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Hindi English

Emotion: Joy
Speaker switches to 
English when expressing 
positive emotion.
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Are English tokens more likely to influence a model to predict a positive 
emotion?
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Are Hindi tokens more likely to influence a model to predict a negative 
emotion? And if so, what is the role of Hindi swear words?
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1000 samples, stratified across labels, each token annotated with:
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2. Token-Tagging

1000 samples, stratified across labels, each token annotated with:

• Token level language ID : English, Hindi, Other

• LIME score: Between -1 and 1

• A positive score = token influenced the model towards the predicted label.

• A negative score = token influenced the model to not predict that label.
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Apun ka naam aa giya akhbaar mein too much happy uff!

Hin Hin Hin HinHinHinHin Eng Eng Eng Other

-0.09 -0.07 0.08 0.2 0.5 0.07-0.020.07-0.010.02-0.08

Prediction: Joy

Positive LIME score - influences 
model towards predicted label

Negative LIME score - 
influences model to not predict 
that label
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3. Statistical Significance

• Frequency of positive/negative 
LIME score per language ID tag, for 
each model. 

• Statistical testing with chi-square.
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Results

For predicted joy and anger examples:
• All p-values are <0.05

• There is dependency between 
language ID and LIME score

We test the null hypothesis that language ID tags and LIME 
scores are independent of each other using χ2 .

9



10



10

Do English tokens influence models 
to predict positive emotions?



10

Do English tokens influence models 
to predict positive emotions?

Yes!
English > Hindi, Other



10

Do English tokens influence models 
to predict positive emotions?

Yes!
English > Hindi, Other

Do Hindi tokens influence models to 
predict negative emotions?



Do English tokens influence models 
to predict positive emotions?

Yes!
English > Hindi, Other

Do Hindi tokens influence models to 
predict negative emotions?

Yes!
Hindi > English, Other
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What is the role of Hindi swear 
words?

Top 10 tokens with the highest LIME scores when 
predicting negative emotions, (anger, sadness, 

disgust and fear) for all models. They have been 
mapped to a canonical form and are in descending 

order of LIME score.
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What is the role of Hindi swear 
words?

Top 10 tokens with the highest LIME scores when 
predicting negative emotions, (anger, sadness, 

disgust and fear) for all models. They have been 
mapped to a canonical form and are in descending 

order of LIME score.

See top 10 words with the highest 
LIME scores, when predicting negative 
emotion.
4/10 are Hindi swear words!
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Do PLMs overgeneralise these associations?

• Language models can adapt to heuristics that are valid for frequent cases and 
fail on the less frequent ones (McCoy et al, 2019). 

• Will the sociolinguistics generalize to data-poor scenarios?

• We examine instances where the models have misclassified examples 
labelled as joy and anger.
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Confusion matrix containing the percentage of correctly and 
incorrectly classified examples for each label combination. 

The blue cells represent correct classifications, and the 
pink cells represent incorrect classifications.
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• Generally misclassified as another 
label of same emotional polarity.

• Models struggle with granular 
distinctions.

• We also manually examine the few 
instances where this is not the 
case.

Confusion matrix containing the percentage of correctly and 
incorrectly classified examples for each label combination. 

The blue cells represent correct classifications, and the 
pink cells represent incorrect classifications.
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Tweet: @handle Very nice Sir yeh diya sateek jawab Pakistan ab 
bhi sudhar ja nahi to terey yaha sai jitn …

Label: Anger Prediction: Joy

An example labelled anger that was misclassified as joy owing to the English 
phrase (English - purple; Hindi - green; Other - orange) in the sentence having a 

positive connotation, even though the sentence itself conveys anger.
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• Distribution of English, Hindi, Other 
in misclassified examples.
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To Conclude…
• PLMs learn sociolinguistic patterns established by literature when predicting 

emotion.

• Hindi = negative emotion; English = positive emotion.

• PLMs can overgeneralise to infrequent examples.

• Motivation for deeper engagement between language model interpretability 
and sociolinguistics. 

• Future work: these understandings can be leveraged to make better systems 
designed for code-mixed languages.
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All models are influenced by the English part of the sentence to predict joy
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Prediction: Joy


