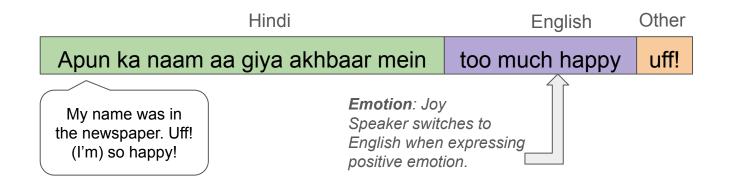


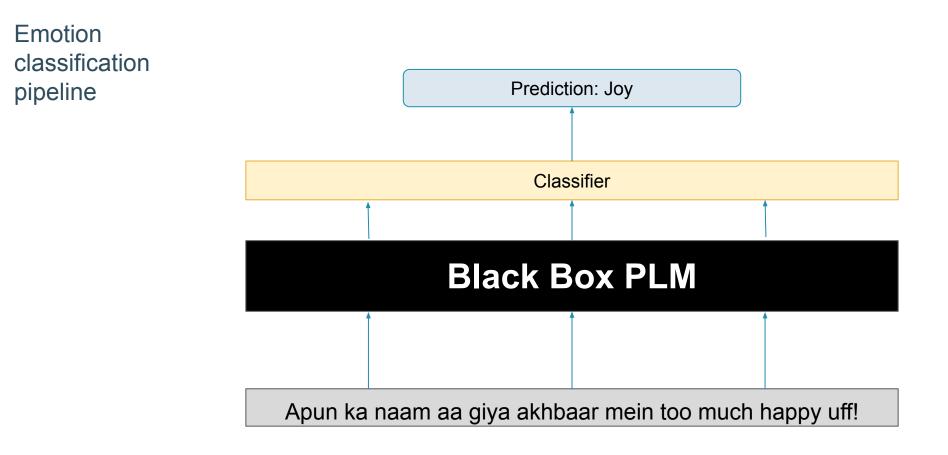
Sociolinguistically Informed Interpretability: A Case Study on Hinglish Emotion Classification

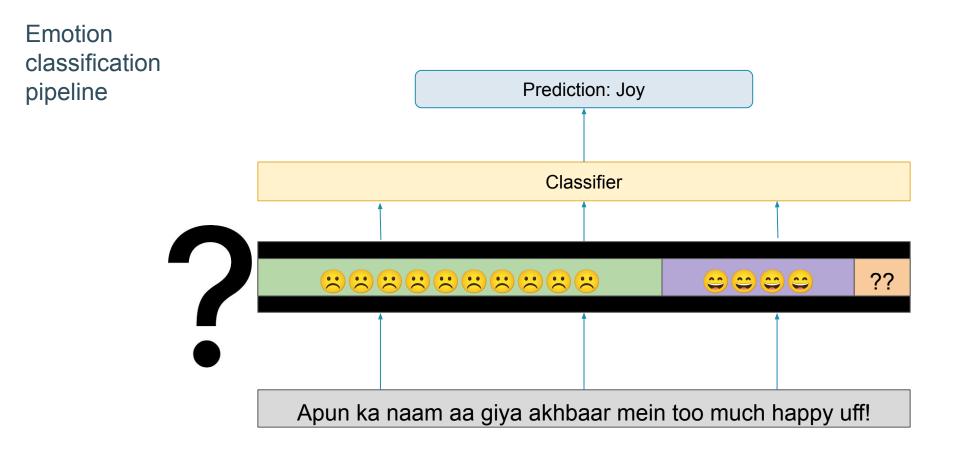
Kushal Tatariya Heather Lent Johannes Bjerva Miryam de Lhoneux

Apun ka naam aa giya akhbaar mein	too much happy	uff!
Apar na naam aa giya aknoaar mem		un

Hindi	English	Other
Apun ka naam aa giya akhbaar mein	too much happy	uff!
My name was in the newspaper. Uff! (I'm) so happy!		







Concretely...

Are English tokens more likely to influence a model to predict a positive emotion?

Are English tokens more likely to influence a model to predict a positive emotion?

Question 2

Are English tokens more likely to influence a model to predict a positive emotion?

