction. However, we believe that this
is not the problem here. In particular, we note
that those languages which have lower scores on

lemmatization, also perform consistently lower on
other tasks. Thus, we suggest that the lower per-
formance is rather related to insufficient data for
training meaningful representations. In addition
to underpeforming on languages with underrep-
resented writing systems, we observe somewhat
low performance on Vedic Sanskrit as well. One
explanation could be that the usage of diacritics
may negatively affect the character-based transfor-
mation rule generation; however this hypothesis
requires further investigation.

Finally, our combined approach to POS-tagging
and morphological analysis performs quite well
on most of the languages. This is somewhat unex-
pected, because the model is limited in predicting
only the combinations of part-of-speech and mor-
phological features that are present in training data.

5 Conclusion

This paper described our solution to the SIGTYP
2024 Shared Task developed based on the adapters
framework. The system is simple and uniform,
and can be easily extended to other tasks and lan-
guages. For each language we trained a language
adapter, and two task adapters, one for POS and
morphological tagging and one for lemmatization.
For languages with scripts underrepresented in the
XLM-RoBERTa vocabulary, we additionally cre-
ated custom tokenizers and embeddings. One no-
table advantage of the adopted approach is its re-
source efficiency—adapting the model to a new
language and task can be done in less than an hour.
As a future work, the system could be improved
with more advanced adapter-based techniques such
as adapter fusion (Pfeiffer et al., 2020a) to leverage
typological relatedness of languages.
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Saran Lertpradit, Herman Leung, Maria Levina,
Lauren Levine, Cheuk Ying Li, Josie Li, Keying
Li, Yixuan Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Yi-Ju Jessica Lin, Krister Lindén,
Yang Janet Liu, Nikola Ljubešić, Olga Loginova, Ste-
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Abstract
Historical languages present unique challenges
to the NLP community, with one prominent
hurdle being the limited resources available
in their closed corpora. This work describes
our submission to the constrained subtask
of the SIGTYP 2024 shared task, focusing
on PoS tagging, morphological tagging, and
lemmatization for 13 historical languages.
For PoS and morphological tagging we adapt
a hierarchical tokenization method from
Sun et al. (2023) and combine it with the
advantages of the DeBERTa-V3 architecture,
enabling our models to efficiently learn from
every character in the training data. We also
demonstrate the effectiveness of character-
level T5 models on the lemmatization task.
Pre-trained from scratch with limited data, our
models achieved first place in the constrained
subtask, nearly reaching the performance levels
of the unconstrained task’s winner. Our code
is available at https://github.com/bowphs/
SIGTYP-2024-hierarchical-transformers.

1 Introduction

Unlike modern languages, historical languages
come with a notable challenge: their corpora are
closed, meaning they cannot grow any further. This
situation often puts researchers of historical lan-
guages in a low-resource setting, requiring tailored
strategies to handle language processing and analy-
sis effectively (Johnson et al., 2021).

In this paper, we focus on identifying the most
efficient methods for extracting information from
small corpora. In such a scenario, the main hurdle
is not computational capacity, but learning to ex-
tract the maximal amount of information from our
existing data.

To evaluate this, the SIGTYP 2024 shared task
offers a targeted platform centering on the evalua-
tion of embeddings and systems for historical lan-
guages. This task provides a systematic testbed for

*Equal contribution.

researchers, allowing us to assess our methodolo-
gies in a controlled evaluation setting for historical
language processing.

For the constrained subtask, participants re-
ceived annotated datasets for 13 historical lan-
guages sourced from Universal Dependencies (Ze-
man et al., 2023), along with data for Old Hun-
garian that adheres to similar annotation standards
(Simon, 2014; HAS Research Institute for Linguis-
tics, 2018). These languages represent four distinct
language families and employ six different scripts,
which ensures a high level of diversity. The rules
imposed in this subtask strictly forbid the use of
pre-trained models and limit training exclusively to
the data of the specified language. This restriction
not only ensures full comparability of the applied
methods, it also inhibits any cross-lingual transfer
effects.

We demonstrate that, even in these resource-
limited settings, it is feasible to achieve high per-
formance using monolingual models. Our models
are exclusively pre-trained on very small corpora,
leveraging recent advances in pre-training language
models. Our submission was recognized as the
winner in the constrained task. Notably, it also
delivered competitive results in comparison to the
submissions in the unconstrained task, where the
use of additional data was permitted. This high-
lights the strength of our approach, even within a
more restricted data environment.

2 Pre-trained Language Models for
Ancient and Historical Languages

Much of the previous work on Pre-trained Lan-
guage Models (PLMs) for ancient and historical
languages has focused on cross-lingual transfer
learning techniques (Krahn et al., 2023; Singh
et al., 2021; Yamshchikov et al., 2022; Yousef et al.,
2022) or languages with relatively large corpora
compared to most historical languages, such as An-
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Language: chu cop fro got grc hbo isl lat latm lzh ohu orv san

Vocab Size: 196 82 106 87 242 94 150 188 111 5714 166 222 62

Table 1: Character vocabulary sizes (including special tokens). See Appendix C for language identifiers.

cient Greek and Latin (Riemenschneider and Frank,
2023; Bamman and Burns, 2020). In this work, we
are interested in maximizing performance in more
resource-limited environments while training ex-
clusively on monolingual data.

2.1 Representing Words and Characters
Low-resource historical languages present several
challenges for subword tokenizers which are typ-
ically used by PLMs. Given that our downstream
tasks require predictions at the world level, it is im-
portant that the model learns good word representa-
tions in training. At the same time, it is important to
obtain good character representations because char-
acters carry important morphological information.
In small-scale training corpora, subword tokenizers
are ineffective at capturing information at both the
word and character levels, as shown in prior work
(Clark et al., 2022; Kann et al., 2018). As a result,
it is difficult for a model to learn meaningful repre-
sentations for rare tokens, which can be completely
opaque to the model with respect to the characters
they contain.

Adopting a character-based tokenizer would
solve many of these problems, but as a downside
would result in a much higher number of input to-
kens. Critically, the computational requirements
of self-attention grow quadratically with sequence
length, making training and inference time pro-
hibitive or requiring truncated input sequences.

For these reasons, we adopt a solution for our
encoder-only models that combines the advan-
tages of word- and character-level representations.
We base our architecture on the Hierarchical Pre-
trained Language Model (HLM) architecture re-
cently proposed by Sun et al. (2023), which solves
many of our problems. HLM is a hierarchical two-
level model which uses a shallow intra-word trans-
former encoder to learn word representations from
characters and a deep inter-word encoder that at-
tends to the entire word sequence. As a result, (1)
it gives direct access to characters without requir-
ing long sequence lengths, (2) it preserves explicit
word boundaries, and (3) it allows for an open vo-
cabulary.

For the intra-word encoder, we use a sequence

length of 16 which is long enough to cover the vast
majority of words in our training data. While Sun
et al. (2023) truncate words that exceed the max-
imum sequence length of the intra-word encoder,
we instead split them into multiple subwords to
avoid any loss of information. For the inter-word
encoder we use a maximum sequence length of
512. Because the intra-word encoder is limited
to characters within the same word and the inter-
word encoder operates on word sequences, this
approach is computationally more efficient than a
vanilla character model, and even approaches the
performance of subword-based models (Sun et al.,
2023).

The input to the intra-word encoder is produced
by encoding each word into a sequence of character
tokens, with a special [WORD_CLS] token inserted
at the beginning of each word. The contextualized
[WORD_CLS] embeddings from the intra-word en-
coder are then used as the word representations for
the inter-word encoder.

We create a character tokenizer for each lan-
guage using a character vocabulary consisting of
all the unique characters found in the training data
for that language. Any unseen characters encoun-
tered in the validation or test data are replaced with
a special [UNK] token. Table 1 shows the vocab-
ulary sizes for each language, including special
tokens. The character vocabularies are typically
quite small, with the notable exception of Classical
Chinese (lzh), where most of the tokens in the train-
ing data are single characters. We experimented
with several decomposition methods, inspired by
the work of Si et al. (2023) on sub-character tok-
enization for Chinese. However, we were unable
to improve performance on our downstream tasks,
so we opted to use the same character tokenization
method for all languages.

2.2 Hierarchical Encoder-only Models
To conduct PoS and morphological tagging, we rely
on an encoder that generates the necessary word
embeddings for classification. Our encoder models
build on a modified implementation of DeBERTa-
V3 (He et al., 2023), combining the advantages of
HLM with the DeBERTa architecture. The intra-
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Figure 1: HLM-DeBERTa architecture with RTD pre-training. Input text is “πάθει μάθος”.

and inter-word modules are implemented as two
separate DeBERTa encoders, utilizing disentangled
attention (He et al., 2021) and relative position
encoding.

Replaced Token Detection. For the pre-training
task we use replaced token detection (RTD), orig-
inally proposed by Clark et al. (2020). RTD uses
a generator model to generate corrupted input se-
quences and a discriminator to distinguish between
the original and corrupted tokens. After training,
the generator is discarded and the discriminator
is fine-tuned for downstream tasks. In our ex-
periments, when applying RTD pre-training, we
achieve slightly better performance on our down-
stream tasks compared to masked language mod-
eling (MLM) as the pre-training task. Following
previous work (He et al., 2023; Clark et al., 2020),
we use a generator with roughly half the model
parameters compared to the discriminator. We
train a monolingual model for each language for
30 epochs. Further pre-training does not improve
performance on downstream tasks.

We utilize DeBERTa-V3’s gradient-disentangled
embedding sharing (GDES), which allows the em-

bedding gradients from the generator to flow di-
rectly to the discriminator, but not vice versa. This
results in more stable training compared to the
vanilla embedding sharing (ES) used by ELECTRA
(Clark et al., 2020), which allows the gradients to
flow in both directions.

Masking Strategy. We use character-level mask-
ing to allow for open-vocabulary language model-
ing. The character token sequence is restored by
concatenating the character representations from
the intra-word module with the word representa-
tions from the inter-word module, replacing the
initial [WORD_CLS] with the contextualized repre-
sentation. We follow the original HLM approach
for the language modeling prediction head: an addi-
tional single-layer intra-word transformer module
followed by a simple feed-forward network. A
softmax layer is used for the generator’s output
distribution and a sigmoid layer is used for the dis-
criminator. The relative position embedding matrix
is shared between the initial intra-word encoder
and the intra-word language modeling head. Fig-
ure 1 shows an overview of our architecture for
RTD pre-training.
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We compare the following masking strategies:

• Whole-word masking: mask the characters in
15% of the words (original HLM approach),

• Character masking: randomly mask 15% of
the characters,

• Character n-gram masking: mask random
spans of 1-4 characters until 15% of the char-
acters are masked.

Through experimentation we found that charac-
ter n-gram masking performed best for our down-
stream tasks, by a small margin. Random charac-
ter masking performed similarly to whole-word-
masking. We hypothesize that it is too difficult for
the model to learn to predict whole words from the
small training corpora. Conversely, random char-
acter masking is too easy, as MLM pre-training
accuracy reaches high levels very quickly.

2.3 Character-level Encoder-decoder Models
While encoder-only models are very effective for
classification tasks, lemmatization is most naturally
treated as a sequence-to-sequence problem, where
the inflected form is “translated” to its lemma. We
therefore choose to train an encoder-decoder model
that handles sequence-to-sequence tasks naturally.
Specifically, we train a T5 model for each lan-
guage (Raffel et al., 2020) using the nanoT5 library
(Nawrot, 2023) and the t5-v1_1-base configuration.
In lemmatization, our aim is to prioritize the char-
acters within a word, rather than focusing on a de-
tailed understanding of contextualized words (see
Section 3.3 for our approach). Moreover, extend-
ing a hierarchical structure to (encoder-)decoder
models like T5 is not straightforward. Therefore,
we employ character tokenization in the T5 models
for lemmatization.

3 Using our PLMs for Downstream Tasks

Many systems focusing on Universal Dependen-
cies, often introduced in shared tasks, utilize cross-
lingual transfer and multi-task learning. For in-
stance, UDPipe (Straka et al., 2019), which em-
ploys multilingual BERT, is fine-tuned on specific
treebanks for PoS tagging, morphological tagging,
lemmatization, and dependency parsing. UDify
(Kondratyuk and Straka, 2019) learns these tasks
for 75 languages in one model.

Given that in our setting cross-lingual transfer
is excluded, we investigate multi-task learning as

a remaining option to leverage additional training
signals for resource-poor languages.

3.1 Morphological Tagging
Following Riemenschneider and Frank (2023),
we treat morphological tagging as a multi-task-
classification problem, where every token is pro-
cessed through k classification heads, correspond-
ing to each possible morphological feature in a
dataset. Whenever a feature is missing in a token,
the model is trained to predict a class indicating the
feature’s absence.

To represent a token, the HLM architecture
yields two kinds of embeddings: those derived
from the intra-word encoder, informed by a word’s
characters but not by other sentence words, and
those that are contextualized by surrounding tokens.
In line with Sun et al. (2023) as well as earlier work
(Clark et al., 2022; Plank et al., 2016), we concate-
nate these embeddings to create a unified final word
representation.

We use a simple feed-forward network followed
by a softmax function on top of the last hidden
state of this word representation. The final loss is
computed as:

Lmorph =
1

k

k−1∑

m=0

Lm

where k is the number of morphological features.
We further extended the multi-task framework

to include additional related tasks, hypothesizing
that obtaining training signals from auxiliary tasks
could improve the model’s capabilities, particularly
under our low-resource conditions. To this end,
we incorporated tasks such as dependency parsing
and PoS tagging. Contrary to our expectations,
this approach led to slower convergence and did
not provide any performance benefits, occasionally
even producing marginally inferior results. We
discuss these findings in Section 5.

