

modeLing: A Novel Dataset for Testing LLM Linguistic Reasoning

Nathan A. Chi, Teodor Malchev, Riley Kong, Ryan A. Chi, Lucas Huang, Ethan A. Chi, R. Thomas McCoy, Dragomir Radev

Large language models (LLMs) are good at...

reasoning

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

(Wei et al., 2023)

multilinguality

(Xue et al., 2020; Eyal et al. 2022)

but evaluating their intersection is tricky. Why? Language contamination (Blevins and Zettlemoyer, 2022).

Overview

- We introduce **ModeLing**, a dataset that uses carefully-designed language puzzles to test **few-shot multilingual reasoning**.
- LLMs perform well on some categories in ModeLing, providing evidence that they have some few-shot multilingual reasoning capabilities
- However, there is ample room for improvement: on harder categories, performance remains poor, and models are far from perfect even on easy categories.
- These results cannot be explained by language contamination.

Rosetta stone puzzles

(Bozhanov and Derzhanski, 2013)

wó ùrò kàná sóyórójèw là:

You have already unlocked his new house, haven't you? **ójú kùⁿ námárⁿátìm sábù ìjù téré ἑ:tìm**

I took my foot off the road because I saw a fast dog.

nìnìwⁿé ùrò pěyⁿ náŋárⁿátóyò

A cat remembers an old house.

ìjú bé∴ nìnìwⁿè těyⁿ bé∴ săy ànà dìgétóyòwYou follow only dogs and small cats in the village.

- Small parallel corpus in a target language not previously known to the solver
- Corpus is chosen to uniquely specify a single most reasonable underlying set of rules

These puzzles originate from the **International Linguistics Olympiad** (IOL) and related secondary school competitions!

ModeLing

- Previous Rosetta Stone dataset (PuzzLing; Şahin et al., 2020) reuse problems written for Linguistics olympiads, thus raising the specter of data leakage.
- ModeLing consists entirely of **newly written questions** written specifically for this work.
- We demonstrate that popular LLMs do not display data leakage on ModeLing.

We contribute 272 Rosetta Stone questions covering a variety of 19 less attested languages

Figure 8: The 19 distinct languages included in the MODELING benchmark. Note that some languages have more than one problem.

Anatomy of a ModeLing problem

Evidence

Here are some phrases in Ayutla Mixe:

Ėjts nexp. → I see.
Mejts mtunp. → You work.
Juan yë'ë yexyejtpy. → Juan watches him.
Yë'ë yë' uk yexpy. → He sees the dog.
Ëjts yë' maxu'unk nexyejtpy. → I watch the baby.

Removing this section leads to 0% LLM performance, showing lack of data leakage on current LLMs.

Questions

Yë' maxu'unk yexp. \rightarrow **The baby sees.**

.

The baby watches the dog. \rightarrow

Yë' maxu'unk yë' uk yexyejtpy.

We ask each question separately, without the context of the other questions.

Problem Types

Noun / Adjective

Determine **relative ordering** of nouns and adjectives.

Word Order

Determine **relative ordering** of subject (S), verb (V), object (O).

Possession

Reason about **possessive** morphology.

Semantics

Align foreign semantic compounds to English translations.

Problem Types

Nominal clause order

Requires solvers to determine the relative ordering of nouns/adjectives

Bangime

 $t\tilde{a}wa nundi \rightarrow$ "five beds" $kur\varepsilon tiri \rightarrow$ "one dog" $ko \ kiye \rightarrow$ "seven houses" $mpa \ tar \rightarrow$ "three friends" $ko \ tar \rightarrow$ "three houses" $yaam\varepsilon \ yinu \rightarrow$ "two children

How to solve:

Solvers must deduce that Bangime places the modifier after the noun (*tar* "three" appears twice, both in the postnominal position.)

S/V/O order

Requires solvers to determine the ordering of subject/verb/object in a clause.

Engenni

 $abhwa \, dhi \rightarrow$ "The dog eats." $abhwa \, mise \rightarrow$ "The dog sleeps." $afeni \, bidha \rightarrow$ "The bird walks." $afeni \, fyani \rightarrow$ "The bird flies." $bhu \, dhi \rightarrow$ "You eat." $eni \, dhi \rightarrow$ "We eat." $mi \, bidha \rightarrow$ "I walk."

How to solve:

Solvers must deduce that S comes before V in Engenni ("afeni", "dhi").

Problem Types

Possession

Requires solvers to determine the way possession marking works

Dogon

 $sáydù ilo \rightarrow$ "Seydou's house" àlá-ɔŋù-nú nènù \rightarrow "the village chief's dog" $i \ ilo \rightarrow$ "our house" $i \ nénù \rightarrow$ "your dog"

How to solve:

Solvers must determine that 1) possessor appears before possessed 2) the tone of the first syllable changes (tone sandhi) to the tone of the last syllable.

Semantic Matching

Use cross-cultural reasoning to align foreign semantic compounds to English translations.

Kutenai

 $cmakwumnana \rightarrow$ "The dog eats." $it cmakni \rightarrow$ "(it) is not strong." $itqatni \rightarrow$ "(it) does not have a tail." $maknana \rightarrow$ "little bone" $qatnana \rightarrow$ "little tail"

How to solve:

Solvers must perform significant semantic/morphological reasoning (e.g. *-nana* DIM, *-ni* "it does not have").

Experiments

- We evaluated all problems on **GPT-3**, **GPT-3.5**, and **GPT-4** as of August 13, 2023, using a number of prompting and Chain-of-Thought methods.
- We evaluated on exact match accuracy because of difficulties in using BLEU to distinguish morphological differences.

Positive Results

LLMs do pretty well! Average solve % exceeds 50% on GPT-4, and 45% on GPT-3.

Areas for Improvement

LLMs have difficulty solving **semantic** and **possessive** problems (more complex morphology) LLMs struggle with the **same types of questions** that humans find difficult!

Orthography

We expose a frailty: LLMs do significantly better (4.8% higher absolute accuracy) when accent marks have been converted to ASCII!

Diacritics \rightarrow **ASCII**

Ëjts yë' maxu'unk nexyejtpy. EUjts yeuq maxuqunk nexyejtpy.

Conclusion

- LLMs show non-negligible abilities at few-shot multilingual reasoning.
- These abilities cannot purely be explained by data leakage.
- There is plenty of room for improvement: ModeLing can be used to measure progress in this area!

Acknowledgements

- Thanks to Lori Levin and Aleka Blackwell (NACLO) for helpful discussions.
- We would like to acknowledge our lead senior author, Dragomir Radev, who passed away during the preparation of this manuscript.