Question 2

Are Hindi tokens more likely to influence a model to predict a negative emotion? And if so, what is the role of Hindi swear words?

- 1. Fine-tuning
 - XLM-R, IndicBERT and HingRoBERTa on a Hinglish emotion classification dataset (Ghosh et al, 2023).

- 1. Fine-tuning
 - XLM-R, IndicBERT and HingRoBERTa on a Hinglish emotion classification dataset (Ghosh et al, 2023).
 - 7 emotion labels: Joy, Surprise, Sadness, Fear, Disgust, Anger, Other

- 1. Fine-tuning
 - XLM-R, IndicBERT and HingRoBERTa on a Hinglish emotion classification dataset (Ghosh et al, 2023).
 - 7 emotion labels: Joy, Surprise, Sadness, Fear, Disgust, Anger, Other

	Label distribution in the dataset					
Positive	Emotions	Neutral		Negative	Emotions	
Joy	Surprise	Others	Anger	Sadness	Disgust	Fear
33%	2%	35%	20%	10%	19%	1%

- 1. Fine-tuning
 - XLM-R, IndicBERT and HingRoBERTa on a Hinglish emotion classification dataset (Ghosh et al, 2023).
 - 7 emotion labels: Joy, Surprise, Sadness, Fear, Disgust, Anger, Other

	Label distribution in the dataset					
Positive	Emotions	Neutral		Negative	Emotions	
Joy	Surprise	Others	Anger	Sadness	Disgust	Fear
33%	2%	35%	20%	10%	19%	1%

1000 samples, stratified across labels, each token annotated with:

• Token level language ID : English, Hindi, Other

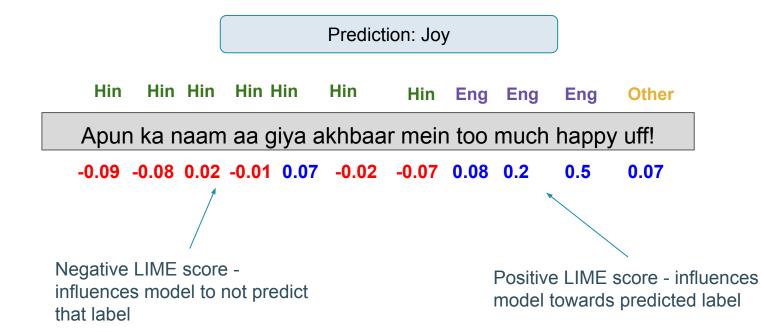
- Token level language ID : English, Hindi, Other
- LIME score: Between -1 and 1

- Token level language ID : English, Hindi, Other
- LIME score: Between -1 and 1
 - A positive score = token influenced the model *towards* the predicted label.

- Token level language ID : English, Hindi, Other
- LIME score: Between -1 and 1
 - A positive score = token influenced the model *towards* the predicted label.
 - A negative score = token influenced the model to *not* predict that label.

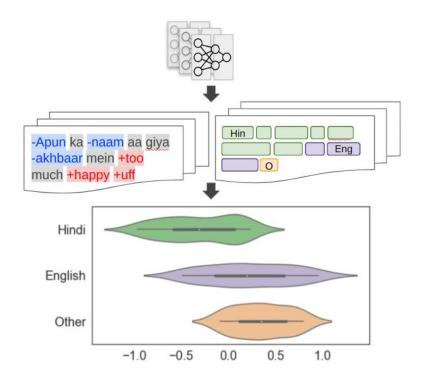
Prediction: Joy

HinHinHinHinHinEngEngEngOtherApunkanaamaagiyaakhbaarmeintoomuchhappyuff!-0.09-0.080.02-0.010.07-0.02-0.070.080.20.50.07



3. Statistical Significance

- Frequency of positive/negative LIME score per language ID tag, for each model.
- Statistical testing with chi-square.