3.2 PoS Tagging
Analogous to our approach in morphological tag-
ging, we represent each token by concatenating its
intra- and inter-word embeddings, followed by a
classification head. However, in contrast to mor-
phological tagging, we notice slight improvements
when the model is also tasked with predicting mor-
phological features. Thus, we determine the loss
as LUPoS +Lmorph, disregarding the morphological
tagging predictions during inference.
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3.3 Lemmatization

As outlined in Section 2.3, lemmatization is most
naturally treated as a sequence-to-sequence prob-
lem, where the form to be lemmatized is transduced
into its lemma, which is why we propose using a
T5 model for this task. Ideally, our model should
receive the word to be lemmatized in its original
context, while marking the word to be lemmatized,
similar to the approach used by Riemenschneider
and Frank (2023). For instance, given the input se-
quence ξύνοιδα [SEP] ἐμαυτῷ [SEP] οὐδὲν ἐπισ-
ταμένῳ, the model would be expected to predict
the lemma of ἐμαυτῷ, which is ἐμαυτοῦ. This ap-
proach would enable us to train the model in an
end-to-end fashion, allowing it to autonomously
learn the relevant information directly from the
word within its contextual surroundings.

However, this training method is prohibitively
expensive, requiring repeated passes through the
model, once for each token in the sentence. More-
over, we noted that the models exhibited excep-
tionally slow convergence. Allowing the model
to predict lemmata for all words in a sentence in
a single forward pass mitigates the computational
challenges, as it requires only one pass per sentence
per epoch. Yet, this strategy still encounters prob-
lems with very slow, and at times nonexistent, con-
vergence, while also introducing new challenges
for the model, particularly in assigning exactly one
lemma to each token accurately.

Therefore, we adopt a pipeline approach, follow-
ing Wróbel and Nowak (2022), by providing the
model with the inflected form and its correspond-
ing UPoS tag. For training purposes, we use the
gold UPoS tag, whereas for inference we rely on
the UPoS tag as predicted by our HLM-DeBERTa
model. We predict lemmata using beam search
with a beam width of 20, restricting the maximum
sequence length to 30.

4 Results

Our results are computed using the SIGTYP 2024
official evaluation script.1 The script computes
PoS tagging scores as the unweighted average of
the accuracy and the F1 score. For morphological
tagging, it computes the averaged accuracy across
each token, with deductions for any feature cat-
egories predicted by the model but absent in the
label. The lemmatization scores are the unweighted

1https://github.com/sigtyp/ST2024/blob/main/
scoring_program_constrained.zip.

average of the accuracy@1 and the accuracy@3.
We report our results in Table 2 and provide

dataset statistics in Appendix C. In PoS and mor-
phological tagging, our system emerges as the
winner of the constrained task. Its performance is
consistently almost on-par with that of the uncon-
strained task winner, being only 0.69 percentage
points lower on average. A notable outlier is seen
in Old French (fro) PoS tagging, where our system
falls short by 3 percentage points. This perfor-
mance difference might be linked to the small size
of the Old French corpus in the treebank, although
our model generally shows strong performance in
learning from small datasets, as demonstrated by
its robust performance in other datasets of similar
size, such as Ancient Hebrew (hbo), Gothic (got),
and Vedic Sanskrit (san).

Results in lemmatization display greater diver-
sity, likely due to the differing architectures in par-
ticipants’ approaches. Our model achieves 99.18%
in Classical Chinese (lzh), a language where dis-
tinct lemmata do not really exist, usually turning
the task into mere form replication. This score,
though precise, is somewhat lower than the near-
perfect range of 99.81 to 99.96% achieved by the
other methods in the shared task.

5 Negative Results

Multi-task Learning. We hypothesized that a
model simultaneously doing PoS tagging, morpho-
logical tagging and dependency parsing could bene-
fit from the training signals of related tasks.2 How-
ever, this approach did not significantly improve
morphological analysis and resulted in longer train-
ing times due to slower convergence. On the other
hand, jointly performing morphological and PoS
tagging in a multi-task learning setup yielded minor
improvements in PoS tagging. We believe that in-
cluding PoS information offers little extra insight to
the model for morphological tagging and simulta-
neously pressures it to form representations apt for
PoS tagging. Conversely, enriching the coarser PoS
tagging task with morphological labels provides the
model with useful additional insights. Furthermore,
our dependency parsing technique differs from the
more direct classification approach used in PoS
and morphological tagging, potentially leading to
instabilities during training.

2For dependency parsing, we adopt the head selection
method as described by Zhang et al. (2017).
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Language: chu cop fro got grc hbo isl lat latm lzh ohu orv san

Morphological Tagging

Constrained
Ours 96.04 98.60 97.87 95.32 97.46 97.46 95.29 95.17 98.68 95.52 96.30 95.00 91.58
Team 21a 94.06 80.47 94.08 93.96 96.50 71.20 94.79 93.31 97.98 85.98 94.64 92.16 90.00

Baseline 85.07 47.41 28.27 18.95 25.10 42.78 35.83 18.17 30.94 43.58 23.20 25.55 08.34

Unconstrained
UDParse 96.49 98.88 98.33 96.23 97.78 97.05 95.92 96.66 98.83 96.24 96.62 95.16 92.60
TartuNLP 67.14 74.86 98.01 92.40 97.33 95.14 95.53 95.91 98.83 88.75 75.62 80.00 86.33

PoS Tagging

Constrained
Ours 96.57 96.92 93.10 95.41 96.39 96.68 96.08 95.54 98.43 92.92 95.98 94.46 89.71
Team 21a 94.62 42.65 85.14 93.48 93.49 27.26 93.85 92.43 94.41 81.79 94.42 91.23 87.32

Baseline 93.36 94.98 91.57 93.73 90.33 94.07 94.00 92.39 97.22 90.91 93.59 90.33 89.37

Unconstrained
UDParse 97.00 97.33 96.01 96.47 96.49 97.84 96.88 96.83 98.79 93.76 96.71 94.99 90.02
TartuNLP 66.35 60.99 94.51 92.72 95.72 94.15 96.67 95.86 98.79 83.28 75.14 75.67 83.83

Lemmatization

Constrained
Ours 94.49 95.07 92.63 93.31 94.08 97.29 96.63 96.00 98.46 99.18 85.92 90.09 84.59
Team 21a 79.59 46.32 83.32 90.79 88.30 61.75 94.58 92.35 97.22 99.84 69.97 78.44 83.21

Baseline 89.60 95.74 91.93 91.95 91.06 95.28 93.78 92.08 97.03 98.81 89.43 84.44 84.24

Unconstrained
UDParse 59.56 74.78 92.47 92.81 94.02 96.85 97.96 96.74 98.91 99.96 63.43 68.55 88.10

TartuNLP 92.70 98.28 95.11 95.41 93.39 98.15 97.23 96.99 98.69 99.91 86.91 89.23 91.48

Table 2: Results on SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages.
We mark the winner of each subtask in bold and underline the overall winner. See Appendix C for language
identifiers.

Tall Models. Xue et al. (2023) found that trans-
formers with a narrower and deeper architecture
might surpass the performance of similarly sized
models in masked language modeling tasks. In-
spired by this finding, we experimented with dou-
bling the number of layers to 24 while reducing the
hidden size from 768 to 512 and the number of at-
tention heads from 12 to 8. However, although this
adjustment seemed to yield a marginal improve-
ment in pre-training with MLM, it did not result in
any performance changes when training with RTD.

6 Conclusion

We present our approach for the SIGTYP 2024
shared task on historical language analysis. Our
method employs a hierarchical transformer that
first focuses on a word’s characters, applying
self-attention to generate initial word embeddings.
These embeddings are then further developed by
integrating the contextual information from sur-
rounding words. We pre-train HLM-DeBERTa-V3
and T5 models with small datasets of historical
texts. The character-based methodology of our
architecture yielded promising results, effectively
leveraging the available data. Contrary to our ex-
pectations, the implementation of multi-task learn-
ing had only a negligible effect on enhancing our

models’ performance.
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Saran Lertpradit, Herman Leung, Maria Levina,
Lauren Levine, Cheuk Ying Li, Josie Li, Keying
Li, Yixuan Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Yi-Ju Jessica Lin, Krister Lindén,
Yang Janet Liu, Nikola Ljubešić, Olga Loginova, Ste-
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A Pre-Training Details

Parameter Generator Discriminator

Activation GELU GELU
Hidden Dropout 0.1 0.1
Initializer Range 0.02 0.02

Intra-word encoder

Layers 3 4
Hidden Size 768 768
Intermediate Size 1536 1536
Attention Heads 12 12

Inter-word encoder

Layers 6 12
Hidden Size 768 768
Intermediate Size 3072 3072
Attention Heads 12 12

Table 3: HLM-DeBERTa hyperparameters.

Parameter Value

Optimizer Adam
Weight Decay 0.01
Batch Size 16
Learning Rate 1e-5
Learning Rate Scheduler constant
Epochs 30
Warmup Proportion 0.1
Mask Percentage 15%
Max Sequence Length (words) 512
Max Word Length (chars) 16

Table 4: HLM-DeBERTa pre-training hyperparameters.

Parameter Value

Optimizer AdamWScale*

Weight Decay 0.0
Batch Size 16
Learning Rate 1e-5
Learning Rate Scheduler cosine
Epochs 100
Warmup Steps 1000
Mask Percentage 15%
Max Sequence Length 512
Mean Noise Span Length 3

Table 6: T5 pre-training hyperparameters.
* We use the customized AdamW imple-

mentation of nanoT5 (Nawrot, 2023) that
is augmented by RMS scaling.

Parameter Encoder Decoder

Activation GEGLU GEGLU
Hidden Dropout 0.0 0.0
Layers 12 12
Hidden Size 768 768
Intermediate Size 2048 2048
Attention Heads 12 12

Table 5: T5 hyperparameters.

B Fine-tuning Details

Parameter Value

Optimizer AdamW
Weight Decay 0.01
Batch Size 16
Learning Rate 2e-5
Learning Rate Scheduler linear
Early Stopping Patience 10

Table 7: HLM-DeBERTa fine-tuning hyperparameters.

Parameter Value

Optimizer AdamW
Weight Decay 0.01
Batch Size 16
Learning Rate 1e-3
Learning Rate Scheduler linear
Early Stopping Patience 10

Table 8: T5 fine-tuning hyperparameters.
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C Dataset Statistics

Language Code Family Script Train Tok. Valid Tok. Test Tok. Train Sent. Valid Sent. Test Sent.

Ancient Greek grc Indo-European Greek 334 043 41 905 41 046 24 800 3100 3101
Ancient Hebrew hbo Afro-Asiatic Hebrew 40 244 4862 4801 1263 158 158
Classical Chinese lzh Sino-Tibetan Hanzi 346 778 43 067 43 323 68 991 8624 8624
Coptic cop Afro-Asiatic Egyptian 57 493 7272 7558 1730 216 217
Gothic got Indo-European Latin 44 044 5724 5568 4320 540 541
Medieval Icelandic isl Indo-European Latin 473 478 59 002 58 242 21 820 2728 2728
Classical & Late Latin lat Indo-European Latin 188 149 23 279 23 344 16 769 2096 2097
Medieval Latin latm Indo-European Latin 599 255 75 079 74 351 30 176 3772 3773
Old Church Slavonic chu Indo-European Cyrillic 159 368 19 779 19 696 18 102 2263 2263
Old East Slavic orv Indo-European Cyrillic 250 833 31 078 32 318 24 788 3098 3099
Old French fro Indo-European Latin 38 460 4764 4870 3113 389 390
Vedic Sanskrit san Indo-European Latin (transcr.) 21 786 2729 2602 3197 400 400
Old Hungarian ohu Finno-Ugric Latin 129 454 16 138 16 116 21 346 2668 2669

Table 9: Dataset statistics.
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Abstract
SIGTYP’s Shared Task on Word Embedding
Evaluation for Ancient and Historical Lan-
guages was proposed in two variants, con-
strained or unconstrained. Whereas the con-
strained variant disallowed any other data to
train embeddings or models than the data pro-
vided, the unconstrained variant did not have
these limits. We participated in the five tasks
of the unconstrained variant and came out first.
The tasks were the prediction of part-of-speech,
lemmas and morphological features and fill-
ing masked words and masked characters on
16 historical languages. We decided to use a
dependency parser and train the data using an
underlying pretrained transformer model to pre-
dict part-of-speech tags, lemmas, and morpho-
logical features. For predicting masked words,
we used multilingual distilBERT (with rather
bad results). In order to predict masked charac-
ters, our language model is extremely small: it
is a model of 5-gram frequencies, obtained by
reading the available training data.

1 Introduction

Since word embeddings and the transformer archi-
tecture (Vaswani et al., 2017) found their way into
natural language processing (NLP), results for all
NLP tasks improved to unseen levels. Multilin-
gual pretrained language models like multilingual
BERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) include word embeddings
for up to 100 languages. However, historical lan-
guages are most unlikely to be covered by these
models. Since corpora of historical languages are
limited in size and will most likely not grow any-
more (unless an archaeological miracle unearths
corpora yet unheard of) it will be difficult to include
these languages to existing or new language models.
In the SIGTYP Shared Task on Word Embedding
Evaluation for Ancient and Historical Languages
2024 (ST 2024)1, it is proposed to present word

1https://sigtyp.github.io/st2024.html

embeddings/models for 16 historical languages (cf.
Table 1) for which part of speech (POS) (task 1),
lemmas (task 2), morphological features (task 3)
must be predicted. A fourth task asks to unmask
masked words (task 4a) or characters (including
spaces and punctuation, task 4b). Both masked
words and masked characters can appear in an adja-
cent position. 10% of words and 5% of characters
are masked. The shared task comes in two vari-
ants, constrained and unconstrained. In the first
variant, only the data provided by the organizers
can be used to train models, the unconstrained task
allows any additional data to be used for training
and inference.

