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Overview

• 3 problems & 13 languages in the constrained track
• 5 problems & 16 languages in the unconstrained track
• 14 registrations, 3 submissions to each track
• 2 successful submissions to each track → 4 system description papers

• GitHub: https://github.com/sigtyp/ST2024
• List of text sources: ./ST2024/blob/main/list_of_text_sources.md 
• Constrained track: https://codalab.lisn.upsaclay.fr/competitions/16822
• Unconstrained track: https://codalab.lisn.upsaclay.fr/competitions/16818
• Updated dataset (with test labels): https://doi.org/10.5281/zenodo.10655061

https://github.com/sigtyp/ST2024
https://github.com/sigtyp/ST2024/blob/main/list_of_text_sources.md
https://codalab.lisn.upsaclay.fr/competitions/16822
https://codalab.lisn.upsaclay.fr/competitions/16818
https://doi.org/10.5281/zenodo.10655061
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Subtasks & Data



Subtasks

A. Constrained
1. POS-tagging
2. Morphological feature 
prediction
3. Lemmatisation

B. Unconstrained
1. POS-tagging
2. Morphological feature 
prediction
3. Lemmatisation
4. Filling the gaps (mask filling)
• Word-level
• Character-level



Data Sources
St Gall Priscian Glosses, Würzburg Glosses
• Old Irish

CELT
• Old Irish
• Middle Irish
• Early Modern Irish

Historical Irish Corpus
• Early Modern Irish

MGTSZ
• Old Hungarian

Universal Dependencies v. 2.12
• Ancient Greek
• Ancient Hebrew
• Classical Chinese
• Coptic Gothic
• Historical Icelandic
• Latin
• Old Church Slavonic
• Old East Slavic
• Old French
• Vedic Sanskrit

http://www.stgallpriscian.ie/
https://wuerzburg.ie/
https://celt.ucc.ie/publishd.html
http://corpas.ria.ie/index.php?fsg_function=1
http://oldhungariancorpus.nytud.hu/en-codices.html
http://hdl.handle.net/11234/1-5150




University
ofGalway.ie

Evaluation & Results



Evaluation
Task Metrics
POS-tagging Accuracy @1, F1
Morphological feature prediction Macro-average of Accuracy @1 per tag
Lemmatisation Accuracy @1, Accuracy @3
Filling the gaps (word-level) Accuracy @1, Accuracy @3
Filling the gaps (character-level) Accuracy @1, Accuracy @3

• Final score = macro-average of per-task scores
• Each task is weighed equally

• Multiple metrics for every task, except morphological feature prediction
• Unweighted average of the metrics as the score for the task

• Morphological annotation: punishment for predicting non-existent features



Baselines

• Provided for problems 1-3
• Simple multilayer perceptron architecture with no pretraining
• Individual models for each language for POS-tagging and lemmatisation
• Language-agnostic models for each of the 44 morphological features
• 16 features extracted for each token + language codes
• Hyperparameters common for all models:

o Hidden layers: 2
o Activation: ReLU
o Dropout: 20%
o Optimiser: Adam
o Early stopping



Submissions: constrained
Heidelberg-Boston

• Constrained track winner
• Results on par with the winner of the 

unconstrained track
• POS-tagging & morphological feature 

prediction: hierarchical tokenisation + 
DeBERTa-V3

• Lemmatisation: character-level nanoT5
• Models pre-trained from scratch for each 

language in the dataset individually
• Avg. 95.25%, 93.67% and 96.18% for POS-

tagging, lemmatisation & morph. features

Team 21a

• Multilingual model pretrained on 
the whole dataset, LiBERTus

• Follows RoBERTa architecture
• Loses to Heidelberg-Boston 

despite using cross-lingual transfer
• Struggles with multiword 

expressions
• Avg. 82.47%, 81.98% and 90.70% for 

POS-tagging, lemmatisation &
morphological feature prediction

https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers
https://github.com/ljvmiranda921/LiBERTus


Submissions: unconstrained
UDParse

• Problems 1-3: UDParse paser on top of 
different pre-trained transformer models 
(mBERT, XLM-RoBERTa, GPT2, heBERT, 
slavicBERT)

• Word-level mask filling: distilBERT
• Character-level mask filling: 

embeddingless n-gram model
• Avg. 96.09%, 86.47% and 96.68% for POS-

tagging, lemmatisation & morph. features
• Avg. 3.77% and 55.62% for word-level & 

character-level mask filling

TartuNLP

• Fine-tuned stacked language- and 
task-specific adapters for XLM-
RoBERTa

• Applied the same approach 
uniformly to all 5 tasks and 16 
languages

• Avg. 85.67% and 88.14% for POS-
tagging & morph. feature prediction

• Avg. 94.88% for lemmatisation
• Avg. 5.95% and 48.38% for word-

level & character-level mask filling

https://github.com/Orange-OpenSource/udparse
https://github.com/slowwavesleep/ancient-lang-adapters/tree/sigtyp2024


Problems 1-3



Problem 4

Overall results



Discussion
• All participants used transformer architectures, with RoBERTa and its modifications 

being the most popular one
• All participants outperformed the baselines for morphological feature prediction with 

the best average result about 96% across 13 languages
• Only the winning teams beat the baselines for POS-tagging and lemmatisation, 

achieving average results of 95.25% and 93.67% respectively in the constrained setting, 
and 96.09% and 94.88% in the unconstrained setting

• In word-level mask filling, the best average result over 16 languages was 5.95% and the 
best result for an individual language was 16.9% for Medieval Icelandic

• At the character level, the best average result over 16 languages was 55.62% and the best 
result for an individual language was 74.59% for Gothic

• The difference between the smallest (Vedic Sanskrit, 21K) and largest (Medieval Latin, 
599K) corpora is not that dramatic: e.g. avg. 9.5% for POS-tagging and avg. 11.3% for 
morph. feature prediction



Discussion
• Cross-lingual and cross-temporal transfer could have played an important role in the 

systems that used XLM-RoBERTa
• Similar results can be achieved with pre-training on modestly sized monolingual data 

without any transfer
• A simple character n-gram model can be more effective for mask filling in a low-

resource setting than transformers
• Generally, mask filling tasks are much harder than others, especially on word level

o High lexical variety
o Orthographic variation
o Relatively short sentences
o Code-switching
o Data scarcity 
o Composite characters and vowel markings in Coptic & Ancient Hebrew
o Non-trivial character decomposition in Classical Chinese
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Thank you for your attention!

oksana.dereza@insight-centre.org  