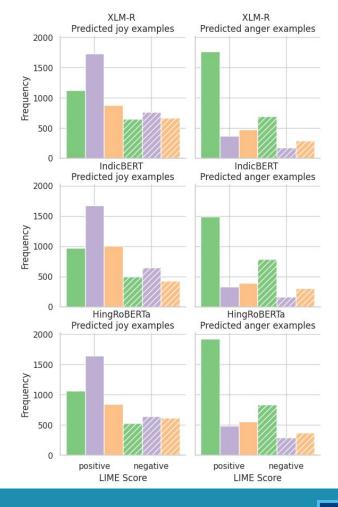
Results

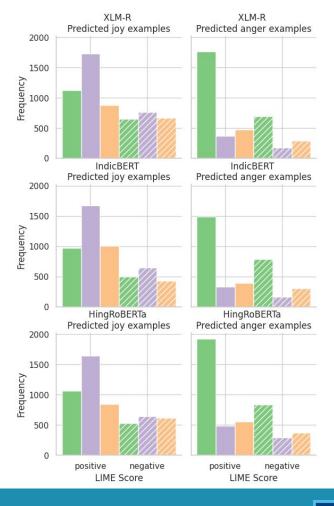
For predicted joy and anger examples:

- All p-values are <0.05
- There is dependency between language ID and LIME score

		p-value:	5
Model	Entire Sample	Joy	Anger
XLM-R	7.06e-12	1.44e-15	6.18e-7
IndicBERT	1.22e-22	3.28e-4	1.69e-5
HingRoBERTa	3.30e-7	4.00e-18	1.71e-8

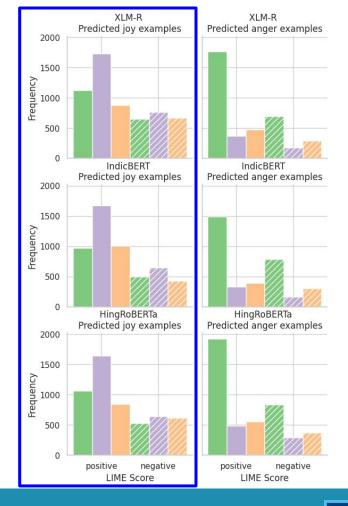
We test the null hypothesis that language ID tags and LIME scores are independent of each other using $\chi 2$.





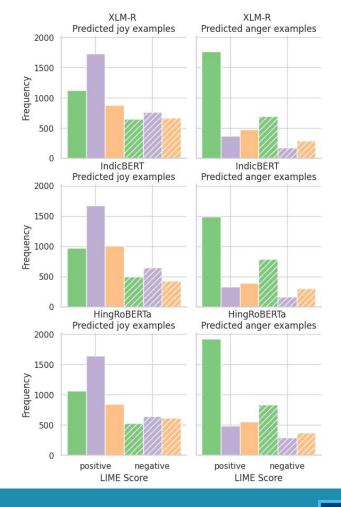
Yes!

English > Hindi, Other



Yes! English > Hindi, Other

Do Hindi tokens influence models to predict negative emotions?

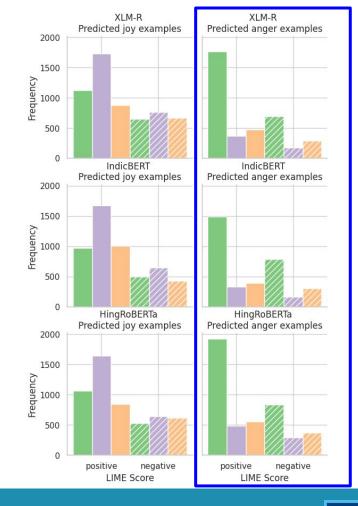


Yes!

English > Hindi, Other

Do Hindi tokens influence models to predict negative emotions?

Yes! Hindi > English, Other



What is the role of Hindi swear words?

Token	Lang_ID	Swear Word? ²
Fuck	eng	Yes
Chutiye	hin	Yes
Fakeionist	eng	No
Bsdk	hin	Yes
Sadly	eng	No
Bakwas	hin	No
Kutta	hin	Yes
Gaddar	hin	No
Shame	eng	No
Sala	hin	Yes

Top 10 tokens with the highest LIME scores when predicting negative emotions, (anger, sadness, disgust and fear) for all models. They have been mapped to a canonical form and are in descending order of LIME score.

What is the role of Hindi swear words?