The data used for the Shared Task (Dereza et al.,
2024) has been compiled from various sources.
Old, Middle, and Early Modern Irish is taken from
Bauer et al. (2017), Doyle (2018), Ó Corráin et al.
(1997), Acadamh Ríoga na hÉireann (2017); the
Old Hungarian corpus origins from Simon (2014)
and HAS Research Institute for Linguistics (2018),
all other corpora have been published in version
2.12 of the Universal Dependencies project (UD)
(Zeman et al., 2023)2.

Both the training and the test data for the tasks 1,
2, and 3 is in CoNLL-U3 format, i.e. the documents
are segmented into tokenised sentences. The values
for POS and the morphological features in tasks
1 and 3 are the UPOS and UFeats sets of the UD
project. However not all languages use all possible
features, e.g., the Old French data does not use the
features Number or Person.

The Evaluation of the shared task is carried out
by the CodaLab platform (Pavao et al., 2023) and
uses the metrics shown in Table 2. In case of multi-
ple metrics per task an unweighted average of the
metrics was used.

We participated in all five tasks of the uncon-
2https://universaldependencies.org, (Nivre et al.,

2020)
3https://universaldependencies.org/format.html
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Language Code Script Dating corpus size in tokens corpus size in sentences
Train Valid Test Train Valid Test

Ancient Greek grc Greek VIII c. BCE – 110 CE 334,043 41,905 41,046 24,800 3,100 3,101
Ancient Hebrew† hbo Hebrew X c. CE 40,244 4,862 4,801 1,263 158 158
Classical Chinese‡ lzh Hanzi 47 – 220 CE 346,778 43,067 43,323 68,991 8,624 8,624
Coptic† cop Coptic I – II c. CE 57,493 7,282 7,558 1,730 216 217
Gothic got Latin V – VIII c. CE 44,044 5,724 5,568 4,320 540 541
Medieval Icelandic isl Latin 1150 – 1680 CE 473,478 59,002 58,242 21,820 2,728 2,728
Classical and Late lat Latin I c. BCE – IV c. CE 188,149 23,279 23,344 16,769 2,096 2,097
Latin
Medieval Latin latm Latin 774 – early XIV c. CE 599,255 75,079 74,351 30,176 3,772 3,773
Old Church Slavonic chu Cyrillic X – XI c. CE 159,368 19,779 19,696 18,102 2,263 2,263
Old East Slavic orv Cyrillic 1025 – 1700 CE 250,833 31,078 32,318 24,788 3,098 3,099
Old French fro Latin 1180 CE 38,460 4,764 4,870 3,113 389 390
Vedic Sanskrit san Latin 1500 – 600 BCE 21,786 2,729 2,602 3,197 400 400

(transcr.)
Old Hungarian* ohu Latin 1440 – 1521 CE 129,454 16,138 16,116 21,346 2,668 2,669
Old Irish sga Latin 600 – 900 CE 88,774 11,093 11,048 8,748 1,093 1,094
Middle Irish mga Latin 900 – 1200 CE 251,684 31,748 31,292 14,308 1,789 1,789
Early Modern Irish ghc Latin 1200 – 1700 CE 673,449 115,163 79,600 24,440 3,055 3,056

Table 1: Data (†Afro-Asiatic language family, ‡Sino-Tibetan, *Finno-Ugric; all other languages are from the
Indo-European language family)

Task Metrics
1 POS-tagging Accuracy @1, F1
2 Morph/ annotation Macro-average

of Acc. @1 per tag
3 Lemmatisation Acc. @1, Acc. @3
4a Filling masked words Acc. @1, Acc. @3
4b Filling masked chars. Acc. @1, Acc. @3

Table 2: Evaluation metrics

strained variant of the shared task, even though our
approach for filling mask characters does not use
any other data than the data provided by the orga-
nizers. Apart from task 4 (filling masked words)
we got the best results of all participants.

2 Related Work

Even though this shared task is not about depen-
dency parsing, POS tagging and lemmatisation are
often present in dependency parsing. The shared
task in dependency parsing 2018 (Zeman et al.,
2018) processed three historical languages, An-
cient Greek, Latin, and Old Church Slavonic, for
which annotated data was present in the Univer-
sal Dependencies project at the time. In many of
the approaches word embeddings were used (calcu-
lated on corpora of these languages using word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), or fastText (Grave et al., 2018), the latter
already provides word embeddings for Latin. The
best results of the participants of the 2018 shared
tasks for historical languages are above 98% for

Latin, above 97% for Ancient Greek, and above
96% for Old church Slavonic for POS tagging.
Lemmatisation for these languages also performs
similarly well as modern languages. Sprugnoli
et al. (2021) also studied the creation and evalua-
tion word embeddings on Latin for the analysis of
language change. More recently, several large lan-
guage models for Classical Greek and Latin have
been provided by (Riemenschneider and Frank,
2023) who evaluated this models on POS-tagging
and lemmatisation (as this shared task), and depen-
dency parsing. Brigada Villa and Giarda (2023)
exploited models trained on Modern English to
parse Old English, similar to our approach.

Evidently, word embeddings can be used for
other tasks as well. E.g., Hamilton et al. (2016)
use word embeddings of earlier version of English
(but not going beyond the 1800s) to detect semantic
shifts in English.

3 Approaches

3.1 Tasks 1 – 3: Inference of POS, Lemmas,
and morphological features

Tasks 1, 2 and three consists of predicting the POS,
the lemma, and morphological features of 13 his-
torical languages (Table 1, exluding Old, Midlle
and Early Modern Irish).

In order to infer POS, lemmas, and morpholog-
ical features we used our syntactic dependency
parser UDParse4. This parser is an evolution of
UDpipe (Straka, 2018), which won the CoNLL

4https://github.com/Orange-OpenSource/udparse
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2018 Shared Task on dependency parsing (Zeman
et al., 2018). UDpipe is a graph parser using
pretrained word embeddings and embeddings of
POS and characters to take the context into ac-
count. Word embeddings are loaded before the
training, POS and characters embeddings are cal-
culated from the training data. In contrast to UD-
Pipe, UDParse uses word embeddings created by a
pretrained transformer instead of contextless word
embeddings produced by fastText5. This config-
uration proved to be very successful (Heinecke,
2020; Akermi et al., 2020), so we tried training
models for the 13 languages for which the depen-
dency syntax training data was available using dif-
ferent pretrained transformer models: bert-base-
multilingual-uncased (Devlin et al., 2019), XLM-
RoBERTa, GPT2 (Radford et al., 2019) and lan-
guage specific models like slavicBERT (Arkhipov
et al., 2019) for Old Church Slavonic and Old East
Slavic or heBERT6 for Ancient Hebrew. For the
training we used 60 epochs with an initial learn-
ing rate of 10−3, which decreased to 10−4 after
40 epochs7, batch size was 32. We then chose
for each language and each of task (1: POS, 2:
lemmas, 3: morphological features) the best under-
lying pretrained transformer model (cf. Table 3).
In nearly all cases XLM-RoBERTa produced the
best results on the validation dataset (even though
the difference, notably to multilingual BERT, was
very small). For some languages we used different
transformer models for tasks 1 to 3 to obtain the
best results (on validation data).

Note that the test-data provided by the organiz-
ers was already tokenized. This simplifies enor-
mously the tasks of assigning a POS, a lemma, or
morphological features, especially for (historical)
languages, which do not always come with stan-
dardized orthographies.

Even though the challenging fact was that most
of these languages are not covered by any of the
underlying pretrained language models, the results
(Table 5, columns 2, 3, and 4) for POS, lemmas,
and features, are well above 90% (except the lem-
mas for Old Hungarian and Old East Slavic). Partly
this can be explained by the fact that the modern de-
scendants of these languages are covered by XLM-
RoBERTa etc., and at least some of the words of the

5http://github.com/facebookresearch/fastText/
blob/master/pretrained-vectors.md

6https://huggingface.co/avichr/heBERT
7Decreasing the learning rate after 40 epochs is a result of

experimenting with UDParse at an earlier stage.

Language POS Lemma Morphological
code features
chu XLMR XLMR XLMR
cop XLMR GPT2 XLMR
fro XLMR mBERT XLMR
got XLMR mBERT mBERT
grc XLMR XLMR XLMR
hbo heBERT XLMR heBERT
isl XLMR XLMR XLMR
lat XLMR XLMR XLMR
latm XLMR XLMR XLMR
lzh mBERT mBERT mBERT
ohu XLMR XLMR mBERT
orv XLMR XLMR XLMR
san mBERT mBERT XLMR

Table 3: Best underlying pretrained transformer models
per language and task 1, 2, and 3. For language codes
please refer to Table 1.

historical languages still exist in the contemporary
languages. Thus, the modern languages might have
helped their ancestors. For comparison, UDParse
on modern languages, covered by XLM-RoBERTa
or mBERT has results8 only slightly above the re-
sults obtained on historical language (Table 4).

Code UPOS Lemma
fr 97.93 98.41
he 97.81 97.60
hu 97.07 95.51
ru 99.35 98.90

Code UPOS Lemma
fro 96.01 95.11
hbo 97.84 98.15
ohu 96.71 86.91
orv 94.99 89.23

Table 4: UDParse results for some modern languages
(left) compared to historical languages (right, results
copied from Table 5)

However, this does not explain the worse than
average results for Old Hungarian and Old East
Slavic whose descendants are also covered by
XLM-RoBERTa. Old East Slavic contains some
characters absent in its modern successors (Rus-
sian, Ukrainian and Belorussian). Similarly, the
Old Hungarian corpus contains diacritics and char-
acters not used in Modern Hungarian. This could
have played a role. For the above average results
for Coptic (not covered by XLM-RoBERTa and
written in an alphabet totally absent in the vocabu-
lary of XLM-RoBERTa), UDParse seems to exploit
the word and character vectors produced during
training to perform well in the lemmatisation.

8For the results for other languages cf. https:
//github.com/Orange-OpenSource/UDParse/blob/
master/doc/results.md
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Code UPOS Lemma Morph. Word Char Avg.
feat. fill fill

chu 97.00 92.70 96.49 2.80 66.77 71.15
cop 97.33 98.28 98.88 0.00 0.00 58.90
fro 96.01 95.11 98.33 3.28 62.77 71.10
got 96.47 95.41 96.23 2.67 74.59 73.07
grc 96.49 93.39 97.78 3.07 68.46 71.84
hbo 97.84 98.15 97.05 5.39 36.85 67.05
isl 96.88 97.23 95.92 3.42 66.45 71.98
lat 96.83 96.99 96.66 3.51 67.91 72.38
latm 98.79 98.69 98.83 4.73 72.93 74.79
lzh 93.76 99.91 96.24 6.10 0.00 59.20
ohu 96.71 86.91 96.62 6.31 66.52 70.61
orv 94.99 89.23 95.16 5.03 61.34 69.15
san 90.02 91.48 92.60 3.86 70.10 69.61
ghc — — — 3.29 58.09 30.69
mga — — — 4.03 53.38 28.71
sga — — — 2.79 58.38 30.59

Table 5: Results (Word filling failed for Coptic (cop)
and character filling missing for Coptic and Classical
Chinese (lzh). For Old Irish (sga) Middle Irish (mga),
and Early Modern Irish (hgc), only data for the word
and character filling tasks was available)

All results for tasks 1, 2, and 3 are well above
the baseline provide by the shared task’s organisers
(Table 6) with the exception of the lemmatisation
of Old Hungarian (ohu).

Code UPOS Lemma Morph. feat
chu 3.64 3.09 11.42
cop 2.35 2.54 51.47
fro 4.44 3.18 70.06
got 2.74 3.46 77.28
grc 6.16 2.33 72.68
hbo 3.77 2.86 54.26
isl 2.88 3.45 60.09
lat 4.44 4.90 78.49
latm 1.56 1.65 67.89
lzh 2.85 1.10 52.66
ohu 3.12 –2.53 73.42
orv 4.66 4.79 69.60
san 0.65 7.24 84.26

Table 6: Difference with respect to the baseline

3.2 Task 4a: Filling masked words

The task of filling one or several single words in
a sentence was the most challenging task for his-
torical languages. Consequently, our results are ex-
tremely low (Table 5, column 5). This is probably
more due to the chosen approaches than to the fact
that the pretrained transformers have been trained
little or not at all on these languages. We tried
two classical approaches, an encoder (distilbert-

base-multilingual-cased, Sanh et al. (2019)) and an
encoder/decoder (facebook/mbart-large-50, Tang
et al. (2020)). In the first case we used Hug-
gingface’s AutoModelForMaskedLM, the AdamW
(Loshchilov and Hutter, 2019) optimiser with a
learning rate of 5 ∗ 10−5, a batch size of 8 and
early stopping, which stopped the training after 4
to 6 epochs depending on the language. For the
training process, we did not use the masks pro-
vided in the training corpus, but masked words
randomly with a probability of 15%. In the sec-
ond case (with mBART) we used Huggingface’s
MBartForConditionalGeneration (other hyper-
parameters were identical).

