

The Typology of Ellipsis: A Corpus for Linguistic Analysis and Machine Learning Applications

Damir Cavar (Indiana University, NLP-Lab)

Ludovic Vetea Mompelat (University of Miami)

Muhammad S. Abdo (Indiana University, NLP-Lab)

+ the <u>NLP-Lab</u> Team

SIGTYP 24, March 2024

Agenda

- Ellipsis Constructions and Syntax
- The Hoosier Ellipsis Corpus
- Evaluations and Results
- Discussion of ML Experiments

- Common phenomena like gapping, sluicing, forward or backward conjunction reduction
 - Lexical elements are elided under certain conditions
 - Native speakers have no cognitive issues processing and understanding ellipsis constructions
- Examples...

Forward Conjunction Reduction (Across-the-board movement):

• *My sister lives in Utrecht and ____ works in Amsterdam.*

 \rightarrow My sister lives in Utrecht and (my sister/she) works in Amsterdam.

Gapping

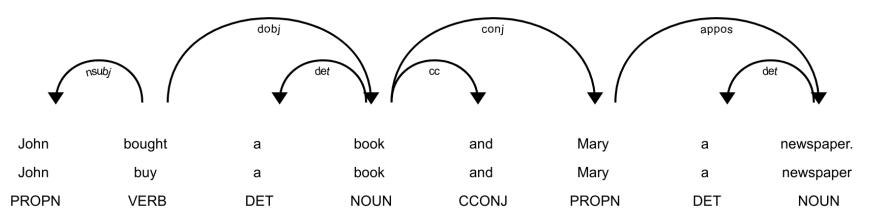
- Paul and John were watching the news, and Mary _____ a movie.
 - \rightarrow Paul and John were watching the news, and Mary (was watching) a movie.
- Will Jimmy greet Jill first, or ____ Jill ____ Jimmy ____ ?
 - → Will Jimmy greet Jill first, or (will) Jill (greet) Jimmy (first) ?

- Discourse Licensed Ellipsis:
 - A: Who wants to marry whom?
 - B: Susan ____ Larry.
 - \rightarrow Susan wants to marry Larry.
- Semantic Issues:
 - John [AGENT] drove to Wisconsin and ____ [PATIENT] was arrested in Illinois.
 - Peter stole a book and John _____ kisses from Mary.
 - \rightarrow Peter stole a book and John (stole) kisses from Mary.

- Publicly available datasets:
 - Sluicing corpus for English (Anand et al. 2021)
 - VP-ellipsis corpus for English (Bos & Spenader, 2011; Goldberg & Stubbs 2020)
 - ELLie corpus for English (Testa et al. 2023)
- Small datasets
- Limited to English and a few common languages
- Limited to specific ellipsis phenomena (gapping, sluicing, VP-ellipsis, ...)

- Lack of a cross-linguistic typological overview of ellipsis types
- Explanatory theoretical analysis of ellipsis constructions
- Frameworks like Dependency Grammar, Lexical-functional Grammar, and

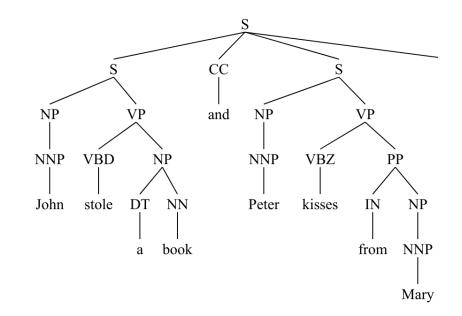
even Generative frameworks like Minimalist Program do not provide


descriptive or explanatory means

- Current State of the Art (SOTA) Natural Language Processing-pipelines and parsers perform poorly (or not at all)
- Tested SOTA parsers:
 - Stanford CoreNLP
 - Stanford Stanza (V 1.6) (Dependency & Constituent Parser)
 - Berkley Neural Parser (benepar)
 - SpaCy 3.6
 - XLE (Web-XLE, Lexical-functional Grammar Parser)
- All parsers fail with Ellipsis (and other constructions) → not useful for downstream NLP tasks (e.g., relation extraction)

Dependency Parsers: SpaCy 3.6

Resulting assumption:


John bought: (a book and Mary) (local coordination of two noun phrases); "a newspaper" is assumed to be a modifier or specifier of "Mary"

Constituent Parsers

Berkley Neural Parser Head

Noun of the object (kisses) is assumed to be the predicate head of the second conjunct.