See top 10 words with the highest LIME scores, when predicting negative emotion.

Token	Lang_ID	Swear Word? ²
Fuck	eng	Yes
Chutiye	hin	Yes
Fakeionist	eng	No
Bsdk	hin	Yes
Sadly	eng	No
Bakwas	hin	No
Kutta	hin	Yes
Gaddar	hin	No
Shame	eng	No
Sala	hin	Yes

Top 10 tokens with the highest LIME scores when predicting negative emotions, (anger, sadness, disgust and fear) for all models. They have been mapped to a canonical form and are in descending order of LIME score.

What is the role of Hindi swear words?

See top 10 words with the highest LIME scores, when predicting negative emotion.

4/10 are Hindi swear words!

Token	Lang_ID	Swear Word? ²
Fuck	eng	Yes
Chutiye	hin	Yes
Fakeionist	eng	No
Bsdk	hin	Yes
Sadly	eng	No
Bakwas	hin	No
Kutta	hin	Yes
Gaddar	hin	No
Shame	eng	No
Sala	hin	Yes

Top 10 tokens with the highest LIME scores when predicting negative emotions, (anger, sadness, disgust and fear) for all models. They have been mapped to a canonical form and are in descending order of LIME score.

• Language models can adapt to heuristics that are valid for frequent cases and fail on the less frequent ones (McCoy et al, 2019).

- Language models can adapt to heuristics that are valid for frequent cases and fail on the less frequent ones (McCoy et al, 2019).
- Will the sociolinguistics generalize to data-poor scenarios?

- Language models can adapt to heuristics that are valid for frequent cases and fail on the less frequent ones (McCoy et al, 2019).
- Will the sociolinguistics generalize to data-poor scenarios?
- We examine instances where the models have misclassified examples labelled as *joy* and *anger*.

		јоу	surprise	others	anger	disgust	sadness	fear
	joy	22.3	0.0	9.47	0.33	0.03	0.37	0.0
	surprise	0.07	0.0	0.13	0.0	0.0	0.0	0.0
	others	4.0	0.03	22.67	4.5	1.0	2.47	0.03
Actual	anger	0.43	0.0	5.5	10.07	2.6	1.73	0.07
	disgust	0.07	0.0	0.17	1.1	0.53	0.03	0.0
	sadness	0.73	0.03	5.1	2.23	0.4	1.6	0.1
	fear	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	Predicted							

		јоу	surprise	others	anger	disgust	sadness	fear
	јоу	22.3	0.0	9.47	0.33	0.03	0.37	0.0
	surprise	0.07	0.0	0.13	0.0	0.0	0.0	0.0
	others	4.0	0.03	22.67	4.5	1.0	2.47	0.03
Actual	anger	0.43	0.0	5.5	10.07	2.6	1.73	0.07
	disgust	0.07	0.0	0.17	1.1	0.53	0.03	0.0
	sadness	0.73	0.03	5.1	2.23	0.4	1.6	0.1
	fear	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	Predicted							

• Generally misclassified as another label of same emotional polarity.

		јоу	surprise	others	anger	disgust	sadness	fear
	joy	22.3	0.0	9.47	0.33	0.03	0.37	0.0
	surprise	0.07	0.0	0.13	0.0	0.0	0.0	0.0
	others	4.0	0.03	22.67	4.5	1.0	2.47	0.03
Actual	anger	0.43	0.0	5.5	10.07	2.6	1.73	0.07
	disgust	0.07	0.0	0.17	1.1	0.53	0.03	0.0
	sadness	0.73	0.03	5.1	2.23	0.4	1.6	0.1
	fear	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	Predicted							

- Generally misclassified as another label of same emotional polarity.
- Models struggle with granular distinctions.

		joy	surprise	others	anger	disgust	sadness	fear
	joy	22.3	0.0	9.47	0.33	0.03	0.37	0.0
	surprise	0.07	0.0	0.13	0.0	0.0	0.0	0.0
	others	4.0	0.03	22.67	4.5	1.0	2.47	0.03
Actual	angei	0.43	0.0	5.5	10.07	2.6	1.73	0.07
	disgust	0.07	0.0	0.17	1.1	0.53	0.03	0.0
	sadness	0.73	0.03	5.1	2.23	0.4	1.6	0.1
	fear	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	Predicted							

- Generally misclassified as another label of same emotional polarity.
- Models struggle with granular distinctions.
- We also manually examine the few instances where this is not the case.