The difference between distilBERT and mBART
was marginal, possibly linked to a problem not
identified before the shared task’s deadline. We
submitted the results of the first approach. How-
ever since this approach only predicts a single
token (in the sense of distilBERT’s vocabulary)
for each masked word instead of a word (in most
cases two or more tokens) our prediction was
wrong for all masked words which are repre-
sented by more than one distilBERT token. In
other words, masked words which are not in dis-
tilBERT’s vocabulary, could not be predicted with
this approach. The second approach, based on
MBartForConditionalGeneration, did indeed
return most times a word (or more) for a masked
word, but we had cases where only a space was
obtained.

3.3 Task 4b: Filling masked characters

For this subtask we chose a very old idea: a
simple n-gram count and applying the most fre-
quent n-gram which matches the masked char-
acter and its context. We trained our model by
counting all n-grams in the unmasked part of
the training corpus. We then looked for every
masked character in test sentences and tried to
find the frequency of all n-grams which include
the masked character (we experimented with 3-
grams and 5-grams, the latter proved to work
much better): for instance, forthe following string
“Ne voloi? aler nule part.”9 which includes a
masked character, we take the frequencies of all
the 5 character windows around the masked char-
acters, including spaces (“ ”) from the training

9Taken from the Old French training corpus. The shared
task data used “[_]” as placeholder for masked characters. We
replaced it with a single character not occurring anywhere in
the data. For a better readability we use “?” here.
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corpus. “?” is the masked character. The letter in
inverted colors is the candidate letter:

1. “oloi?” →
• “oloi e ” which has frequency of 6 in the

training corpus,
• “oloi l ” (frequency of 3),
• “oloi r ” (8),
• “oloi t ” (15, at this stage, this 5-gram is

the best match. It is therefore kept while
the other 5-grams are discarded)

2. “loi? ”→
• “loi e ” (2),
• “loi l ” (2),
• “loi r ” (6),
• “loi s ” (1),
• “loi t ” (22, new best match so far)

3. “oi? a”→
• “oi a a” (1),
• “oi e a” (17),
• “oi f a” (1),
• “oi l a” (3),
• “oi r a” (3),
• “oi s a” (14),
• “oi t a” (57, retained),
• “oi z a” (8)

4. “i? al”→
• “i t al” (3); discarded since with “oit a”

above we have found a more frequent
match already

5. “? ale”→
• “ ale” (3),

• “ a ale” (1),
• “ e ale” (3),
• “ i ale” (2),
• “ l ale” (1),
• “ n ale” (2),
• “ r ale” (6),
• “ s ale” (2),
• “ t ale” (17),
• “ z ale” (1),

• “ « ale” (1); all discarded

In this example “oi t a” is the most frequent
replacement for one the 5-grams which contain
the masked character (“oi? a”). So, we can
replace the masked character by “t” to obtain
“Ne voloit aler nule part.”. Note that at least in
this example for each of the five 5-ngrams the best
match is the one where the masked character is the
same (“t”), but this was not always the case.

The results of this approach can be found in
Table 5, column 6. For time reason we could not
implement the needed post processing for Classical
Chinese (lzh) to rebuild the Hanzi characters from
the decomposed characters in the train/validation
and test data. Apparently we did not submit the
Coptic data to the evaluation server, but a run after
the deadline resulted in an accuracy of 62.26%.
Interestingly, the score for Ancient Hebrew (hbo)
is only half as good as for the other languages.
Since the number of different characters of Ancient
Hebrew is rather low (cf. Table 7), the reason of this
bad result must be found elsewhere. Surprisingly
the evaluation of the validation corpus, resulted in
around 60% accuracy.

lang. characters
code
san 37
cop 41
got 50
fro 64
hbo 67
latm 77
mga 77
sga 78

lang. characters
code
ghc 92
lat 116
isl 118
ohu 120
chu 124
orv 156
grc 176
lzh 318

Table 7: Number of different characters in the fill
masked characters test data. Many languages contain
accentuated characters, digits, Classical Latin (lat) con-
tains citations in Greek which account for the unex-
pected high number of different characters.

We think a more word-context-aware approach
could have improved the results, even a simple
word based bi- or trigram. For instance in the Old
French validation corpus is the following masked
character “se je ai dite [_]ne response”. Our ap-
proach finds for the 5-gram “ ?ne ” the 5-gram
“ ne ” (the most frequent) instead of the correct

“ u ne ”. Due to the approaching deadline, we did
not have the time to implement and test this.
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4 Conclusion

We successfully used rather old and well-
established techniques to provide a solution to
the five tasks of this year’s SIGTYP shared task.
Putting aside the failed results for filling-masked-
words task, we got very good results for POS
tagging, lemmatization, and morphological fea-
ture assignment, which are as good as for mod-
ern languages and well above the baseline. We
are not aware of any state-of-the-art values for
filling masked characters, however, even though
our results are first placed in the shared task, they
are probably perfectible. For modern languages,
word embedding or transformer-based methods,
e.g. such as CharacterBERT, (El Boukkouri et al.,
2020) will probably yield much better results.
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ičiūtė, Ika Alfina, Avner Algom, Khalid Alnajjar,
Chiara Alzetta, Erik Andersen, Lene Antonsen, Tat-
suya Aoyama, Katya Aplonova, Angelina Aquino,
Carolina Aragon, Glyd Aranes, Maria Jesus Aranz-
abe, Bilge Nas Arıcan, Þórunn Arnardóttir, Gashaw
Arutie, Jessica Naraiswari Arwidarasti, Masayuki
Asahara, Katla Ásgeirsdóttir, Deniz Baran Aslan,
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Bernadeta Griciūtė, Matias Grioni, Loïc Grobol, Nor-
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Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna
Kanerva, Neslihan Kara, Ritván Karahóǧa, An-
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Shorouq Zahra, Amir Zeldes, He Zhou, Hanzhi Zhu,
Yilun Zhu, Anna Zhuravleva, and Rayan Ziane. 2023.
Universal dependencies 2.12. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

150

http://hdl.handle.net/11234/1-5150


Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2024), pages 151–159
March 22, 2024 ©2024 Association for Computational Linguistics

Allen Institute for AI @ SIGTYP 2024 Shared Task on Word Embedding
Evaluation for Ancient and Historical Languages

Lester James V. Miranda
Allen Institute for Artificial Intelligence

ljm@allenai.org

Abstract

In this paper, we describe Allen AI’s sub-
mission to the constrained track of the SIG-
TYP 2024 Shared Task. Using only the data
provided by the organizers, we pretrained a
transformer-based multilingual model, then
finetuned it on the Universal Dependencies
(UD) annotations of a given language for a
downstream task. Our systems achieved de-
cent performance on the test set, beating the
baseline in most language-task pairs, yet strug-
gles with subtoken tags in multiword expres-
sions as seen in Coptic and Ancient Hebrew.
On the validation set, we obtained ≥70% F1-
score on most language-task pairs. In addition,
we also explored the cross-lingual capability
of our trained models. This paper highlights
our pretraining and finetuning process, and our
findings from our internal evaluations.

1 Introduction

This paper describes Allen AI’s submission to the
constrained track of the SIGTYP 2024 Shared
Task on Word Embedding Evaluation for An-
cient and Historical Languages. The constrained
track requires participants to build a system for
three linguistic tasks—parts-of-speech (POS) tag-
ging, morphological annotation, and lemmatisa-
tion—using only the corpora provided by the orga-
nizers (Dereza et al., 2024).

The dataset contains Universal Dependencies
v2.12 data (Zeman et al., 2023) in eleven languages
with five Old Hungarian codices (HAS Research In-
stitute for Linguistics, 2018). The texts were from
before 1700 CE, containing four language fami-
lies (Indo-European, Afro-Asiatic, Sino-Tibetan,
and Finno-Ugric), and six scripts (Greek, Hebrew,
Hanzi, Coptic, Latin, Cyrillic). Finally, the dataset
has over 2.6M tokens for training, and around 330k
tokens for validation and testing. Table 1 shows
all languages for the subtask with their equivalent
language code.

Code Language

CHU Old Church Slavonic
COP Coptic
FRO Old French
GOT Gothic
GRC Ancient Greek
HBO Ancient Hebrew
ISL Medieval Icelandic
LAT Classical and Late Latin
LATM Medieval Latin
LZH Classical Chinese
OHU Old Hungarian
ORV Old East Slavic
SAN Vedic Sanskrit

Table 1: Language codes for all thirteen languages in
the constrained track of the shared task. We will refer to
the language code in the succeeding tables and figures.

Our general approach involves pretraining a
transformer-based multilingual language model
(LM) on the shared task dataset, and then fine-
tuning the pretrained model using the Universal
Dependencies (UD) annotations of each language.
Throughout this paper, we will refer to the pre-
trained model as LIBERTUS. We also explored
data sampling and augmentation techniques during
the pretraining step to ensure better generalization
performance.

On the validation set, we obtained ≥70% F1-
score for the majority of language-task pairs. More-
over, our systems achieved decent performance on
the test set, yet struggled with subtoken tags in
multiword expressions as seen in Coptic (COP) and
Ancient Hebrew (HBO). Table 2 shows our per-
formance on the shared task test set. Our system
achieved better than baseline performance in most
language-task pairs, especially in morphological
annotation, but underperformed in lemmatisation.

We detail our resource creation, model pretrain-
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Lang. POS tag. Morph. annot. Lemma.

CHU 0.946 0.941 0.796
COP 0.426 0.805 0.463
FRO 0.851 0.941 0.833
GOT 0.934 0.940 0.908
GRC 0.935 0.965 0.883
HBO 0.273 0.712 0.618
ISL 0.939 0.948 0.946
LAT 0.924 0.933 0.923
LATM 0.944 0.980 0.972
LZH 0.818 0.860 1.000
OHU 0.944 0.946 0.700
ORV 0.912 0.922 0.784
SAN 0.873 0.900 0.832

Table 2: SIGTYP 2024 Shared Task final leaderboard
results as evaluated on the test set. Cells in green in-
dicate scores that are greater than the baseline. The
mapping of language codes to languages can be found
in Table 1.
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Figure 1: Training loss curve for the 126M-parameter
model after 100k steps.

ing, and finetuning methodologies in this paper.
The source code for all experiments can be found
on GitHub: https://github.com/ljvmiranda9
21/LiBERTus.

2 Methodology

2.1 Model Pretraining

The main purpose of pretraining is to obtain
context-sensitive word embeddings that we will
finetune further for each downstream task. We
approach this by training a multilingual language
model akin to the XLM-RoBERTa (Conneau et al.,
2020) and multilingual BERT (Devlin et al., 2019)
architectures.

Hyperparameters Value

Hidden size 768
Intermediate size 3072
Max position embed. 512
Num. attention heads 12
Hidden layers 12
Dropout 0.1

Table 3: Hyperparameter configuration for the LIBER-
TUS pretrained model.

Preparing the pretraining corpora. We con-
structed the pretraining corpora using the anno-
tated tokens of the shared task dataset. Initially, we
explored several data augmentation techniques to
ensure that each language is properly represented
based on the number of unique tokens. However,
we found pretraining to be unstable when we up-
sampled tokens to achieve the same count as Me-
dieval Latin (LATM), the language with the highest
token count. In the end, we found that leaving
the token distribution as-is leads to more stable
pretraining and lower validation scores. More in-
formation about our sampling experiments can be
found in Section A.1 of the appendix.

Pretraining the base model. Using the pretrain-
ing corpora, we trained a model with 126M param-
eters that will serve as a base for finetuning down-
stream tasks. LIBERTUS follows RoBERTa’s pre-
training architecture (Liu et al., 2019) and takes
inspiration from Conneau et al. (2020)’s work on
scaling BERT models to multiple languages.

Our hyperparameter choices closely resemble
that of the original RoBERTa implementation as
seen in Table 3. We also trained the same BPE tok-
enizer (Sennrich et al., 2016) using the constructed
corpora. During model pretraining, we used the
AdamW optimizer with β2=0.98 and a weight de-
cay of 0.01. The base model underwent training
for 100k steps with a learning rate of 2e-4. We
used a learning rate scheduler that linearly warms
up during the first 12k steps of the training process,
then linearly decays for the rest. Figure 1 shows
the training curve.

2.2 Model Finetuning

For each language, we finetuned a multitask model
using spaCy (Honnibal et al., 2020). We used
spaCy’s tokenization rules for the majority of lan-
guages except for Classical Chinese (LZH), where
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we segmented on characters. The final system con-
sists of a parts-of-speech (POS) tagger, morpholog-
ical analyzer, and lemmatizer.

Parts-of-speech (POS) tagger. We employed a
standard classifier that predicts a vector of tag prob-
abilities for each token. Each POS tag is a unique
class that we assign exclusively to a token. We
trained a model by taking the context-sensitive vec-
tors from our pretrained embeddings, and passing
them to a linear layer with a softmax activation.
The network is then optimized using a categorical
cross-entropy loss. For languages with subtokens
such as Coptic (COP) and Ancient Hebrew (HBO),
we merged each subtoken and used the full multi-
word expression (MWE) during training.

Morphological analyzer. Similar to the POS
tagger, we treat morphological annotation as a to-
ken classification task. Instead of directly modeling
each feature, we made every unique combination
of morphological features as a class. The limi-
tation of this approach is that it can only predict
combinations that were present in the training cor-
pora. Similar to the POS tagger, we merged each
subtoken for every multi-word expression (MWE)
during training.

Lemmatizer. We trained a neural-based edit tree
lemmatizer (Müller et al., 2015) by first extracting
an edit tree for each token-lemma pair. Because
this process can result in hundreds of edit trees, we
treat the problem of picking the correct tree as a
classification task. Here, each unique tree serves as
a class and we compute a probability distribution
over all trees for a given token. To obtain the most
probable tree, we passed the context-sensitive em-
beddings from our pretrained model to a softmax
layer and trained the network with a cross-entropy
loss objective. We set the minimum frequency of an
edit tree to 3, and used the surface form of the token
as a backoff when no applicable edit tree is found.
Finally, we ensured that the lemmatizer checks at
least a single tree before resorting to backoff.