Computational Tests

Cloze test:

Used in Machine Learning – Marked Word Prediction in BERT (LM)

□ The house ____ I was born. (a. where , b. which)

Next word prediction as in Large Language Models (LLMs)

Tasks:

- Classification of sentences / utterances: Does it contain ellipsis or not?
- Detection of locus of ellipsis: indicate the space
- Guess of the missing words: fill in the missing words

Experiments

18 Languages with varying number

of examples.

- Largest: Arabic, Mandarin Chinese, Croatian, English, German, Gujarati, Hindi, Japanese, Kumaoni, Korean, Navajo, Norwegian, Polish, Russian, Spanish, Swedish, Ukranian.
- In prep: Bengal, Hebrew, Kanada, Tamil, Telugu
- **Tested:** English, Arabic, Spanish, Russian

- Picked:
 - o 500 target sentences
 - o 1000 distractors
 - For tasks 2 & 3: only examples with ellipsis are used.
- Algorithms:
 - Logistic Regression
 - o BERT/RoBERTa-based Deep Learning model
 - GPT-4 Large Language Model (ChatGPT),

Falcon2, Llama2, etc.

Corpus Access

- In the next days: See NLP-Lab page
 - o <u>https://nlp-lab.org/ellipsis/</u>

- Link to GitHub, allowing for collaboration and contribution.
 - o <u>https://github.com/dcavar/hoosierellipsiscorpus</u>

Experiments

- For Arabic:
 - We utilized GPT-4 (no other LLM was capable of processing Arabic)
 - □ Missing useful BERT-type LM for Arabic, we need to train one
 - Task 1: 0-shot classification
 - Baseline: Logistic Regression 83%
 - GPT-4 : Precision 0.56, Recall 0.18, Accuracy 72%
 - Task 3: 0-shot word filling
 - GPT-4 : Accuracy ~80%

Experiments

- For English:
 - We utilized GPT-4 (other LLMs failed to provide significant results)
 - Task 1: 0-shot classification
 - □ Baseline: Logistic Regression 74%
 - GPT-4 : Precision 0.756, Recall 0.599, Accuracy 66,8%
 - Task 3: 0-shot word filling
 - GPT-4 : Accuracy 25%

Baseline Classifier Task 1

- $LR \rightarrow$ supervised training
 - Training: 1,600 (50% ellipsis constructions)
- Accuracy: 74%
- Can be improved with a few more features, incl. unsupervised feature generation.

LLM Classifiers Task 1

- 0-shot classification: "Does this sentence contain ellipsis?"
- LLMs:
 - GPT 3.5
 - GPT 4
 - Llama2
 - Zephyr
 - Ongoing: Claude 3

LLM Classifiers Task 1

Model	Precision	Recall	F1-Score	Accuracy
GPT 3.5	0.33	0.44	0.38	0.35
GPT 4	0.55	0.67	0.60	0.60
Llama2	0.40	0.67	0.50	0.40
Zephyr	0.25	0.11	0.15	0.42

Preliminary Results

- Supervised ML/NLP methods outperform all LLMs on 0-shot
- GPT with default temperature (0.7)
 - Randomizes 20% of the output decisions, i.e. for 20% of repeated tasks with the same data the classifier will be switched.

- GPT with temperature set to 0
 - No random decisions \rightarrow deterministic, but:
 - Drop of accuracy by 10% over sample data

LLM Position Guesser Task 2

GPT 3.5	GPT 4	Llama2
Accuracy 0.05	Accuracy 0.15	Accuracy 0.00

- Issues:
 - Prompt engineering and instructions
 - Evaluation and position matching

LLM Missing Word Guesser Task 3

GPT 3.5	GPT 4	Llama2
Accuracy 0.00	Accuracy 0.25	Accuracy 0.00

- Issues:
 - More experiments with prompts.
 - String matching evaluation.

Experiments

English in comparison:

• Task 1:

Logistic Regression (baseline): accuracy 74% BERT-based Transformer: accuracy 94% GPT-3.5: accuracy: 35% GPT-4: accuracy: 60%

BERT/Transformer > Logistic Regression > GPT-4

Conclusion

- Problems with "invisible words" in all parsers and LLMs
 - Parsers perform without a problem with "ellipsis undone"
- The problem is:
 - Theoretical Dependency Grammar, Lexical-functional Grammar, etc.
 - Data-based missing corpora with annotated ellipsis constructions
 - Computational LLMs predict next words, and not next missing words (while BERT is trained on masked words)

Thank you for listening!