Tweet: @handle Very nice Sir yeh diya sateek jawab Pakistan ab bhi sudhar ja nahi to terey yaha sai jitn ...

Label: Anger Prediction: Joy

An example labelled anger that was misclassified as joy owing to the English phrase (English - purple; Hindi - green; Other - orange) in the sentence having a positive connotation, even though the sentence itself conveys anger.

Tweet: @handle Very nice Sir yeh diya sateek jawab Pakistan ab bhi sudhar ja nahi to terey yaha sai jitn ...

Label: Anger Prediction: Joy

An example labelled anger that was misclassified as joy owing to the English phrase (English - purple; Hindi - green; Other - orange) in the sentence having a positive connotation, even though the sentence itself conveys anger.

• Distribution of English, Hindi, Other in misclassified examples.

	J	oy	
Ι	Distribution of tol	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.40	0.44	0.32
Hindi	0.34	0.29	0.44
Other	0.26	0.27	0.24
Distribut	ion of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.43	0.48	0.32
Hindi	0.32	0.28	0.42
Other	0.25	0.24	0.32
	Ar	nger	
Ι	Distribution of tol	tens in all ex	amples
	All examples	Correct	Misclassified
English	0.15	0.14	0.17
Hindi	0.63	0.65	0.61
Other	0.22	0.21	0.22
Distribut	ion of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.15	0.13	0.18
Hindi	0.64	0.68	0.60
Other	0.21	0.19	0.23

- Distribution of English, Hindi, Other in misclassified examples.
- Misclassified *joy:* more Hindi tokens = more Hindi tokens have a higher LIME score.

	J	oy	
Ι	Distribution of tok	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.40	0.44	0.32
Hindi	0.34	0.29	0.44
Other	0.26	0.27	0.24
Distributi	on of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.43	0.48	0.32
Hindi	0.32	0.28	0.42
Other	0.25	0.24	0.32
	Ar	ıger	
Ι	Distribution of tok	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.15	0.14	0.17
Hindi	0.63	0.65	0.61
Other	0.22	0.21	0.22
Distributi	on of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.15	0.13	0.18
Hindi	0.64	0.68	0.60
Other	0.21	0.19	0.23

- Distribution of English, Hindi, Other in misclassified examples.
- Misclassified joy: more Hindi tokens = more Hindi tokens have a higher LIME score.

		Joy	
Ι	Distribution of to	kens in all ex	amples
	All examples	Correct	Misclassified
English	0.40	0.44	0.32
Hindi	0.34	0.29	0.44
Other	0.26	0.27	0.24
Distributi	ion of tokens ass	igned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.43	0.48	0.32
Hindi	0.32	0.28	0.42
Other	0.25	0.24	0.32
	A	nger	
Ι	Distribution of to	kens in all ex	camples
	All examples	Correct	Misclassified
English	0.15	0.14	0.17
Hindi	0.63	0.65	0.61
Other	0.22	0.21	0.22
Distributi	ion of tokens ass	igned a posi	tive LIME score
	All examples	Correct	Misclassified
English	0.15	0.13	0.18
Hindi	0.64	0.68	0.60
Other	0.21	0.19	0.23

- Distribution of English, Hindi, Other in misclassified examples.
- Misclassified joy: more Hindi tokens = more Hindi tokens have a higher LIME score.
- Misclassified *anger:* more English tokens = more English tokens have a higher LIME score.

	J	oy	
Ι	Distribution of tol	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.40	0.44	0.32
Hindi	0.34	0.29	0.44
Other	0.26	0.27	0.24
Distributi	ion of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.43	0.48	0.32
Hindi	0.32	0.28	0.42
Other	0.25	0.24	0.32
	Ar	nger	
Γ	Distribution of tol	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.15	0.14	0.17
Hindi	0.63	0.65	0.61
Other	0.22	0.21	0.22
Distributi	ion of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified

0.15

0.64

0.21

0.13

0.68

0.19

English

Hindi

Other

0.18

0.60

0.23

- Distribution of English, Hindi, Other in misclassified examples.
- Misclassified joy: more Hindi tokens = more Hindi tokens have a higher LIME score.
- Misclassified *anger:* more English tokens = more English tokens have a higher LIME score.