Finetuning the pipelines. We trained each com-
ponent of the system in parallel, although the final
“pipeline” assembles them together using the spaCy
framework. For all components, the pretrained
embeddings are passed on to a linear layer with
softmax activation. Sometimes, the tokenization
from the multilingual model does not align one-to-
one with spaCy’s tokenization. In such case, we
use a pooling layer that computes the average of

Lang. POS tag. Morph. annot. Lemma.

CHU 0.947 0.876 0.803
COP 0.924 0.846 0.776
FRO 0.890 0.912 0.844
GOT 0.951 0.886 0.914
GRC 0.956 0.915 0.873
HBO 0.624 0.561 0.219
ISL 0.963 0.901 0.949
LAT 0.949 0.882 0.922
LATM 0.984 0.951 0.968
LZH 0.795 0.824 0.942
OHU 0.953 0.919 0.697
ORV 0.933 0.859 0.787
SAN 0.888 0.811 0.817

Table 4: F1-score results on the validation set. The
mapping of language codes to languages can be found
in Table 1.

each feature to obtain a single vector per spaCy
token.

During finetuning, we used the Adam optimizer
with β1=0.9, β2=0.999 and a learning rate of 0.001.
The learning rate warms up linearly for the first
250 steps, and then decays afterwards.

3 Results

Table 2 shows the test scores for the shared task
using the official shared task metrics:

• POS-tagging: Accuracy@1, F1-score

• Detailed morphological annotation:
Macro-average of Accuracy@1 per tag

• Lemmatisation: Accuracy@1, Accuracy@3

Our systems obtained decent performance and
beat the baseline for the majority of language-task
pairs. In addition, our submission obtained 2nd
place against three other submissions.

In the following sections, we will outline our in-
ternal evaluations and benchmarking experiments.

3.1 Performance on the validation set

Table 4 shows the validation scores of our finetuned
models. We achieved ≥70% performance in most
language-task pairs. The top performers, calcu-
lated by taking the average across all tasks, are Me-
dieval Latin (0.968), Medieval Icelandic (0.938),
and Classical and Late Latin (0.918), whereas the
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chu cop fro got grc hbo isl lat latm lzh ohu orv san
Target language

chu
cop
fro
got
grc
hbo

isl
lat

latm
lzh

ohu
orv
san

So
ur

ce
 la

ng
ua

ge

0.95 0.02 0.23 0.45 0.38 0.04 0.31 0.41 0.29 0.00 0.22 0.68 0.29

0.24 0.92 0.22 0.29 0.25 0.21 0.21 0.20 0.21 0.01 0.37 0.23 0.23

0.33 0.13 0.89 0.35 0.40 0.04 0.43 0.47 0.48 0.00 0.38 0.41 0.27

0.44 0.02 0.23 0.95 0.41 0.04 0.33 0.47 0.35 0.00 0.19 0.42 0.29

0.39 0.08 0.35 0.43 0.96 0.02 0.39 0.49 0.46 0.01 0.21 0.37 0.28

0.13 0.16 0.11 0.15 0.13 0.62 0.15 0.13 0.12 0.00 0.14 0.14 0.20

0.33 0.04 0.25 0.31 0.38 0.04 0.96 0.22 0.38 0.01 0.30 0.37 0.27

0.34 0.05 0.38 0.39 0.30 0.02 0.43 0.95 0.84 0.01 0.19 0.35 0.27

0.29 0.11 0.32 0.39 0.41 0.02 0.42 0.80 0.98 0.00 0.31 0.36 0.23

0.23 0.14 0.16 0.21 0.21 0.21 0.14 0.21 0.17 0.79 0.20 0.22 0.28

0.22 0.07 0.23 0.18 0.24 0.03 0.17 0.16 0.16 0.00 0.95 0.24 0.23

0.76 0.12 0.31 0.44 0.44 0.04 0.40 0.43 0.48 0.01 0.25 0.93 0.28

0.24 0.02 0.18 0.26 0.25 0.06 0.15 0.28 0.19 0.00 0.16 0.22 0.89

Parts-of-speech (POS) tagging

chu cop fro got grc hbo isl lat latm lzh ohu orv san
Target language
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0.88 0.11 0.11 0.25 0.19 0.01 0.19 0.22 0.18 0.02 0.17 0.52 0.10

0.09 0.85 0.22 0.06 0.14 0.01 0.16 0.10 0.18 0.00 0.25 0.14 0.05

0.20 0.17 0.91 0.22 0.26 0.03 0.33 0.24 0.33 0.02 0.31 0.27 0.17

0.24 0.14 0.20 0.89 0.25 0.01 0.28 0.26 0.24 0.01 0.27 0.27 0.14

0.22 0.13 0.27 0.21 0.92 0.03 0.30 0.26 0.30 0.00 0.12 0.25 0.12

0.02 0.07 0.08 0.04 0.04 0.56 0.05 0.02 0.04 0.02 0.06 0.02 0.03

0.18 0.15 0.29 0.20 0.25 0.04 0.90 0.10 0.25 0.01 0.26 0.26 0.15

0.22 0.13 0.31 0.24 0.30 0.02 0.30 0.88 0.41 0.00 0.25 0.28 0.08

0.23 0.11 0.23 0.18 0.23 0.03 0.31 0.26 0.95 0.01 0.23 0.27 0.08

0.19 0.36 0.43 0.22 0.29 0.22 0.30 0.20 0.30 0.82 0.29 0.24 0.16

0.12 0.14 0.24 0.12 0.21 0.02 0.25 0.19 0.28 0.01 0.92 0.18 0.07

0.59 0.13 0.28 0.25 0.24 0.01 0.31 0.25 0.32 0.00 0.21 0.86 0.14

0.15 0.10 0.14 0.15 0.13 0.01 0.14 0.12 0.13 0.01 0.13 0.20 0.81

Morphological annotation
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0.22 0.28 0.43 0.42 0.87 0.01 0.52 0.40 0.49 0.02 0.24 0.30 0.25

0.22 0.35 0.43 0.42 0.21 0.22 0.52 0.40 0.49 0.02 0.25 0.30 0.26

0.22 0.28 0.44 0.35 0.20 0.01 0.95 0.38 0.47 0.02 0.24 0.29 0.24

0.22 0.28 0.43 0.40 0.19 0.01 0.51 0.92 0.78 0.02 0.23 0.30 0.22

0.22 0.28 0.42 0.39 0.21 0.01 0.51 0.77 0.97 0.02 0.23 0.30 0.24

0.02 0.12 0.07 0.00 0.03 0.16 0.06 0.01 0.05 0.94 0.08 0.05 0.00

0.21 0.23 0.39 0.37 0.20 0.01 0.48 0.32 0.40 0.02 0.70 0.28 0.25

0.35 0.28 0.42 0.36 0.20 0.01 0.51 0.38 0.47 0.02 0.24 0.79 0.24

0.22 0.28 0.38 0.40 0.20 0.01 0.51 0.37 0.47 0.02 0.24 0.29 0.82

Lemmatization

Figure 2: Cross-lingual evaluation, as measured by the F1-score, given a monolingual model from one language
and a validation set in another. The mapping of language codes to languages can be found in Table 1.

bottom performers are Coptic (0.849), Vedic San-
skrit (0.839), and Ancient Hebrew (0.468).

Compared to our validation scores, our leader-
board scores on Coptic (COP) and Ancient Hebrew
(HBO) are poor. This performance is due to our
models being unable to accurately predict subto-
ken information as it has only seen the full MWE
during training. In order to align our tokenization
with the shared task’s validation script in Codalab
(Pavao et al., 2023), we substituted each MWE
with its subtokens resulting in potentially incom-
prehensible text. Finally, for empty tokens such
as previously found in Old East Slavic (ORV), we
added a rule in our system to produce empty pre-
dictions.1

3.2 Evaluating cross-lingual capabilities

To test the cross-lingual capability of a language,
we evaluated its finetuned model according to the
validation set of another. Figure 2 shows the results.

We found that it is practical to adapt a language
onto another for parts-of-speech (POS) tagging and
lemmatization, especially in cases where the target
language lacks sufficient data to train a supervised
model. However, this does not extend to its mor-
phology, as the validation set performs best only in
the language it was trained on.

Some target languages tend to be cross-lingually
receptive on lemmatization, i.e., many source lan-
guages can perform decently when applied to them.
This pattern is apparent especially between Clas-
sical and Late Latin (LAT) and Medieval Latin
(LATM) due to the latter being a direct continu-

1This problem was initially caused by missing brackets in
the reference annotations. We used the correct tokens for ORV
in the final submission.

ation of the former. Finally, we also observed that
Old Church Slavonic (CHU) and Old East Slavic
(ORV) are also cross-lingually compatible as they
came from the same family (i.e., Indo-European).

4 Related Work

Multilingual language modeling. Several ef-
forts in the field of NLP involve pretraining a trans-
former network (Vaswani et al., 2017) using a cor-
pus of multiple languages such as XLM-RoBERTa
(Liu et al., 2019) and multilingual BERT (Con-
neau et al., 2020). The main advantage of multilin-
gual language modeling is that it can harness the
cross-lingual representations of the languages in its
corpora to solve several downstream tasks (Chang
et al., 2022). However, these models harness mod-
ern data sources, not ancient and historical text.
The only exemplar that we found for a historical
and multilingual LM is hmBERT (Schweter et al.,
2022), where they pretrained on English, German,
French, Finnish, Swedish, and Dutch languages
from 1800 onwards. LIBERTUS aims to extend
this literature by providing another multilingual
language model focusing on ancient and historical
texts from diverse scripts and language families
before 1700 CE.

5 Conclusion

This paper describes Team Allen AI’s system: a
pretrained multilingual model (LIBERTUS) fine-
tuned on different languages for each downstream
task. Our system obtained decent performance for
the majority of language-task pairs. However, due
to our training paradigm, it struggles annotating
subtokens of multiword expressions. Nevertheless,
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our validation scores are high (≥70% F1-score) for
the majority of language-task pairs.

We also evaluated each language’s cross-lingual
capability and showed that transfer learning is pos-
sible especially on lemmatization. This approach
can be a viable alternative on limited corpora.

Our training and benchmarking source code is
on GitHub: https://github.com/ljvmiranda9
21/LiBERTus. The pretrained multilingual model
and finetuned pipelines are also available on Hug-
gingFace.2

Limitations

Pretrained LM size. Due to constraints in com-
pute, we were only able to pretrain a model akin
to the size of RoBERTabase. We highly recommend
pretraining a large LIBERTUS model to obtain
performance gains if the resource allows.

Pretraining data mix. In the end, we didn’t em-
ploy any sampling strategy to balance the token dis-
tribution of different languages during pretraining.
We only tested simple up-/downsampling strate-
gies and our experiments are limited to repeating
available data.

Label combination as individual classes.
When training the morphologizer and POS tagger,
we treated each feature and parts-of-speech
combination as its own class instead of modeling
them individually. This limits our text classifier to
only predicting combinations it has seen during
the training process.

Subtoken performance for multiword expres-
sions. Our systems performed poorly on COP and
HBO in the leaderboard due to how we trained our
model. Instead of showing subtokens, we used the
full multi-word expression during training.
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titelu, Maria Mitrofan, Yusuke Miyao, AmirHos-
sein Mojiri Foroushani, Judit Molnár, Amirsaeid
Moloodi, Simonetta Montemagni, Amir More,
Laura Moreno Romero, Giovanni Moretti, Shin-
suke Mori, Tomohiko Morioka, Shigeki Moro,
Bjartur Mortensen, Bohdan Moskalevskyi, Kadri
Muischnek, Robert Munro, Yugo Murawaki, Kaili
Müürisep, Pinkey Nainwani, Mariam Nakhlé,
Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko,
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Peljak-Łapińska, Siyao Peng, Siyao Logan Peng,
Rita Pereira, Sílvia Pereira, Cenel-Augusto Perez,
Natalia Perkova, Guy Perrier, Slav Petrov, Daria
Petrova, Andrea Peverelli, Jason Phelan, Jussi Piit-
ulainen, Yuval Pinter, Clara Pinto, Tommi A Piri-
nen, Emily Pitler, Magdalena Plamada, Barbara
Plank, Thierry Poibeau, Larisa Ponomareva, Martin
Popel, Lauma Pretkalnin, a, Sophie Prévost, Prokopis
Prokopidis, Adam Przepiórkowski, Robert Pugh, Ti-
ina Puolakainen, Sampo Pyysalo, Peng Qi, Andreia
Querido, Andriela Rääbis, Alexandre Rademaker,
Mizanur Rahoman, Taraka Rama, Loganathan Ra-
masamy, Joana Ramos, Fam Rashel, Moham-
mad Sadegh Rasooli, Vinit Ravishankar, Livy Real,
Petru Rebeja, Siva Reddy, Mathilde Regnault, Georg
Rehm, Arij Riabi, Ivan Riabov, Michael Rießler,
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zonoyer, Olga Rudina, Jack Rueter, Kristján Rú-
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Shadi Saleh, Alessio Salomoni, Tanja Samardžić,
Stephanie Samson, Manuela Sanguinetti, Ezgi Sanı-
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Saulı̄te, Yanin Sawanakunanon, Shefali Saxena,
Kevin Scannell, Salvatore Scarlata, Nathan Schnei-
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Shahzadi, Mo Shen, Atsuko Shimada, Hiroyuki Shi-
rasu, Yana Shishkina, Muh Shohibussirri, Maria
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João Silva, Aline Silveira, Natalia Silveira, Sara
Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Haukur Barri Símonar-
son, Kiril Simov, Dmitri Sitchinava, Ted Sither,
Maria Skachedubova, Aaron Smith, Isabela Soares-
Bastos, Per Erik Solberg, Barbara Sonnenhauser,
Shafi Sourov, Rachele Sprugnoli, Vivian Stamou,
Stein�hór Steingrímsson, Antonio Stella, Abishek
Stephen, Milan Straka, Emmett Strickland, Jana
Strnadová, Alane Suhr, Yogi Lesmana Sulestio,
Umut Sulubacak, Shingo Suzuki, Daniel Swanson,
Zsolt Szántó, Chihiro Taguchi, Dima Taji, Fabio
Tamburini, Mary Ann C. Tan, Takaaki Tanaka,
Dipta Tanaya, Mirko Tavoni, Samson Tella, Is-
abelle Tellier, Marinella Testori, Guillaume Thomas,
Sara Tonelli, Liisi Torga, Marsida Toska, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Utku
Türk, Francis Tyers, Sveinbjörn �Hórðarson, Vilhjál-
mur �Horsteinsson, Sumire Uematsu, Roman Un-
tilov, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Andrius Utka, Elena Vagnoni, Sowmya Vaj-
jala, Socrates Vak, Rob van der Goot, Martine Van-
hove, Daniel van Niekerk, Gertjan van Noord, Vik-
tor Varga, Uliana Vedenina, Giulia Venturi, Veronika
Vincze, Natalia Vlasova, Aya Wakasa, Joel C. Wal-
lenberg, Lars Wallin, Abigail Walsh, Jonathan North
Washington, Maximilan Wendt, Paul Widmer, Shira
Wigderson, Sri Hartati Wijono, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wróblewska, Mary Yako,
Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan,
Koichi Yasuoka, Marat M. Yavrumyan, Arife Betül
Yenice, Olcay Taner Yıldız, Zhuoran Yu, Arlisa Yu-
liawati, Zdeněk Žabokrtský, Shorouq Zahra, Amir
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pendencies 2.12. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