	J	oy	
Γ	Distribution of tok	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.40	0.44	0.32
Hindi	0.34	0.29	0.44
Other	0.26	0.27	0.24
Distributi	on of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified
English	0.43	0.48	0.32
Hindi	0.32	0.28	0.42
Other	0.25	0.24	0.32
	Ar	ıger	
Γ	Distribution of tok	ens in all ex	amples
	All examples	Correct	Misclassified
English	0.15	0.14	0.17
Hindi	0.63	0.65	0.61
Other	0.22	0.21	0.22
Distributi	on of tokens assi	gned a posit	tive LIME score
	All examples	Correct	Misclassified

0.15

0.64

0.21

0.13

0.68

0.19

English

Hindi

Other

0.18

0.60

0.23

• PLMs learn sociolinguistic patterns established by literature when predicting emotion.

- PLMs learn sociolinguistic patterns established by literature when predicting emotion.
- Hindi = negative emotion; English = positive emotion.

- PLMs learn sociolinguistic patterns established by literature when predicting emotion.
- Hindi = negative emotion; English = positive emotion.
- PLMs can overgeneralise to infrequent examples.

- PLMs learn sociolinguistic patterns established by literature when predicting emotion.
- Hindi = negative emotion; English = positive emotion.
- PLMs can overgeneralise to infrequent examples.
- Motivation for deeper engagement between language model interpretability and sociolinguistics.

- PLMs learn sociolinguistic patterns established by literature when predicting emotion.
- Hindi = negative emotion; English = positive emotion.
- PLMs can overgeneralise to infrequent examples.
- Motivation for deeper engagement between language model interpretability and sociolinguistics.
- Future work: these understandings can be leveraged to make better systems designed for code-mixed languages.

Selected Bibliography

- P. Agarwal, A. Sharma, J. Grover, M. Sikka, K. Rudra and M. Choudhury, "I may talk in English but gaali toh Hindi mein hi denge : A study of English-Hindi code-switching and swearing pattern on social networks," 2017 9th International Conference on Communication Systems and Networks (COMSNETS), Bengaluru, India, 2017, pp. 554-557, doi: 10.1109/COMSNETS.2017.7945452.
- A. Seza Doğruöz, Sunayana Sitaram, Barbara E. Bullock, and Almeida Jacqueline Toribio. 2021. A Survey of Code-switching: Linguistic and Social Perspectives for Language Technologies. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1654–1666, Online. Association for Computational Linguistics.
- S. Ghosh, A. Priyankar, A. Ekbal and P. Bhattacharyya. 2023. Multitasking of sentiment detection and emotion recognition in code-mixed Hinglish data. Knowledge-Based Systems, 260, 110182.
- Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy. Association for Computational Linguistics.
- Marco Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pages 97–101, San Diego, California. Association for Computational Linguistics.
- Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury, and Niloy Ganguly. 2016. Understanding Language Preference for Expression of Opinion and Sentiment: What do Hindi-English Speakers do on Twitter?. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1131–1141, Austin, Texas. Association for Computational Linguistics.

Prediction: Joy

Tweet: @handle Wow dear I am proud of you kiya gali de ho aapne Lang_ID: other eng eng eng eng eng eng eng hin hin hin hin Translation: Wow, dear, I am proud of you. You have cursed so eloquently!

HingRoBERTa:	<u>@handle</u> <u>Wow</u> dear I am <u>proud</u> <u>of</u> you <u>kiya</u> gali <u>de</u> ho aapne
XLM-R:	<u>@handle</u> Wow dear I <u>am proud</u> <u>of</u> you kiya gali <u>de</u> ho <u>aapne</u>
IndicBERT:	@handle Wow <u>dear</u> I am <u>proud</u> of you kiya gali de ho aapne

All models are influenced by the English part of the sentence to predict *joy*