A Appendix

A.1 Different sampling strategies on
pretraining validation performance

We explored different sampling strategies and their
effect on the pretraining validation loss curve as
shown in Figure 3. We ran the pretraining pipeline
for 20k steps (one-fifths of the final hyperparameter
value) and measured the validation loss. The eval-
uation corpus was built from the validation set of
the shared task, and we kept it the same throughout
the experiment. We tested the following sampling
strategies:

• None: we used the original dataset without
any data sampling or augmentation.

• Upsampling: we upsampled each language
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Figure 3: Validation loss curve for different sampling
strategies in 20k steps.

to ensure that the number of their unique to-
kens is greater than or equal to the most domi-
nant language.

• Averaging: we took the average number
of unique tokens in the whole set and up-
/downsampled each language based on this
value.

Because any form of sampling resulted to un-
stable pretraining and higher validation loss, we
decided to stick with the dataset’s original data
distribution. We highly recommend exploring alter-
native data mixes to ensure that all languages will
be represented while keeping the training process
stable.

A.2 Finetuning a model per language vs.
monolithic system

We investigated if finetuning a model per language
is more effective against a monolithic system, i.e.,
training on the full multilingual annotated corpora.
Here, we combined the training corpora for all
languages, then shuffled them before batching. The
merged dataset has 194,281 documents for training
and 26,954 documents for validation. This means
that the downstream model sees a language mix per
training epoch.

As shown in Figure 4, finetuning a model per
language still yields the best results. One advantage
of language-specific models is that we were able
to set a different tokenizer per language—enabling
us to get decent scores on Classical Chinese (LZH).
Training the monolithic model is also sensitive to
the training data distribution, as shown by the dis-
parity in performance between majority languages
(Classical and Late Latin, Medieval Latin) and mi-
nority ones (Old Hungarian, Old East Slavic, Vedic

Sanskrit). Due to these findings, we decided to
train multiple models for our final system.

A.3 Alternative approach—multi-hash
embeddings

We considered using multi-hash embeddings (Mi-
randa et al., 2022) as an alternative approach. In-
stead of pretraining, these embeddings use ortho-
graphic features (e.g., prefix, suffix, norm, shape)
to create a word vector table. This approach also
applies the hashing trick, inspired by Bloom fil-
ters (Bloom, 1970), to decrease the vector table’s
memory footprint.

Figure 5 shows the results in comparison to our
final system. It is notable that simple orthographic
features are competitive with our transformer-
based model. However, we chose to submit the
transformer-based pipeline as our final system be-
cause it still outperforms the multi-hash embed
method in the majority of our language-task pairs.
We still recommend investigating this approach fur-
ther because the hash-embed method has noticeable
efficiency gains in terms of model size.

A.4 Open-access models
Finetuned spaCy models. The finetuned mod-
els follow spaCy’s naming convention and are
available on HuggingFace (https://huggingf
ace.co/ljvmiranda921/{model_name}, where
model_name is found on Table 5). Table 5 also
lists the size (in MB) for each language. Each
model is multi-task in nature and can perform all
downstream tasks (i.e., POS tagging, morphologi-
cal annotation, lemmatisation) in a single call using
the spaCy framework.3

Pretrained multilingual LM. In addition, the
pretrained multilingual language model is also on
HuggingFace (https://huggingface.co/ljvmi
randa921/LiBERTus-base) and can be accessed
using the transformers library (Wolf et al., 2020).

3https://spacy.io
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Figure 4: Comparison between training language-specific models versus a single monolithic model as evaluated
on the validation set.
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Figure 5: Comparison between a RoBERTa-based pretrained model and multi-hash embeddings (Miranda et al.,
2022) as evaluated on the validation set.

Language spaCy Model Name Model Size

Old Church Slavonic xx_chu_sigtyp_trf 491 MB
Coptic el_cop_sigtyp_trf 477 MB
Old French xx_fro_sigtyp_trf 471 MB
Gothic xx_got_sigtyp_trf 474 MB
Ancient Greek xx_grc_sigtyp_trf 501 MB
Ancient Hebrew he_hbo_sigtyp_trf 475 MB
Medieval Icelandic xx_isl_sigtyp_trf 496 MB
Classical and Late Latin xx_lat_sigtyp_trf 486 MB
Medieval Latin xx_latm_sigtyp_trf 510 MB
Classical Chinese zh_lzh_sigtyp_trf 469 MB
Old Hungarian xx_ohu_sigtyp_trf 488 MB
Old East Slavic xx_orv_sigtyp_trf 503 MB
Vedic Sanskrit xx_san_sigtyp_trf 473 MB

Table 5: The finetuned model for each language is available on HuggingFace.
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Abstract

This paper discusses the organisation and find-
ings of the SIGTYP 2024 Shared Task on Word
Embedding Evaluation for Ancient and Histor-
ical Languages. The shared task was split into
the constrained and unconstrained tracks and
involved solving either three or five problems
for 12+ ancient and historical languages be-
longing to four language families and making
use of six different scripts.

There were 14 registrations in total, of which
three teams participated in each track. Out of
these six submissions, two systems were suc-
cessful in the constrained setting and another
two in the unconstrained setting, and four sys-
tem description papers were submitted by dif-
ferent teams.

The best average results for POS-tagging, lem-
matisation and morphological feature predic-
tion were 96.09%, 94.88% and 96.68% respec-
tively. In the mask filling problem, the winning
team could not achieve a higher average score
across all 16 languages than 5.95% at the word
level, which demonstrates the difficulty of this
problem. At the character level, the best aver-
age result over 16 languages was 55.62%.

1 Introduction

The importance of NLP for studies in the classics is
growing, as can be seen by the variety of technolo-
gies, digital text resources, and applications being
developed to support research tasks in this field
in recent years (Hawk et al., 2018; Neidorf et al.,
2019; Stifter et al., 2021; Johnson et al., 2021). As
the value of machine learning for historical linguis-
tics is becoming more apparent, academic interest
in word embedding models for use in these con-
texts is also increasing (Bamman and Burns, 2020;

Singh et al., 2021; Hu et al., 2021; Riemenschnei-
der and Frank, 2023; Dereza et al., 2023b).

Since the rise of word embeddings, their evalu-
ation has been considered a challenging task that
sparked considerable debate regarding the opti-
mal approach. The two major strategies that re-
searchers have developed over the years are intrin-
sic and extrinsic evaluation. The first amounts
to solving specially designed problems like se-
mantic proportions, or comparing the similarity
of machine-generated words or sentences against
human-generated examples. The second one fo-
cuses on solving downstream NLP tasks, such as
sentiment analysis or question answering, probing
word or sentence representations in real-world ap-
plications.

In recent years, sets of downstream tasks called
benchmarks have become a very popular, if not
default, method to evaluate general-purpose word
and sentence embeddings. Despite the general
trend towards multilinguality and ever-growing at-
tention to under-resourced languages, ancient and
historical languages remain under-served by em-
bedding evaluation benchmarks, and the goal of
this shared task is to bridge this gap. We argue that
there is a need for a universal multilingual evalua-
tion benchmark for embeddings learned from an-
cient and historical language data and view this
shared task as a proving ground for it.

2 Related work

Starting with decaNLP (McCann et al., 2018)
and SentEval (Conneau and Kiela, 2018), general-
purpose multitask benchmarks for Natural Lan-
guage Understanding (NLU) have become increas-
ingly common in the literature, and new ones
are reported regularly (Wang et al., 2019, 2020;
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Shavrina et al., 2020; Xu et al., 2020; Kurihara
et al., 2022; Urbizu et al., 2022; Berdicevskis
et al., 2023). However, even the largest multi-
lingual benchmarks, such as XGLUE, XTREME,
XTREME-R or XTREME-UP (Hu et al., 2020;
Liang et al., 2020; Ruder et al., 2021, 2023), only
include modern languages.

The EvaLatin evaluation campaign (Sprugnoli
et al., 2020, 2022) attracted some embedding-
based solutions for POS-tagging, lemmatisation,
and morphological feature prediction challenges
(Wróbel and Nowak, 2022; Mercelis and Keers-
maekers, 2022), but it did not specifically focus on
embedding evaluation. Moreover, it was confined
to Latin, which is the English of the ancient world
in terms of language resources and technologies
available. Individual scholars focusing on Latin
and Ancient Greek mostly adopt Large Language
Models (LLMs) together with their evaluation tech-
niques through downstream tasks (Bamman and
Burns, 2020; Singh et al., 2021; Yamshchikov
et al., 2022; Riemenschneider and Frank, 2023;
Krahn et al., 2023), while those working with less-
resourced languages tend to translate intrinsic eval-
uation datasets from modern languages or create
their own diagnostic tests (Tian et al., 2021; Hu
et al., 2021; Dereza et al., 2023a). However, this
is not a universal rule: the latest paper on distribu-
tional semantic models of Ancient Greek proposes
a new dataset for intrinsic evaluation, AGREE
(Stopponi et al., 2024), while some recent papers
featuring medieval French and Spanish adopt trans-
former models and test them on Named Entity
Recognition (Grobol et al., 2022; Torres Aguilar,
2022).

3 Setup and Schedule
For the purposes of our evaluation, languages
are distinguished in accordance with ISO 639-3
codes1 except for Latin, which was manually sepa-
rated as discussed in Section 4. As a result, differ-
ent historical stages of Irish and Latin are treated
as distinct ‘languages’ in this paper. Such a dis-
tinction may be linguistically arbitrary, at least in
the case of certain texts. However, as Universal
Dependencies (UD) (Zeman et al., 2023) corpora
are separated in accordance with ISO 639 codes,
and the majority of data used in this evaluation was
drawn from this resource, the same system for dis-
tinguishing languages was utilised here.

1https://iso639-3.sil.org

The Shared Task involved three problems (here-
after also referred as ‘challenges’ and ‘downstream
tasks’) for 13 languages in the constrained setting
and five problems for 16 languages in the uncon-
strained setting. These languages belong to four
language families and use six different scripts (see
Table 1 for detailed information).

3.1 Subtasks
A. Constrained

1. POS-tagging
2. Lemmatisation
3. Morphological feature prediction

B. Unconstrained

1. POS-tagging
2. Lemmatisation
3. Morphological feature prediction
4. Filling the gaps (mask filling)

a. Word-level
b. Character-level

3.2 Timeline
The final timeline of the shared task is as follows.

05 Nov 2023: Release of training & validation data
02 Jan 2024: Release of test data
15 Jan 2024: System submission
22 Jan 2024: Paper submission
29 Jan 2024: Notification of acceptance
05 Feb 2024: Camera-ready submission

A tokenisation error was identified in the test
data for problem 4a and in the Classical Chinese
test data for problem 4b after the test data had
been released. It was promptly corrected on 12 Jan
2024.

4 Data
For problems 1-3, data from Universal Dependen-
cies v.2.12 (Zeman et al., 2023) was used for 11
ancient and historical languages, omitting corpora
which contained fewer than 1,000 tokens or for
which only a test set was available. Old Hun-
garian texts, annotated to the same standard as
UD corpora, were added to the dataset from the
MGTSZ website2 (HAS Research Institute for Lin-
guistics, 2018; Simon, 2014). Old Hungarian data
was edited to simplify complex punctuation marks

2http://oldhungariancorpus.nytud.hu/
en-codices.html
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Language Code Script Dating Train-T Valid-T Test-T Train-S Valid-S Test-S

Ancient Greek ♣ grc Greek 800 BCE – 110 CE 334,043 41,905 41,046 24,800 3,100 3,101

Ancient Hebrew ♢ hbo Hebrew 900 – 999 CE 40,244 4,862 4,801 1,263 158 158

Classical Chinese ♠ lzh Hanzi 47 – 220 CE 346,778 43,067 43,323 68,991 8,624 8,624

Coptic ♢ cop Coptic 0 – 199 CE 57,493 7,282 7,558 1,730 216 217

Gothic ♣ got Latin 400 – 799 CE 44,044 5,724 5,568 4,320 540 541

Medieval Icelandic ♣ isl Latin 1150 – 1680 CE 473,478 59,002 58,242 21,820 2,728 2,728

Classical & Late Latin ♣ lat Latin 100 BCE – 399 CE 188,149 23,279 23,344 16,769 2,096 2,097

Medieval Latin ♣ latm Latin 774 – early
1300s CE 599,255 75,079 74,351 30,176 3,772 3,773

Old Church Slavonic ♣ chu Cyrillic 900 – 1099 CE 159,368 19,779 19,696 18,102 2,263 2,263

Old East Slavic ♣ orv Cyrillic 1025 – 1700 CE 250,833 31,078 32,318 24,788 3,098 3,099

Old French ♣ fro Latin 1180 CE 38,460 4,764 4,870 3,113 389 390

Vedic Sanskrit ♣ san Latin
(transcr.) 1500 – 600 BCE 21,786 2,729 2,602 3,197 400 400

Old Hungarian ♡ ohu Latin 1440 – 1521 CE 129,454 16,138 16,116 21,346 2,668 2,669

Old Irish ♣ sga Latin 600 – 900 CE 88,774 11,093 11,048 8,748 1,093 1,094

Middle Irish ♣ mga Latin 900 – 1200 CE 251,684 31,748 31,292 14,308 1,789 1,789

Early Modern Irish ♣ ghc Latin 1200 – 1700 CE 673,449 115,163 79,600 24,440 3,055 3,056

Table 1: Language families: ♣ – Indo-European, ♢ – Afro-Asiatic, ♠ – Sino-Tibetan, ♡ – Finno-Ugric. The
‘Code’ column refers to an ISO 639-3 code with the exception of Medieval Latin. The ‘Script’ column refers to the
scripts used in the dataset rather than the script(s) typical for a particular language. The ‘Dating’ column describes
the period when texts in the dataset were created, not when a particular language existed, cited according to the
electronic editions/corpora these texts come from. Finally, we provide the size of each subset in sentences (S) and
tokens (T).

masked src

Cé [MASK] secht [MASK]
im gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Cé betis secht tengtha im
gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Table 2: An example of training data for word-level gap
filling (problem 4a).

masked src

Cé betis se[_]ht te[_]gtha im
gin s[_]ee suilgind, co bráth,
mó cech[_]delmaimm,
isse[_] ma do-ruirminn.

Cé betis secht tengtha im
gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Table 3: An example of training data for character-level
gap filling (problem 4b).

used to approximate manuscript symbols. Tokens
which were POS-tagged PUNCT were altered so
that the form matched the lemma. Otherwise, no
characters intended to approximate orthographic
manuscript features were changed.

As the ISO 639-3 standard does not distinguish

between historical stages of Latin, as it does be-
tween other languages like Irish, but it was desir-
able to approximate this distinction for Latin, we
further split Latin data. This resulted in two Latin
datasets; Classical and Late Latin, and Medieval
Latin. This split was dictated by the composition
of the Perseus (Celano et al., 2014) and PROIEL
(Haug and Jøhndal, 2008) treebanks. As the Late
Latin Vulgata is mixed with the work of Classical
Latin authors in these treebanks, it was unfeasible
to separate Classical Latin from Late Latin, though
this may have been preferable. For the purposes of
this evaluation we use the ISO 639-3 code lat for
the Classical and Late Latin dataset, and we apply
the faux-code, latm, to Medieval Latin.

Historical forms of Irish were only included in
mask filling challenges, as the quantity of historical
Irish text data which has been tokenised and anno-
tated to a single standard to date is insufficient for
the purpose of training models to perform morpho-
logical analysis tasks. The Irish texts for problem 4
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were drawn from CELT3 (Ó Corráin et al., 1997),
Corpas Stairiúil na Gaeilge4 (Acadamh Ríoga na
hÉireann, 2017), and digital editions of the St. Gall
glosses5 (Bauer et al., 2017) and the Würzburg
glosses6 (Doyle, 2018). This provides a good case
study of how performance may vary across differ-
ent historical stages of the same language. Each
Irish text taken from CELT is labelled ‘Old’, ‘Mid-
dle’ or ‘Early Modern’ in accordance with the lan-
guage labels provided in CELT metadata. Because
CELT metadata relating to language stages and text
dating is reliant on information provided by a va-
riety of different editors of earlier print editions,
this metadata can be inconsistent across the corpus
and on occasion inaccurate. To mitigate compli-
cations arising from this, texts drawn from CELT
were included in the dataset only if they had a sin-
gle Irish language label and if the dates provided
in CELT metadata for the text match the expected
dates for the given period in the history of the Irish
language.

The upper temporal boundary was set at
1700 CE, and texts created later than this date were
not included in the dataset. The choice of this date
is driven by the fact that most of the historical lan-
guage data used in word embedding research dates
back to the 18th century CE or later, and we would
like to focus on the more challenging and yet unad-
dressed data. A detailed list of text sources for each
language in the dataset is provided on our GitHub.7

The resulting datasets for each language were
then shuffled at the sentence level and split into
training, validation and test subsets at the ratio of
0.8 : 0.1 : 0.1. Table 1 provides an overview of
the data: language family, script, dating, and the
size of each subset in sentences and tokens.

For word-level mask filling (problem 4a), 10%
of tokens in each sentence were randomly replaced
with a [MASK] token. Masked Language Models
(MLMs) conventionally mask 15% of tokens, and
Wettig et al. (2023) showed that an even higher
masking rate could be beneficial for models the
size of BERT-large.8 However, our dataset is sub-

3https://celt.ucc.ie/publishd.html
4http://corpas.ria.ie/index.php
5http://www.stgallpriscian.ie/
6https://wuerzburg.ie/
7https://github.com/sigtyp/ST2024/blob/main/

list_of_text_sources.md
8BERT (Devlin et al., 2019) was pretrained on Book-

Corpus, a dataset consisting of 11,038 unpublished books,
and English Wikipedia, which contains 6,780,526 arti-
cles as of February 2024: https://huggingface.co/

stantially smaller; moreover, sentences from his-
torical texts are often much shorter than in mod-
ern language due to their genre or purpose (e.g.
glosses, annals, charters etc.) For these reasons, it
was unfeasible to set the masking rate higher than
10% for the benchmark presented in this paper, par-
ticularly for the smallest datasets.

For character-level gap filling (problem 4b), sen-
tences were split into individual characters for lan-
guages with alphabetical writing systems. For
Classical Chinese, each Hanzi character was de-
composed into individual strokes with the help of
hanzipy9 package with the deepest decomposi-
tion level available, ‘graphical’. Then, 5% of char-
acters in each sentence were randomly replaced
with a [_] token.

There were no restrictions on masked
word/character position, and they could also
be consecutive. Some sentences could have more
than one masked word or character, and some
(shorter) ones could have none.

For problems 1-3, participants received the data
in CONLL-U format.10 The data for tasks 4a and
4b was released in tsv format, as shown in Tables 2
and 3.

After the end of the competition an updated ver-
sion of the dataset, including test labels, was pub-
lished on Zenodo11 (Dereza, 2024).

5 Evaluation

The shared task was hosted on CodaLab12 and will
remain available for post-competition submissions
for anyone who would be interested in testing their
approach on our data.

Our evaluation script calculates a score for each
problem in the task (POS-tagging, lemmatisation
etc.) per language with the metrics listed in Table 4.
Following the authors of GLUE and SuperGLUE
(Wang et al., 2019, 2020), we weigh each down-
stream task equally and provide a macro-average
of per-problem scores as an overall score for a lan-
guage. These scores are then averaged by CodaLab
and displayed on the leaderboard as Rank.

bert-large-uncased
9https://github.com/Synkied/hanzipy

10https://universaldependencies.org/format.
html

11https://doi.org/10.5281/zenodo.10655061
12Unconstrained track: https://codalab.lisn.

upsaclay.fr/competitions/16818
Constrained track: https://codalab.lisn.upsaclay.
fr/competitions/16822
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As is common in evaluation benchmarks (Wang
et al., 2020; Hu et al., 2020; Ruder et al., 2021),
we use multiple metrics for every problem (e.g.
F1 and Accuracy @1 for POS-tagging) except for
morphological annotation. This helps to smooth
out shortcomings that individual metrics may have
and to make the evaluation scenario more forgiv-
ing for complicated problems (e.g. combining Ac-
curacy @1 and Accuracy @3 for lemmatisation).
Accuracy @1 is usually referred to as simply ‘ac-
curacy’ and calculated as a ratio of correct predic-
tions to all predictions. While Accuracy @1 ver-
ifies if the top prediction is correct or not, Accu-
racy @3 is a milder metric that checks if the correct
answer is among top-3 predictions.

In the case of morphological annotation, we cal-
culate a macro-average of Accuracy @1 per tag,
and also introduce punishment for predicting incor-
rect features. For example, if a token should only
have two morphological features, and a system pre-
dicts the correct value for one, but the incorrect
value for the other, and then also suggests a fea-
ture that this token should not have at all, the score
achieved for this token will be 1 + 0− 1 = 0.

The evaluation scripts for both constrained and
unconstrained tracks are available on the Shared
Task GitHub.13

Task Metrics

POS-tagging Acc@1, F1
Detailed morphological
annotation

Macro-average
of Acc@1 per tag

Lemmatisation Acc@1, Acc@3
Filling the gaps (word-level) Acc@1, Acc@3
Filling the gaps (character-level) Acc@1, Acc@3

Table 4: Evaluation metrics.

6 Baseline Models

Baselines were provided for the three challenges
which are shared by both the constrained and un-
constrained tracks. As the aim of this Shared Task
was to provide a benchmark for embedding mod-
els, multi-layer perceptron network models were
developed to classify token data for each of the
three challenges. For the sake of ensuring simplic-
ity across the baseline models and results, model
design and input data format was kept as similar as
possible across all challenges. Slight variation was

13https://github.com/sigtyp/ST2024/

tolerated, however, depending on the requirements
of each specific challenge.

Specific models were trained for each of the 13
languages for both the POS-tagging and lemmati-
sation challenges. By contrast, the approach taken
for the morphological annotation challenge was to
train a language-agnostic model for each of the 44
morphological features used across all languages
in the dataset. This was found to produce better
results than using language specific models, partic-
ularly for morphological features which were not
common across all languages in the dataset. It
also reduced model training time, as the alterna-
tive would have been to create a discrete model for
each feature in use by each individual language, re-
sulting in significantly more models.

Early stopping was applied during training of
all models to avoid overfitting. Validation loss
was used as a metric to determine when early stop-
ping should be applied for POS-tagger and morpho-
logical feature analysis models. However, track-
ing validation accuracy instead was found to pro-
duce better results when training lemmatiser mod-
els. All POS-tagger and morphological feature
analysis models used 64 neurons per hidden layer,
as did lemmatiser models for smaller datasets, how-
ever, for languages with larger datasets this was
found to be insufficient. To avoid hampering per-
formance, lemmatiser models were created with up
to 1024 neurons per hidden layer, depending on the
size of the dataset.

Aside from the areas of divergence just men-
tioned, the design aspects common to all models
are as follows:

• Hidden layers: 2
• Activation: ReLU
• Dropout: 20%
• Optimiser: Adam (Kingma and Ba, 2015)

6.1 Data Preparation
Text data was pre-processed before being used in
model training for each of the three challenges.
Feature engineering was carried out on the input
data to ensure models would focus on the most
valuable information to inform morphological anal-
ysis. For each token which would be used as input
data across all three challenges, the following in-
formation was extracted:

1. The token itself (entirely in lower case letters)
2. The length of the sentence in which the token

occurs (number of tokens)
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3. The length of the token itself (number of letter
characters)

4. Whether the token occurred first in the sen-
tence (Boolean: true or false)

5. Whether the token occurred last in the sen-
tence (Boolean: true or false)

6. Whether the first letter of the token was capi-
talised (Boolean: true or false)

7. Whether the entire token was in all caps
(Boolean: true or false)

8. Whether the entire token was in all lowercase
(Boolean: true or false)

9. The first letter of the token
10. The second letter of the token
11. The third letter of the token
12. The last letter of the token
13. The second last letter of the token
14. The third last letter of the token
15. The previous token (entirely in lower case)
16. The following token (entirely in lower case)

In addition to the information listed above, lan-
guage codes were also extracted for the morpholog-
ical annotation challenge. This was necessary be-
cause the models themselves were not trained on in-
dividual languages for this particular challenge, but
language information would nevertheless be useful
in identifying morphological features. Once this
information had been generated for each token, it
was compiled and vectorised so that it could be
used as input data in model training and validation.

POS-tags and lemmata associated with each to-
ken were extracted from the training and validation
sets on a language-by-language basis. They were
then encoded and set aside to be used as labels
during model training. Generating label data for
morphological annotation models was more com-
plicated. First, the training data for all languages
was combined, as was the validation data for all
languages. Next, morphological features associ-
ated with each token across all of the combined lan-
guages were extracted. If a particular morphologi-
cal feature was not used by a given token, a value
of ‘_’ was generated to indicate non-use. In the
case of features common across many languages,
this resulted in relatively balanced training and val-
idation datasets. However, for uncommon features
this could result in less than 1% of labels having
values other than ‘_’. This would result models
simply learning to classify every token as ‘_’ for
that feature. To overcome this issue, if more than
80% of labels in any training or validation set had

the value ‘_’, the size of the dataset was reduced
by dropping random instances of ‘_’ values until at
least 20% of the dataset had labels with other val-
ues. Finally, these were encoded for model train-
ing.

7 Submitted Systems

There were 14 registrations in total, of which three
teams submitted to each track. Out of these six
submissions, two systems were successful in the
constrained setting and another two in the uncon-
strained setting, and four system description papers
were submitted by different teams.

We expected that participants would use the
same pre-training technique for every problem,
as is common in benchmarking, but the winning
teams applied different pre-training approaches to
different problems. At the same time, all partici-
pants leveraged various transformer architectures,
with RoBERTa (Liu et al., 2019) and its modifica-
tions being the most popular one.

While all participants outperformed our base-
lines for morphological feature prediction with the
best average result about 96% across 13 languages,
only the winning teams beat the baselines for POS-
tagging and lemmatisation, achieving average re-
sults of 95.25% and 93.67% respectively in the con-
strained setting, and 96.09% and 94.88% in the un-
constrained setting. Baselines were not provided
for the mask filling problems which formed a part
of the unconstrained track only. At the word level,
the winning team could not achieve a higher aver-
age accuracy across all 16 languages than 5.95%,
with the best result for an individual language be-
ing 16.9% for Medieval Icelandic. This outlines
the particular difficulty of this specific problem. At
the character level, the best average result over 16
languages was 55.62% and the best result for an
individual language was 74.59% for Gothic.

The combined results of the constrained and un-
constrained settings for problems 1-3 are provided
in Table 5. Table 6 shows results for problem
4 from the unconstrained track. Finally, average
results across all problems for each track can be
found in Table 7. These tables are provided in the
Appendix A.

7.1 Constrained Setting
For the constrained subtask, participants were not
allowed to use anything apart from the provided
datasets, but they could reduce and balance them
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if they saw fit. Our intention was to avoid any
cross-lingual transfer in the constrained setting, in-
cluding the transfer between the languages within
the provided dataset. However, we seem to have
failed to communicate this properly, and one of the
systems submitted to this track made use of cross-
lingual transfer within the dataset. Nevertheless,
the system with embeddings pre-trained for each
language individually achieved a better result.

7.1.1 Heidelberg-Boston

The winning team in the constrained track, repre-
senting Heidelberg University and Sattler College,
submitted a system that uses a combination of con-
textual word and character embeddings pre-trained
from scratch for each language in the dataset in-
dividually14 (Riemenschneider and Krahn, 2024).
Bringing together the hierarchical tokenisation
method (Sun et al., 2023) and the DeBERTa-V3
architecture (He et al., 2023) for POS-tagging
and morphological feature prediction, and using
character-level nanoT5 models (Nawrot, 2023) for
lemmatisation allowed the team to be on par with
the winners of the unconstrained track, achieving
the average score of 95.25%, 93.67% and 96.18%
across 13 languages for POS-tagging, lemmatisa-
tion and morphological feature prediction respec-
tively.

7.1.2 Team 21a

The team representing Allen Institute for Artificial
Intelligence pretrained a multilingual transformer
model, LiBERTus,15 that follows RoBERTa’s pre-
training architecture (Liu et al., 2019) and takes
inspiration from Conneau et al. (2020) regarding
the scaling of BERT models to multiple languages.
The authors point out that their model struggles
with multiword expressions in Coptic and Ancient
Hebrew (Miranda, 2024), which most likely refers
to composite characters and vowel markings. De-
spite the use of cross-lingual transfer, the model’s
average score falls about 10% behind that of the
winning team, reaching the average of 82.47%,
81.98% and 90.70% across 13 languages for POS-
tagging, lemmatisation and morphological feature
prediction respectively.

14https://github.com/bowphs/
SIGTYP-2024-hierarchical-transformers

15https://github.com/ljvmiranda921/LiBERTus

7.2 Unconstrained Setting
For the unconstrained subtask, participants could
use any additional data in any language, includ-
ing pre-trained embeddings and LLMs. Surpris-
ingly, the winning team did not make use of em-
beddings at all in problem 4b, although this shared
task was specifically dedicated to embedding eval-
uation. Still, we accepted this submission in full
as the variety of approaches the team tried may be
insightful for the reader.

7.2.1 UDParse
The winner of the unconstrained track is the UD-
Parse team from Orange Innovation. To solve
problems 1-3, the team trained their own UD-
Parse parser16 with the use of openly available
contextualised embeddings: multilingual mBERT
(Devlin et al., 2019), XLM-RoBERTa (Conneau
et al., 2020) and GPT2 (Radford et al., 2019), and
language-specific slavicBERT (Arkhipov et al.,
2019) for Old Church Slavonic and Old East Slavic
and heBERT (Chriqui and Yahav, 2022) for An-
cient Hebrew. The team used distilBERT (Sanh
et al., 2019) for word-level mask filling and an
embedding-less n-gram based model for character-
level mask filling (Heinecke, 2024). They achieve
the average score of 96.09%, 86.47% and 96.68%
across 13 languages for POS-tagging, lemmatisa-
tion and morphological feature prediction respec-
tively. Their average results across 16 languages
for word-level and character-level mask-filling are
3.77% and 55.62% respectively.

7.2.2 TartuNLP
The TartuNLP team from the University of Tartu
submitted a system based on the adapters frame-
work (Poth et al., 2023) that uses parameter-
efficient fine-tuning (Dorkin and Sirts, 2024).
They applied the same approach uniformly to all
tasks and 16 languages by fine-tuning stacked
language- and task-specific adapters for XLM-
RoBERTa.17 Although their system, achieving
the average of 85.67% and 88.14% across 13 lan-
guages in POS-tagging and morphological feature
prediction, is outperformed by UDParse, this is
probably explained by the effectiveness of the UD-
Parse morphological parser rather than by the qual-
ity of embeddings employed by either team. At the

16https://github.com/Orange-OpenSource/
udparse

17https://github.com/slowwavesleep/
ancient-lang-adapters/tree/sigtyp2024
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same time, TartuNLP outperforms UDParse in lem-
matisation by 8.41%, achieving 94.88% on average
across 13 languages, and in word-level mask filling,
achieving 5.95% on average across 16 languages.
The team’s results for character-level mask filling
generally concede 10-15% to the winner, which
highlights an interesting observation: a very sim-
ple character-based n-gram model can be more ef-
fective in a low-resource setting than cutting edge
approaches.

8 Discussion
Analysing results of the competition, we made a
few interesting observations. First of all, data
scarcity does have an effect on sequence labelling
tasks, such as POS-tagging and morphological fea-
ture prediction, but this effect is not as dramatic
as one might expect. Thus, the difference between
the smallest corpus of 21K tokens (Vedic Sanskrit)
and the biggest corpus of 599K tokens (Medieval
Latin) is only 9.5% on average for POS-tagging
and 11.3% for morphological feature prediction.
The same is true for lemmatisation; however, mod-
els trained for this task seem to be more susceptible
to orthographic variation and lexical variety in the
data, as well as to the morphological complexity
of a language. Thus, we see poorer results for lem-
matisation across all languages despite the milder
metrics.

Cross-lingual and cross-temporal (i.e. from
modern languages to their ancestors) transfer could
have played an important role in the systems that
used XLM-RoBERTa. However, Riemenschnei-
der and Krahn (2024) showed that similar results
can be achieved with pre-training on modestly
sized monolingual data without any transfer.

Mask filling tasks appeared to be much harder
than we expected even for SOTA models. The
problem could be attributable to the following rea-
sons, or to some combination thereof:

• High lexical variety
• Orthographic variation
• Relatively short sentences
• Code-switching (e.g. Latin in historical Irish

texts)
• Data scarcity (mask filling requires more

training data than, for example, POS-tagging)
• Composite characters and vowel markings in

Coptic and Ancient Hebrew
• Non-trivial character decomposition in Clas-

sical Chinese

9 Conclusion

The Shared Task on Word Embedding Evaluation
for Ancient and Historical Languages attracted par-
ticipants from five major research institutions and
was an important step towards creating a univer-
sal multilingual evaluation benchmark for embed-
dings learned from ancient and historical language
data. The best average results across 13 languages
for POS-tagging, lemmatisation and morphologi-
cal feature prediction were 96.09%, 94.88% and
96.68% respectively. However, participants only
managed to achieve an average of 5.95% at word-
level and 55.62% at character-level across 16 lan-
guages in more challenging mask filling tasks.

The dataset and evaluation scripts are available
on our GitHub,18 and the post-competition phase
on CodaLab will remain open for anyone interested
in testing their approach on our data. We are plan-
ning to further expand the dataset with more lan-
guages and add more downstream tasks in the next
release of the benchmark. We would appreciate
any suggestions and collaboration from both com-
puter scientists and historical linguists.
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A Shared Task Results

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san

POS-tagging

Baseline 92.76 93.36 94.98 91.57 93.73 90.33 94.07 94.00 92.39 97.22 90.91 93.59 90.33 89.37

Constrained HDB-BOS 95.25 96.57 96.92 93.10 95.41 96.39 96.68 96.08 95.54 98.43 92.92 95.98 94.46 89.71
Team 21a 82.47 94.62 42.65 85.14 93.48 93.49 27.26 93.85 92.43 94.41 81.79 94.42 91.23 87.32

Unconstrained UDParse 96.09 97.00 97.33 96.01 96.47 96.49 97.84 96.88 96.83 98.79 93.76 96.71 94.99 90.02
TartuNLP 85.67 66.35 60.99 94.51 92.72 95.72 94.15 96.67 95.86 98.79 83.28 75.14 75.67 83.83

Lemmatisation

Baseline 91.95 89.60 95.74 91.93 91.95 91.06 95.28 93.78 92.08 97.03 98.81 89.43 84.44 84.24

Constrained HDB-BOS 93.67 94.49 95.07 92.63 93.31 94.08 97.29 96.63 96.00 98.46 99.18 85.92 90.09 84.59
Team 21a 81.98 79.59 46.32 83.32 90.79 88.30 61.75 94.58 92.35 97.22 99.84 69.97 78.44 83.21

Unconstrained UDParse 86.47 59.56 74.78 92.47 92.81 94.02 96.85 97.96 96.74 98.91 99.96 63.43 68.55 88.10
TartuNLP 94.88 92.70 98.28 95.11 95.41 93.39 98.15 97.23 96.99 98.69 99.91 86.91 89.23 91.48

Morphological feature prediction

Baseline 33.32 85.07 47.41 28.27 18.95 25.10 42.78 35.83 18.17 30.94 43.58 23.20 25.55 08.34

Constrained HDB-BOS 96.18 96.04 98.60 97.87 95.32 97.46 97.46 95.29 95.17 98.68 95.52 96.30 95.00 91.58
Team 21a 90.70 94.06 80.47 94.08 93.96 96.50 71.20 94.79 93.31 97.98 85.98 94.64 92.16 90.00

Unconstrained UDParse 96.68 96.49 98.88 98.33 96.23 97.78 97.05 95.92 96.66 98.83 96.24 96.62 95.16 92.60
TartuNLP 88.14 67.14 74.86 98.01 92.40 97.33 95.14 95.53 95.91 98.83 88.75 75.62 80.00 86.33

Table 5: Results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages for problems 1-3. The winner of each track (constrained / unconstrained) is marked in bold, and the
overall best result is underlined. The team names are as provided by participants, except HDB-BOS, which stands
for ‘Heidelberg-Boston’. For language code reference, see Table 1.

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san sga mga ghc
Mask filling: word-level

UDParse 3.77 2.80 0.00 3.28 2.67 3.07 5.39 3.42 3.51 4.73 6.10 6.31 5.03 3.86 2.79 4.03 3.29
TartuNLP 5.95 2.42 1.87 7.22 3.40 3.01 0.00 16.90 11.45 14.39 10.46 0.06 6.05 4.79 3.21 3.99 6.00

Mask filling: character-level

UDParse 55.62 66.77 0.00 62.77 74.59 68.46 36.85 66.45 67.91 72.93 0.00 66.52 66.77 70.10 58.38 53.38 58.09
TartuNLP 48.38 53.79 45.10 52.46 67.34 61.15 18.56 57.32 65.79 69.84 0.25 45.65 48.04 64.52 34.86 39.49 49.88

Table 6: Results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages for problem 4. The winner is marked in bold, and the absolute best result across all languages is
underlined. The team names are as provided by participants. For language code reference, see Table 1.

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san sga mga ghc
Baseline 72.68 89.35 79.38 70.59 68.21 68.83 77.38 74.54 67.55 75.07 77.77 68.74 66.77 60.65 – – –

Constrained HDB-BOS 95.02 95.70 96.65 94.54 94.68 95.98 97.14 96.00 95.57 98.53 95.88 92.73 93.18 88.62 – – –
Team 21a 85.05 89.42 56.48 87.51 92.74 92.76 53.41 94.41 92.69 96.54 89.21 86.34 87.28 86.84 – – –

Unconstrained UDParse 61.93 71.15 58.90 71.10 73.07 71.84 67.05 71.98 72.38 74.79 59.20 70.61 69.15 69.61 30.59 28.71 30.69
TartuNLP 55.74 49.85 51.52 68.93 69.74 70.25 60.94 72.88 73.15 76.15 56.54 51.98 55.66 65.51 19.03 21.74 27.94

Table 7: Overall results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages averaged across all problems for a given language. The winner for each setting is marked in bold. The
team names are as provided by participants, except HDB-BOS, which stands for ‘Heidelberg-Boston’. For language
code reference, see Table 1.
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